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Abstract
Recent advances in contrastive learning have significantly improved the performance of deep learning models. In contrastive 
learning of medical images, dealing with positive representation is sometimes difficult because some strong augmentation 
techniques can disrupt contrastive learning owing to the subtle differences between other standardized CXRs compared to 
augmented positive pairs; therefore, additional efforts are required. In this study, we propose intermediate feature approxima-
tion (IFA) loss, which improves the performance of contrastive convolutional neural networks by focusing more on positive 
representations of CXRs without additional augmentations. The IFA loss encourages the feature maps of a query image and 
its positive pair to resemble each other by maximizing the cosine similarity between the intermediate feature outputs of the 
original data and the positive pairs. Therefore, we used the InfoNCE loss, which is commonly used loss to address negative 
representations, and the IFA loss, which addresses positive representations, together to improve the contrastive network. We 
evaluated the performance of the network using various downstream tasks, including classification, object detection, and a 
generative adversarial network (GAN) inversion task. The downstream task results demonstrated that IFA loss can improve 
the performance of effectively overcoming data imbalance and data scarcity; furthermore, it can serve as a perceptual loss 
encoder for GAN inversion. In addition, we have made our model publicly available to facilitate access and encourage further 
research and collaboration in the field.

Keywords  Chest radiograph (CXR) · Contrastive learning · Hard negative representation · Hard positive representation · 
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Introduction

Chest radiograph (CXR) is not only one of the most com-
monly performed radiological examinations in routine 
clinical practice but also an important examination owing 
to the useful information it can provide to clinicians [1, 2]. 
Although CXRs are frequently used and relatively easy to 
obtain, their interpretation requires expertise. Considering 
the labor and cost involved in interpreting the vast number of 
radiological images, deep learning has emerged as an assis-
tant for CXR interpretation [3, 4]. Deep learning methods 
can assist radiologists in reading CXRs with abnormality 
classification [5], detection [6], and segmentation [7]. How-
ever, training deep learning models on medical images poses 
several challenges, such as privacy issues, inaccessibility, 
and high costs.

Kyungjin Cho and Ki Duk Kim contributed equally to this work.

 *	 Namkug Kim 
	 namkugkim@gmail.com

1	 Department of Bioengineering, Asan Medical Institute 
of Convergence Science and Technology, Asan Medical 
Center, 88 Olympic‑Ro 43‑Gil Songpa‑Gu, Seoul 05505, 
South Korea

2	 Department of Convergence Medicine, University of Ulsan 
College of Medicine, Asan Medical Center, 88 Olympic‑Ro 
43‑Gil Songpa‑Gu, Seoul 05505, South Korea

3	 Department of Radiology and Research Institute 
of Radiology, Asan Medical Center, University of Ulsan 
College of Medicine, Seoul, Republic of Korea

http://orcid.org/0000-0002-3438-2217
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-024-01032-x&domain=pdf


	 Journal of Imaging Informatics in Medicine

Self-supervised learning (SSL) has emerged as a solution 
to these challenges in medicine [8]. SSL is an unsupervised 
pretraining method that learns representations from self-
defined tasks. Researchers can reduce the burden of using 
expensive labels for medical images because a network 
learns representations using self-defined labels in SSL. A 
deep learning network can learn better visual representations 
of medical images by solving jigsaw puzzles [9, 10], Rubik’s 
cubes of medical images [11–13], and restoring corrupted 
images [14, 15]. The contrastive learning method is one of 
the most powerful SSL methods for learning visual repre-
sentations. Some approaches have been adopted to improve 
the performance of deep learning networks using contras-
tive learning methods. For example, one study showed that 
pretraining with contrastive learning on medical images such 
as a dermatology dataset or CXR dataset improves the per-
formance of a deep learning network on classification task 
[16], and Ghesu et al. trained a contrastive network on 100 
million medical images and showed improved performance 
on classification and object detection of CXR, chest CT, and 
brain MRI [17]. Cho et al. trained a contrastive network on 
4.8 million CXR images and made the pretrained weights 
publicly available [18].

Contrastive learning trains a network by placing similar 
images (positive pairs) closer together and different images 
(negative pairs) further apart in the latent space. Typically, 

contrastive learning uses multiple views of the original 
image created by image augmentation as positive pairs and 
the other images as negative pairs [19]. Although contrastive 
learning is a powerful method for learning visual represen-
tations, it also suffers from some challenges, such as “hard 
negatives” [20–22]. Hard negatives refer to the negative 
pairs that are closer to the original data point than the posi-
tive pair in latent space, making them a “hard” representa-
tion. Positive pairs that are further away from the original 
data point than negative pairs can be referred to as “hard 
positives.” Therefore, addressing these hard representations 
is crucial in training contrastive learning. Figure 1 depicts 
the relationship between the hard positives and hard nega-
tives in the latent space.

