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Abstract
A neural network was developed to detect and characterize bowel obstruction, a common cause of acute abdominal pain. 
In this retrospective study, 202 CT scans of 165 patients with bowel obstruction from March to June 2022 were included 
and partitioned into training and test data sets. A multi-channel neural network was trained to segment the gastrointestinal 
tract, and to predict the diameter and the longitudinal position (“longitude”) along the gastrointestinal tract using a novel 
embedding. Its performance was compared to manual segmentations using the Dice score, and to manual measurements of 
the diameter and longitude using intraclass correlation coefficients (ICC). ROC curves as well as sensitivity and specificity 
were calculated for diameters above a clinical threshold for obstruction, and for longitudes corresponding to small bowel. In 
the test data set, Dice score for segmentation of the gastrointestinal tract was 78 ± 8%. ICC between measured and predicted 
diameters was 0.72, indicating moderate agreement. ICC between measured and predicted longitude was 0.85, indicating 
good agreement. AUROC was 0.90 for detection of dilated bowel, and was 0.95 and 0.90 for differentiation of the proximal 
and distal gastrointestinal tract respectively. Overall sensitivity and specificity for dilated small bowel were 0.83 and 0.90. 
Since obstruction is diagnosed based on the diameter and longitude of the bowel, this neural network and embedding may 
enable detection and characterization of this important disease on CT.
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Introduction

Neural networks are revolutionizing the interpretation 
of medical imaging [1, 2]. Their strong performance has 
already had huge impacts in many areas, such as in clas-
sification of studies as normal or diseased, and in segmen-
tation of structures such as organs or tumors [3]. Neural 
networks can also serve as “universal function approxima-
tors”[4], thus can represent functions beyond classification 
or segmentation. This usage may have additional impacts 
in the branch of radiology known as quantitative imaging, 
in which numeric features beyond those imaged directly by  
the modality are mapped across the same region of space [5].  
These numeric features can help characterize diseases in 
ways beyond merely reporting their presence or location. 

This study investigates neural networks for quantitative 
imaging of bowel obstruction.

Bowel obstruction is an extremely common cause of 
acute abdominal pain, found in approximately 15% of all 
emergency department presentations for that chief complaint 
[6]. It often arises due to adhesions formed in the perito-
neal cavity after surgery, but has many other causes such 
as neoplastic masses or inflammatory strictures [7]. These 
abnormalities preclude downstream passage of bowel con-
tents. The upstream bowel becomes dilated in response. A 
diameter of 30 mm is commonly used as a clinical threshold 
for abnormal dilation of the small bowel [8]. A transition 
point in diameter along the longitudinal course of the bowel 
is often the location of the cause of the obstruction, and 
helps distinguish obstruction from ileus. Bowel obstruction 
is well depicted on multiple modalities, including CT, which 
is the focus of this work.

This study investigates neural networks as “universal 
function approximators” for two numeric features of bowel 
obstruction: the diameter of the bowel, and its longitudi-
nal position along the course of the gastrointestinal tract 
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(henceforth referred to as “longitude”). The predictions of 
a neural network are compared to manual segmentations 
and to manual measurements of diameter over a range of 
longitudes. These reference standards can be defined eas-
ily, though only approximately and incompletely, since the 
bowel is not a perfect cylinder, and since images contain 
more voxels than possible to annotate manually. Nonethe-
less, the common clinical usage of bowel diameter reflects 
its utility as an approximation, and measurements over a 
subset of query points may serve as an adequate sample.

With these numeric features, bowel obstruction can be 
detected using clinical thresholds for diameter, and can be 
characterized by plotting diameter against longitude to show 
transition points. The purpose of this study is to assess the 
performance of a neural network for bowel segmentation and 
for prediction of bowel diameter and longitude.

Methods and Materials

Study Design

This retrospective study was approved by the institutional 
review board with a waiver of informed consent due to its 
minimal risk. 202 CT scans from 165 patients were identi-
fied by searching a radiology report database from March 
to June 2022 for impressions containing the phrase “bowel 
obstruction” whether prefaced by the word “small”, “large”, 
or “no”. These criteria were intended to include scans with 
the presence and absence of bowel obstruction and with a 
wide range of bowel diameters. Patients from the emergent, 
inpatient, and outpatient contexts were all included. Scans 
with intravenous contrast, enteric contrast, and no contrast, 
from a variety of modality vendors at the author’s institution 
were all included.