Hard representations are prevalent in a medical image data-
set owing to the standardized acquisition protocols. Therefore, 
common data augmentation techniques used in contrastive 
learning may result in variations that are larger than those 
present in the negative samples. For example, anatomical 
variations, positions, and breath-hold levels can vary more 
than strong augmentations, resulting in some negative sam-
ples being more similar to the data point than the positive 
pairs generated with these strong augmentations. To deal with 
the problem of hard negatives, researchers use large memory 
banks of negative samples [23, 24] or sample and mix hard 
negative samples [20–22]. However, most contrastive learning 

Fig. 1   The diagram of negative 
sample, positive sample, and 
original data point in the latent 
space. Some positive samples 
that are located farther from 
the query (data point) than hard 
negative samples can be consid-
ered as “hard positive” samples
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studies on medical images focus mainly on hard negatives and 
address the positive pair only to the extent of finding good 
augmentation combinations [23, 25]. Therefore, additional 
efforts beyond augmentations can help a contrastive network 
train positive representations effectively in medical imaging. 
Recently, a study group reported that addressing hard posi-
tives by weighting the cosine similarity score of linear pro-
jections of feature vectors extracted from positive pairs can 
improve medical image segmentation [26].

In this study, we propose intermediate feature approxima-
tion (IFA) loss to deal with the hard positives and improve 
the baseline of the pretrained contrastive network. We expect 
IFA loss to pull positive pairs closer to the original point 
by approximating the intermediate feature maps of positive 
pairs. Therefore, a contrastive learning network can set deci-
sion boundaries between negative and positive pairs a little 
easier. We demonstrated the results of the IFA loss fine-
tuned contrastive network with various downstream tasks.

Materials and Methods

This retrospective study was conducted according to the 
principles of the Declaration of Helsinki and according 
to current scientific guidelines. The study protocol was 
approved by the Institutional Review Board Commit-
tee (IRB) of tertiary hospital. The requirement for writ-
ten informed consent was waived by the IRB because the 
data were analyzed retrospectively and anonymously. The 
detailed materials and methods of the study are provided in 
this section.

Training Hard Positive Representations to Learn 
Better Visual Representation of CXR

A total of 4.8 M CXR images composed of 3.6 M adult 
CXR images collected from 2011 to 2018 and 1.2 M pedi-
atric CXR images collected from 1997 to 2018 were used to 
learn visual representations of CXR [18]. CXRs have been 
obtained retrospectively from a South Korean tertiary hos-
pital. Only the posterior-anterior view images of CXRs were 
included in this study.

In this study, we propose intermediate feature approxima-
tion (IFA) loss, aiming to increase the similarity between the 
intermediate feature maps of positive pairs. IFA loss was 
calculated as follows:

(1)f
�
(Query) = Q

(2)f
�
(Positive pair) = P

(3)‖1 − cos(Q,P)‖

where fθ denotes the contrastive network before the target 
approximation output layer; Q denotes the intermediate fea-
ture tensor output of the query image after the target approx-
imation layer; P denotes the intermediate feature tensor out-
put of the positive pair image after the target approximation 
layer. The cosine similarity between the tensor outputs was 
calculated and subtracted with the tensors composed of 1 
with the same shape as the cosine similarity matrix. IFA loss 
then maximizes the cosine similarity between the Q and P. 
However, training contrastive networks only with hard repre-
sentations from scratch may lead to their failure to converge 
[22]. Therefore, we used IFA loss as a supportive function 
to improve the existing pretrained network.

Therefore, we first trained a self-supervised contrastive 
network with unlabeled images based on MoCo v2 [23]. 
InfoNCE loss [27] was used to maximize the similarity 
between positive pairs and minimize the similarity between 
negative pairs for the MoCo v2 baseline. A self-supervised 
contrastive network based on SimCLR [25] was also trained 
to see if the performance improvement of IFA loss could 
be generalized to other contrastive networks. The NT-Xent 
loss was used for SimCLR. When IFA loss was used to fine-
tune the pretrained network, it was used in conjunction with 
InfoNCE loss or NT-Xent loss, which was used to train the 
pretrained network initially. The graphical summary of the 
methods is shown in Fig. 2.