Scans were excluded if they did not include the entire 
abdomen and pelvis, or if the patient was not in the supine 
position. Scans were not excluded due to poor image qual-
ity, since generalization over all levels of image quality 
was desired. Subjects were partitioned randomly into train-
ing and test datasets. All scans from a given subject were 
included in the same dataset. Demographic and technical 
information for the included subjects and scans in each data-
set is given in Table 1. All protected health information was 
removed prior to analysis to ensure HIPAA compliance.

Including multiple scans from some subjects did result in 
overrepresentation of those subjects; however, it was neces-
sary to ensure inclusion of clinical and technical variations. 
When patients are scanned more than once, the intent is 
often to evaluate for clinical changes, such worsening or 
improvement of obstruction, or with a different diagnostic 
technique, such as intravenous or enteric contrast. Including 
these scans was important to ensure generalization, albeit at 

a cost of overrepresentation. The overall impact was likely 
not large since the maximum number of scans for a single 
patient was 3 in the training data set and 4 in the test data 
set. Since the training and test data sets were partitioned by 
subject rather than scan, memorization of the training data 
set did not impact assessment of the test data set.

Data Annotation, Embedding, Augmentation, 
and Normalization

Scans in the training data set were annotated using a Tobii 
4c eye tracking device and a custom extension in 3D Slicer 
rather than vendor’s analysis software, as described previ-
ously [9–11]. Briefly, the eye tracker was used to record 
locations within the imaging volume while a radiologist 
cast their gaze at the centerline of the bowel. The display 

Table 1   Demographics of training and test data sets. Proportions of 
clinical features are reported for all subjects. Maximum age greater 
than 89 is reported as 90 + per HIPAA guidelines. Patient classes E, I, 
and O, correspond to emergency department patients, inpatients, and 
outpatients respectively. Averages and ranges are reported for techni-
cal features for all scans

Training Test

Sample size
     Subjects 50 115
     Scans 60 142
     Scans per subject 1.3 (1–3) 1.2 (1–4)

Demographics
     Sex (F) 0.48 (24/50) 0.51 (59/115)
     Age (yrs) F:60, M:59 F:61, M:59
     Age range (yrs) 19–90 +  28–90 + 
     Patient class per scan E: 0.67 (40/60)

I: 0.17 (10/60)
O: 0.17 (10/60)

E: 0.63 (88/142)
I: 0.26 (36/142)
O: 0.11 (16/142)

CT Technique
     Intravenous contrast 0.87 (52/60) 0.81 (116/142)
     Enteric contrast 0.13 (8/60) 0.06 (8/142)
     Noncontrast 0.10 (6/60) 0.16 (23/142)

Scan Dimensions – 
interpolated

     Matrix size 512 × 512 512 × 512
     Number of axial slices 526 (500–726) 529 (483–723)
     Slice thickness (mm) 0.90 (0.61–1.20) 0.90 (0.68–1.19)
     In-plane voxel size (mm) 0.75 (0.58–0.98) 0.78 (0.58–0.98)

Scan Dimensions – resized
     Matrix size 256 × 256 256 × 256
     Number of axial slices 192 192
     Slice thickness (mm) 2.77 (2.12–3.60) 2.80 (2.20–3.58)
     In-plane voxel size (mm) 1.51 (1.17–1.95) 1.56 (1.16–1.95)

Query points
     Per scan 18.4 18.1
     Total 1105 2569
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size of the imaging volume on the screen varied, since the 
radiologist could freely zoom, pan, and scroll during record-
ing. The diameter of a superimposed ROI was manually 
adjusted to match the approximate diameter of the bowel for 
all locations along the centerline of the gastrointestinal tract 
in real time during recording at a nominal rate of 60 Hz.

Gaze locations were aggregated over approximately 10 s 
time intervals of recording, into one or more segments for 
each organ (esophagus, stomach, duodenum, etc.). Each 
segment was comprised of a series of gaze points along the 
centerline of the bowel, with a corresponding diameter for 
each point, and an organ to which each segment belonged. 
These collections of information are subsequently referred 
to as “visual annotations”. All annotations were performed 
by one radiologist with 12 years of experience.