The ResNet-50 [28] architecture, one of the most com-
monly used CNN architectures, has been used throughout 
the experiment. The ResNet-50 architecture consists of an 
initial 7 × 7 convolutional layer and four bottleneck blocks, 
which consist of multiple 3 × 3 convolutional layers sur-
rounded by 1 × 1 bottleneck convolutions back and forth. 
Although the IFA loss can be applied to any of the 50 inter-
mediate feature outputs of ResNet-50, we experimented 
with four intermediate feature outputs after each of the four 
bottleneck blocks to determine the optimal level of approxi-
mation to improve network performance, considering the 
limited resources and time. Accordingly, the performance 
of approximating the outputs of residual blocks 1, 2, 3, and 
4 outputs was compared.

Evaluation via Various Downstream Target Tasks

Several downstream tasks relevant to medical imaging were 
experimented with to evaluate our pretrained models. First, 
image classification tasks were evaluated. An image classi-
fication task, which requires using comprehensive features 
from an image, is a key application of deep learning in medi-
cal imaging. A multiclass classification task using a private 
dataset [29], a multilabel classification task using the CheX-
pert [30] dataset, and a pediatric pneumonia classification 
task [31] were conducted for classification tasks.
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Fig. 2   Overall workflow of upstream fine-tuning of intermediate 
feature approximation (IFA) loss. A ResNet-50 model was first pre-
trained on 4.8 million CXR datasets using the MoCo v2 or SimCLR 

method. After contrastive pretraining, the pretrained ResNet-50 was 
fine-tuned jointly using the IFA loss and the contrastive loss used in 
the initial pretraining
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In the CXR 6-class classification task [29], the ability 
of each pretrained model to handle class imbalance, which 
is common in clinical situations, was conducted to classify 
normal, nodule, consolidation, interstitial opacity, pleural 
effusion, and pneumothorax from CXR, which are CT con-
firmed data labels. Severe data imbalance was established 
in the initial setting, with the most prevalent disease class 
having 1540 images and the least prevalent disease class 
280 images. In addition to the initial setting, undersampled 
data with the least common number of images was also set 
up to compare the model performance in the fair but limited 
amount of data settings. Finally, a modified dataset was set 
in which the amount of data was adjusted based on the dif-
ficulty of each class in the dataset. A balanced validation 
and test dataset was created because the performance can be 
overestimated if a similar prevalence to the train dataset is 
applied to them. In addition, the validation and test datasets 
were kept consistent across all experiments to ensure a fair 
comparison between each training dataset. Datasets for CXR 
6-class classification are summarized in Table 1.

In the CheXpert multilabel classification task, multiple data 
fraction stress tests were conducted using fractions of 1%, 10%, 
50%, and 100% to evaluate the performance of the model under 
varying levels of data availability, simulating the conditions 
commonly encountered in real-world research settings. Fine-
tuning experiments on small data fractions were repeated 10 
times using different random samples to ensure the reproduc-
ibility of the data stress test. A common unseen test dataset 
was used in all experiments to ensure a fair comparison. Data 
fractions for CheXpert are summarized in Table 2.

A pediatric pneumonia classification task was conducted 
because a considerable amount of pediatric CXRs were used 
in our pretraining task. In this study, a three-class classifica-
tion task of distinguishing between normal, bacterial pneu-
monia, and viral pneumonia of pediatric CXR was evaluated. 
We randomly split the public training dataset into train and 
validation datasets at a ratio of 9:1. Offline augmentations 
was then used to balance the number of images among 
classes using rotation at the range of 10° and zooming range 
of 20%. The test dataset was kept the same as the public 
dataset. Datasets for pediatric pneumonia classification task 
are summarized in Table 3.

The SIIM-FISABI-RSNA COVID-19 object detec-
tion [32, 33] was experimented with to evaluate the object 
detection performance of the proposed network. The Faster 
R-CNN [34] architecture with R50-dilated-C5 and R50-
C4 was set as the object detection header. ResNet-50 was 
used as the backbone encoder for both architectures, and 
results were compared. The competition was designed to 
incorporate a single mAP score for both classification and 
object detection tasks. Furthermore, the scores we evaluated 
in this study could not be accurately obtained because the 
test datasets were hidden, and scoring was only possible 
through the submission process. The ground truth labels 
for the test datasets were not publicly available, only the 
trains were. Therefore, we randomly split the public training 
dataset into train, validation, and test datasets. Datasets for 
the COVID-19 lung opacity object detection task are sum-
marized in Table 4.

Finally, our pretrained network was used to calculate 
medical perceptual loss [35] to assess its performance 
in capturing and representing relevant medical features. 

Table 1   Datasets used in CXR 
6-class classification

The same number of images for each class was sampled for the undersampled dataset. Normal, nodule, and 
consolidation were additionally sampled for the modified dataset, while the interstitial opacity images were 
simply duplicated because no additional data was available for interstitial opacity

Normal Nodule Consolidation Interstitial 
opacity

Pleural effusion Pneumothorax

Full 2515 888 1484 224 1308 274
Undersampled 224 224 224 224 224 224
Modified 336 560 560 448 224 224
Validation 28 28 28 28 28 28
Test 28 28 28 28 28 28

Table 2   Data fractions used in CheXpert multilabel classification

To ensure the reproducibility of the data stress test, fine-tuning exper-
iments on small data fractions of data were repeated 10 times using 
different random samples. All data was randomly sampled, and all 
CheXpert frontal view data was used

1% 10% 50% 100%

Train 1787 17,873 89,366 178,732
Validation 446 4468 22,341 44,682
Test 234 234 234 234

Table 3   Datasets used in pediatric pneumonia classification

Normal Bacterial  
pneumonia

Viral pneumonia

Train 2288 2288 2288
Validation 250 250 250
Test 234 242 148
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Projecting an original seed image into a latent feature using 
generative adversarial network (GAN) inversion was exper-
imented with normal CXRs from the VinDr-CXR Chest 
X-ray Abnormalities Detection dataset [36]. The backbone 
for GAN inversion in our study was a style-based generative 
adversarial network [37]. The embedded latent vector was 
optimized to minimize the difference between the original 
and reconstructed image, using a combination of a pixel-
wise mean squared error (MSE) loss and a perceptual loss 
[38]. VGG-16, ResNet-50 with supervised learning on Ima-
geNet, ResNet-50 with MoCo v2 on ImageNet, ResNet-50 
with SimCLR, CheSS (MoCo v2), and IFA loss combined 
with SimCLR and CheSS were used to calculate the percep-
tual loss and compared.

All datasets except the private dataset used in the multi-
class classification were collected in institutions other than 
the upstream dataset, and the data used in the multiclass 
classification were not included in the upstream dataset. 
All datasets used to evaluate the downstream performance, 
except our private datasets, are publicly available online. 
The fine-tuning performance of each pretrained weight was 
compared in each downstream task.

Statistical Analysis

Performance on the six-class classification task was evalu-
ated by accuracies. The Stuart–Maxwell test [39, 40] for 
marginal homogeneity was performed to compare the per-
formance of each model with the best-performance model.

Performance on CheXpert was evaluated by the area 
under the receiver operating characteristic curves (AUCs) 
because it is the standard performance metric for CheX-
pert. DeLong’s test for pairwise comparison of receiver 
operating characteristic (ROC) curves was performed 
to compare the performance of each model with the 
InfoNCE + IFA pretrained model. Means and standard 
deviations (SDs) of AUCs were calculated in the multiple 
data fraction stress test of CheXpert. Paired t-tests were 
performed to compare the performance of each model with 
the best performance model.

Performance on pediatric pneumonia classification tasks 
was evaluated by accuracy, precision, recall, and F1 scores. 
The Stuart–Maxwell test for marginal homogeneity was per-
formed to compare the performance of each model with the 
best performance model.

Performance on COVID-19 lung opacity object detec-
tion was assessed using the mean of the average precision 
(mAP) at two different thresholds, mAP50 and mAPCOCO 
(0.5, [0.5:0.95]). The average precision (AP) is calculated 
as the mean of the precision at each threshold, and mAP is 
calculated as the mean of the AP of all data. Therefore, a 
null hypothesis test for lung opacity object detection was 
not required, given the large degree of freedom (i.e., all p 
values were < 0.001).

Performance on GAN inversion was evaluated using peak 
signal-to-noise ratio (PSNR), structural similarity index 
measure (SSIM), root mean squared error (RMSE), and 
learned perceptual image patch similarity (LPIPS). Paired 
t-tests were performed to compare the performance of each 
model with the best performance model.

All statistical analyses were performed using the R ver-
sion of 4.2.1. Statistical significance was set at a two-sided 
p value of < 0.05.