Each organ was assigned an initial longitude (10, 20, 
30, etc., as in Table 2). The longitude along each segment 
was adjusted proportionally to the total length of the organ, 
according to the formula below.

For instance, if the stomach was 25 cm in total length, and 
the gastric fundus was 5 cm from the beginning, it would be 
assigned a longitude of 22. Likewise, if the gastric antrum 

Longitude = Initial Longitude+

(FinalLongitude − Initial Longitude) ∗
Length

Total Length

were 5 cm from the end, it would be assigned a longitude of 
28. Since the small bowel was typically comprised of multiple 
segments, an order that minimized the distance between seg-
ments was identified and used to calculate longitude. Whereas 
multipart segmentations of prior studies represent different 
organs as a categorical variable [11], longitude represents the 
entire gastrointestinal tract as a continuous variable.

These specific definitions of longitude were intended to 
reflect anatomic boundaries that could be located with high 
confidence, such as the gastroesophageal junction, pylorus, 
ligament of Treitz, ileocecal valve, splenic, hepatic, and 
sigmoid flexures, anterior peritoneal reflection, and anal 
sphincters. The small bowel was further divided into proxi-
mal jejunum (“Treitz jejunum”), mid jejunum, mid ileum, 
and terminal ileum. Boundaries between these segments of 
the small bowel are only approximate, but differentiation is 
important for characterization of obstruction. In addition, 
some segments of the gastrointestinal tract may be continuous 
in longitude but discontiguous in space, for instance the termi-
nal ileum and appendix, or an end colostomy and Hartman’s 
pouch status post colectomy. This does not limit annotation, 
but must be considered during interpretation of longitude.

These visual annotations were embedded into a binary 
segmentation volume, in which the value of each voxel was 
set to one if the distance between voxel and closest segment 
was within the radius of the segment, and zero elsewhere. 

Table 2   Longitudes of 
the gastrointestinal tract

Organ Longitude

Esophagus 10 Ileum 60 Transverse Colon 110
Stomach 20 Terminal Ileum 70 Descending Colon 120
Duodenum 30 Appendix 80 Sigmoid Colon 130
Treitz Jejunum 40 Cecum 90 Rectum 140
Jejunum 50 Ascending Colon 100 Anus 150

Fig. 1   Embedding of longitude and diameter. Gaze points along the 
centerline of the bowel were recorded with an eye tracking device (a). 
The bowel diameter was recorded for each gaze point, and used to 
segment the region of space around the centerline (b). The longitude 

was calculated for each voxel based on the distance along the gastro-
intestinal tract (c). The diameter was calculated for each voxel based 
on the diameter of the closest gaze points (d)
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The diameter and longitude were embedded into volumes 
similarly, with the value of each voxel set to that of the 
closest segment if within its radius. Since diameter and 

longitude had only been recorded for the gaze points that 
define the beginning and end of each segment, their value 
at each voxel was interpolated based on the fractional dis-
tance of the projection of the voxel along the segment. A 
diagram of the visual annotation and embedding process is 
shown in Fig. 1.

Only thick slice multiplanar reconstructions were available 
for CT scans over the period included in this study. To permit 
augmentation, near-isotropic volumes were reconstituted by 
interpolation and summation of the thick slice axial, sagittal, 
and coronal series. Scan dimensions after interpolation from 
thick slice to near-isotropic volumes are given in Table 1. Data 
augmentation of the near-isotropic volumes was performed by 
random rotation, translation, and scaling by up to 15 degrees, 
15 mm, or 15% respectively. A total of 14 different transforma-
tions were applied to each annotated scan to generate the aug-
mented training data set, with the number of transformations 
chosen so as to fill the entirety of the 128 GB of system mem-
ory on the computer used for training. CT scans were window/
leveled using values of 400/40 HU. Diameters were scaled 
by the voxel dimensions before training and after prediction.

All volumes were resized to 256 × 256 × 192 voxels prior 
to being used in the neural network. Since the initial number 
of axial slices varied, scans were “zero”-padded to the next 
greatest multiple of 192 axial slices prior to resizing, to avoid 
interpolation at this step. A padding value of -1000 HU rather 
than zero was actually used to emulate surrounding air. This 
padding added variation to voxel sizes during resizing, which 
may be a source of error, but was necessary to ensure entire 
scans could be included.