Results

Implementation Details of Study Experiments

Our models were implemented with the PyTorch framework 
of 1.8.0. Training the upstream model required ~ 8 w. The 
implementation details are described as follows:

1.	 Preprocessing: All CXR images were resized into 
512 × 512 pixels by linear interpolation. Next, to allevi-
ate the high intensity of L/R markers in CXR images, we 
limited the maximum pixel value of the CXR images to 
the top 1% pixel of each CXR image [41].

2.	 Augmentation: To learn a more robust CXR represen-
tation of the model, strong but clinically viable extent 
data augmentation was performed using many transfor-
mations: ShiftScaleRotate, MedianBlur, MotionBlur, 
Sharpen, Cutout, OpticalDistortion, RandBrightness, 
RandContrast, GaussNoise, and MultiplicativeNoise.

3.	 Network comparison: One of the most widely used net-
works, ResNet-50 [28], was employed throughout this 
study. Our proposed IFA loss was compared with several 
other methods: random initialization without pretraining 
(Scratch), ImageNet pretrained with supervised learn-
ing (ImageNet-1 K), ImageNet pretrained with MoCo 
v2 (MoCo-ImageNet), SimCLR pretrained with CXR 
dataset (CXR-SimCLR), and MoCo v2 pretrained with 
CXR dataset (CheSS). IFA loss was additionally applied 
to the CXR-SimCLR model and CheSS model.

4.	 Training setting: The batch size of all experiments was set 
to the maximum for 8 GPUs memory (Tesla V100). In 
upstream, the batch size of 256 was used. The network was 

Table 4   Datasets used in COVID-19 lung opacity object detection

Negative Lung opacity

Train 1388 3435
Validation 174 429
Test 174 430
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initialized by a uniform Xavier initialization and trained 
using an SGD optimizer with a learning rate of 1e − 5 using 
a weight decay of 1e − 4. The learning rate was reduced 
by the cosine learning rate schedule. No data leakage 
occurred between the train, valid, and test datasets in any 
downstream task. The entire model was fine-tuned in all 
downstream tasks. The implementation details for each 
downstream task are described in Supplementary file 1.

Finding the Best Level of Feature Approximation 
Through the CheXpert Ablation Study

An ablation study was performed using the CheXpert data-
set, which serves as a benchmark dataset for medical image 
classification, to determine the optimal layer for feature 
approximation. Table 5 presents the results of the ablation 
study. The models pretrained with IFA loss performed well 
compared to existing transferable weights, although they did 
not reach statistical significance in some classes. When IFA 
loss was combined with the SimCLR pretrained model, the 
overall performance increase was observed without statisti-
cal significance when IFA loss was used. When IFA loss was 
combined with the MoCo v2 pretrained model (CheSS), the 
overall performance increase was observed, and a statisti-
cally significant increase in edema (p < 0.001) and pleural 
effusion (p = 0.008) images was observed.

In the ablation study to find the best level of feature approxi-
mation, no statistically significant performance difference was 
observed between the levels of feature approximation output, 
except for the consolidation (p = 0.012) and edema (p = 0.031) 
outputs after residual block 2. We selected the best-performing 
model (block 3) for the other downstream tasks.

curve compared with the MoCo + IFA (block 3) model. 
ROC, receiver operating characteristics curve; AUC​, area 
under receiver operating characteristics curve.

Classification Performance Evaluation

Table 6 presents the results of all experiments conducted. 
IFA loss combined models showed significantly bet-
ter performance in overcoming data imbalance compared 
with other commonly used pretrained models. When com-
bined with IFA loss, the model performance was signifi-
cantly improved in both SimCLR and CheSS in full dataset 
(p < 0.001, SimCLR; p = 0.004, CheSS) and modified data-
set (p < 0.001, SimCLR; p = 0.013, CheSS). In addition, the 
model performance was significantly improved in SimCLR 
in undersampled dataset (p < 0.001).

Second, a multilabel classification task of CheXpert [30] 
was conducted. Table 7 presents the results of all experi-
ments conducted. IFA loss combined models showed sig-
nificantly better performance in overcoming data shortage 
compared with other commonly used pretrained models. 
When combined with IFA loss, the model performance was 

Table 5   AUCs of each pretrained model were experimented on the CheXpert dataset

The bold text indicates the best performance
DeLong’s test was conducted for pairwise comparisons of each ROC
* p < 0.05; **p < 0.01; ***p < 0.001

Atelectasis Cardiomegaly Consolidation Edema Pleural effusion Mean AUC​

Scratch 0.788** 0.725 0.900 0.813*** 0.815*** 0.808
ImageNet-1 K 0.815* 0.805 0.840** 0.896 0.918 0.855
MoCo-ImageNet 0.806** 0.800 0.852* 0.897 0.912 0.853
CXR-SimCLR 0.818* 0.797 0.864 0.888 0.903 0.854
CheSS (CXR-MoCo) 0.849 0.774 0.898 0.832*** 0.869** 0.844
SimCLR + IFA 0.839 0.803 0.880 0.893 0.909 0.865
MoCo + IFA 0.857 0.785 0.899 0.913 0.905 0.872
Block 1 0.853 0.791 0.894 0.911 0.908 0.871
Block 2 0.844 0.787 0.878* 0.896* 0.901 0.861
Block 3 (ours) 0.857 0.785 0.899 0.913 0.905 0.872
Block 4 0.858 0.772 0.902 0.915 0.901 0.869

Table 6   Accuracies of six-class classification model with multiple 
data imbalance simulations

The bold text indicates the best performance
Stuart–Maxwell test was conducted to compare scratch (randomly 
initialized), ImageNet, MoCo-ImageNet, CheSS, and our pretrained 
(intermediate feature approximation loss) models
* p < 0.05; **p < 0.01; ***p < 0.001

Full Undersampled Modified

Scratch 0.435*** 0.357*** 0.417***

ImageNet-1 K 0.440*** 0.179*** 0.262***

MoCo-ImageNet 0.577*** 0.560** 0.464***

CXR-SimCLR 0.440*** 0.351*** 0.369***

CheSS (CXR-MoCo) 0.560** 0.595 0.512*

SimCLR + IFA 0.452*** 0.405*** 0.381***

MoCo + IFA 0.637 0.590 0.589
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significantly improved in and CheSS in 1% (p = 0.005), 10% 
(p = 0.011), and 50% (p < 0.001, CheSS) data fractions.

The result of the full dataset was presented only with 
AUC. SD, standard deviation; AUC​, area under receiver 
operating characteristics curve.

Finally, a pediatric pneumonia classification task was 
conducted. Table 8 lists the results of all experiments con-
ducted. In the pediatric pneumonia classification task, 
CheSS, MoCo v2 pretrained with the CXR dataset, showed 
the best performance compared to the other models.

Object Detection Performance Evaluation

An object detection task of SIIM-FISABIO-RSNA COVID-
19 object detection [32, 33] was conducted. As shown in 
Table 9, all pretrained models showed performance enhance-
ment compared to the randomly initialized (scratch) model 
except NT-Xent pretrained model (SimCLR) in both 
R50-dilated-C5 and R50-C4 architecture.

Medical Perceptual Loss Performance Evaluation

As shown in Table 10, the medically pretrained models 
(SimCLR, MoCo v2 pretrained model using CXR dataset, 
and the models pretrained using IFA models) performed 

overall well on multiple quantitative metrics. NT-Xent loss 
pretrained model (SimCLR) significantly outperformed the 
other models in PSNR, SSIM, and RMSE (all p < 0.001). 
Medically pretrained models also showed good results in 
qualitative results (Fig. 3).

Discussion

In this study, we improved the baseline of an existing SSL 
network [18] by incorporating IFA loss with NT-Xent 
loss and InfoNCE loss on 4.8 M CXR images to capture 
the refined medical features better and revealed the results 
through the results of various downstream tasks. IFA loss 
combined models showed performance improvements in 
some medically important downstream tasks, such as over-
coming data imbalances and data shortages. Although they 
did not achieve the best performance or significant perfor-
mance improvements compared to CXR pretrained base-
lines (i.e., CXR-SimCLR, CheSS) in some tasks, IFA loss 
combined models still showed better results compared to 
commonly used pretrained models (i.e., ImageNet pretrained 
models). Some tasks, such as 6-class classification, may 
appear to show low performance. However, the performance 
is comparable to that of our previous publication and was 
fair enough given that the diagnostic performance of general 

Table 7   Means and SDs of 
AUC experimented on 1%, 10%, 
and 50% data fractions, which 
were repeated 10 times with 
different random samples

The bold text indicates the best performance

1% 10% 50% 100%

Scratch 0.562 ± 0.019*** 0.765 ± 0.014*** 0.807 ± 0.004*** 0.811
ImageNet-1 K 0.765 ± 0.009*** 0.839 ± 0.014 0.852 ± 0.005*** 0.855
MoCo-ImageNet 0.769 ± 0.012** 0.840 ± 0.005 0.852 ± 0.004** 0.853
CXR-SimCLR 0.767 ± 0.013*** 0.810 ± 0.004*** 0.811 ± 0.003*** 0.854
CheSS (CXR-MoCo) 0.770 ± 0.014** 0.833 ± 0.012* 0.841 ± 0.005*** 0.843
SimCLR + IFA 0.763 ± 0.009*** 0.804 ± 0.004*** 0.809 ± 0.007*** 0.865
MoCo + IFA 0.789 ± 0.010 0.846 ± 0.003 0.862 ± 0.004 0.872

Table 8   Performance of pediatric pneumonia classification

The bold text indicates the best performance
Stuart–Maxwell test was conducted to compare scratch (randomly 
initialized), ImageNet, MoCo-ImageNet, CheSS, and our pretrained 
(intermediate feature approximation loss) models
* p < 0.05; **p < 0.01; ***p < 0.001

Accuracy Recall Precision F1

Scratch 0.804* 0.805 0.806 0.805
ImageNet-1 K 0.816*** 0.822 0.816 0.819
MoCo-ImageNet 0.819*** 0.828 0.824 0.826
CXR-SimCLR 0.796*** 0.803 0.804 0.803
CheSS (CXR-MoCo) 0.854 0.853 0.848 0.851
SimCLR + IFA 0.793* 0.797 0.801 0.799
MoCo + IFA 0.832*** 0.832 0.836 0.834

Table 9   SIIM-FISABIO-RSNA COVID-19 lung opacity object 
detection

Average precision (AP) at two different intersections of union (IoU) 
thresholds were evaluated (0.5, [0.5:0.95]).

R50-dilated-C5 R50-C4

AP50 APCOCO AP50 APCOCO

Scratch 0.310 0.097 0.313 0.104
ImageNet-1 K 0.343 0.117 0.364 0.119
MoCo-ImageNet 0.348 0.119 0.362 0.119
CXR-SimCLR 0.321 0.102 0.319 0.104
CheSS (CXR-MoCo) 0.346 0.115 0.348 0.116
SimCLR + IFA 0.305 0.102 0.306 0.101
MoCo + IFA 0.361 0.117 0.350 0.110
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practitioners or junior radiologists on CXR alone is known 
to be 40–70% [42, 43].

In convolutional neural networks (CNNs), low-level 
features, which are detected in the early layers of CNN, 
pertain to basic features such as edges, corners, and tex-
tures, whereas high-level features, which are detected in 
the deeper layers of CNN, pertain to more complex fea-
tures such as object parts or the entire objects [44]. In 
medical imaging, low-level features can be referred to 
as lines and contours of each anatomical structure, and 
high-level features can be referred to as detailed anatomi-
cal variations. It is hypothesized that the CNN can learn 
common mid-level features (i.e., common anatomy) from 
various lower-level features by increasing the similarity 
between the intermediate feature maps of positive pairs. 
Furthermore, the CNN still can learn various anatomi-
cal variations (i.e., higher-level features) from common 

anatomy (i.e., common mid-level features). By combining 
the IFA loss with the NT-Xent loss or InfoNCE loss, the 
SSL network was also required to learn diverse high-level 
features to distinguish between negative pairs. Therefore, 
the IFA loss restricts the network from learning common 
features between positive pairs, while the InfoNCE loss 
encourages the network to learn diverse features between 
negative pairs, creating a complementary and mutually 
beneficial relationship.

Some attempts have been made to train pretrained 
models that are better suited to the task of medical image 
analysis in CXR. One research group [45] has attempted to 
collect pretrained models in their study. MoCo-CXR [46] 
demonstrates that self-supervised pretraining using CXR 
can improve the performance of deep learning in medical 
image classification learning. In addition, another research 
group [17] reported improvements in medical image analy-
sis using pretraining on a large dataset of over 100 million 
medical images. Previous research from our group [18] also 
demonstrated performance improvements from the medical 
image pretraining. However, most studies have not included 
a sufficient number of downstream tasks that are critical and 
relevant in the field of medical image analysis. Our study 
extends upon previous research by adding pediatric medi-
cal image analysis, object detection, and capturing medical 
perceptual feature tasks, which have often been overlooked 
in the field. In addition, we have shown that combining IFA 
loss, which addresses the hard positive problems in con-
trastive learning, can improve the performance of medical 
contrastive networks. A recent study [26] has reported that 
addressing hard positives can improve medical image seg-
mentation. It showed that using the cosine similarity of lin-
ear feature vectors from positive pairs can improve contras-
tive learning in medical image segmentation. Similarly, our 
IFA uses the cosine similarity, but we used the intermediate 
feature output of a network and showed the results in more 
diverse downstream tasks.

Table 10   Quantitative results of projecting original seed image into a 
latent feature with GAN inversion

The bold text indicates the best performance
t-test was conducted to compare VGG16-ImageNet-1 K, ResNet-Ima-
geNet-1  K, ResNet-MoCo-ImageNet, ResNet-CheSS, and ResNet-
our pretrained (intermediate feature approximation loss) models. 
GAN  generative adversarial network,  PSNR  peak signal-to-noise 
ratio, RMSE root mean squared error, SSIM structural similarity index 
measure, LPIPS learned perceptual image patch similarity
* p < 0.05; **p < 0.01; ***p < 0.001

PSNR↑ SSIM↑ RMSE↓ LPIPS↓

VGG16 ImageNet 22.917*** 0.679*** 8.165*** 0.162***

ResNet ImageNet-1 K 19.071*** 0.589*** 8.992*** 0.240***

ResNet MoCo-ImageNet 18.735*** 0.651*** 9.257*** 0.422***

ResNet CXR-SimCLR 25.155 0.710 7.424 0.211
ResNet CheSS (CXR-

MoCo)
23.841*** 0.691*** 7.954*** 0.193***

ResNet SimCLR + IFA 24.774*** 0.705*** 7.570*** 0.214***

ResNet MoCo + IFA 23.815*** 0.692*** 7.970*** 0.199***

Fig. 3   Example qualitative results of medical perceptual loss. The 
original image was projected into the corresponding latent feature 
using each pretrained network and subsequently reconstructed using 

StyleGAN2-ada through the process of GAN inversion. a Origi-
nal image and reconstructed GAN inversion image. b Residual map 
between the original image and GAN inversion reconstructed image
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Our study has several strengths. First, the IFA loss pro-
posed in this study can be easily implemented to enhance 
the performance of SSL in medical imaging. As demon-
strated by the results, our model outperformed commonly 
used pretrained models in medical imaging by simply using 
the cosine similarity-based loss to approximate intermedi-
ate feature outputs of CNN. In addition, we conducted an 
ablation study to determine the optimal layer for feature 
approximation. Although using feature approximation could 
improve the performance of SSL regardless of the approxi-
mation layer, the results showed that block 3 provided the 
best overall performance, and thus, it was selected. Finally, 
we trained the network in a medically appropriate manner 
using a large amount of medical data, validated it through 
relevant and important medical tasks, and made the model 
publicly available.

However, our study also has several limitations. First, we 
were unable to make the data used in this study publicly 
available owing to the sensitive nature of medical data. As 
an alternative, we made this pretrained model publicly avail-
able. Second, some ablation studies, such as multiple fea-
ture layer approximation and multiple loss balancing, were 
not included owing to the limitations of resources. In addi-
tion, we did not experiment with over other distance-based 
losses, such as L1 or L2, for feature approximation owing 
to the limitations of resources. We preferred cosine similar-
ity because it bounds the resulting loss between − 1 and 1, 
making it relatively easy to optimize early on [25] compared 
to other distance-based losses. Further studies will include 
thorough ablations studies. Although we trained a model on 
a large dataset of 4.8 M CXRs, the dataset was only from a 
single institution in a single country. Training on multiple 
data sources of multi-center and multi-continental data may 
improve the results. Finally, IFA only showed performance 
gains in some tasks in classification tasks, such as overcom-
ing data imbalances and data shortages, but failed to show 
significant improvements in others. Many existing publica-
tions on the medically pretrained networks have only shown 
their superiority in classification tasks. It is important to use 
the appropriate pretrained weight depending on the target 
downstream task.

Conclusion

We demonstrated decent performances and transferabil-
ity of our contrastive learning with IFA loss. Our results 
demonstrate that the simple yet effective IFA loss can sig-
nificantly enhance the performance of self-supervised net-
works in medical image analyses of CXRs. Furthermore, 
we have made our model publicly available to facilitate 
access and encourage further research and collaboration 
in the field.
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