Fig. 2   Neural network diagram. A 3d U-net convolutional neural network was implemented, with the CT scan volume as the single channel of 
input, and segmentation, longitude, and diameter maps as three channels of output

Table 3   Neural network parameters. The shape and number of chan-
nels are listed for each of the layers of the neural network. Each inter-
mediate layer was composed of two convolutions, batch normaliza-
tion, activation, dropout, and either maxpooling or upsampling layers. 
Convolution filter size was 3, dropout rate was 0.1, and maxpooling 
or upsampling ratio was 2. Feed forward connections were added as 
concatenations between intermediate layers of the same shape. The 
three output layers are connected in parallel to the subsequent inter-
mediate layer but not to each other

Layer Shape Channels

Input (CT) 256 × 256 × 192 1
1 256 × 256 × 192 16
2 128 × 128 × 96 32
3 64 × 64 × 48 64
4 32 × 32 × 24 128
5 16 × 16 × 12 256
6 8 × 8 × 6 512
7 4 × 4 × 3 512
8 8 × 8 × 6 256
9 16 × 16 × 12 128
10 32 × 32 × 24 64
11 64 × 64 × 48 32
12 128 × 128 × 96 16
Output (seg.) 256 × 256 × 192 1
Output (long.) 256 × 256 × 192 1
Output (diam.) 256 × 256 × 192 1
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Neural Network

A 3D U-net convolutional neural network [12, 13] was 
implemented and trained using Keras and Tensorflow 
version 2.12 [14, 15]. The single channel of input to the 
model was the entire CT scan. The three channels of output 
of the model were segmentation, diameter, and longitude 
volumes, as shown in the neural network diagram (Fig. 2) 
with specific parameters listed in Table 3. The model had 
37 M parameters in total and was trained starting from 
random parameters on an NVIDIA A6000 GPU. Binary 
crossentropy loss was used for segmentation, and mean 
squared error losses were used for diameter and longitude. 
Each loss was weighted to approximately the same order 
of magnitude to ensure all were optimized during train-
ing. The neural network parameters were optimized using 
the Adam optimizer with a learning rate of 1e-3 for 222 
epochs, exclusively on the training data set. To monitor 

optimization performance, 5% of the augmented training 
data set was reserved for validation. The test data set was 
not used for either training or validation. The model and 
training were otherwise similar to prior [11].

Predictions of the trained model are shown for subjects 
from the test data set with no bowel obstruction (Fig. 3) and 
with bowel obstruction (Fig. 4). Erroneous predictions and 
associated abnormalities in subjects from the test data set are 
shown as well (Figs. 5, 6). Predicted binary segmentation 
masks are applied to both the diameter and longitude volumes 
since their support may differ.

Graphical Representations

Graphs plotting volume and diameter versus longitude are 
shown alongside corresponding model predictions in Figs. 3 
and 4 calculated over 1 unit intervals of longitude. Assuming 
a cylindrical shape, length can be calculated for any interval 

Fig. 3   Test subject with no bowel obstruction. Segmentation (green 
outline), longitude (rainbow), and diameter (hot metal blue) predic-
tions superimposed on a coronal slice of a CT scan of a subject from 
the test data set with no bowel obstruction. Graphical representations 
of volume and diameter (averaged over 1 unit intervals of longitude) 

versus longitude and length are shown for the same subject. Vertical 
dotted lines indicate the ligament of Treitz and ileocecal valve. Hori-
zontal dotted line indicates the threshold for small bowel obstruction. 
No small bowel dilation and no transition point are present
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of longitude using the formula below in which L is length, V 
is volume, and D is diameter.

A graph plotting diameter versus length rather than lon-
gitude is shown after this change of variables. The accuracy 
of these lengths was not in the scope of this study to assess, 
though they are of the same order of magnitude as reported 
lengths of the human gastrointestinal tract [16].

Reference Standards

To evaluate the predictions of the model, manual annotation 
was performed. All manual annotations were performed in 
3D Slicer [9] by a radiologist with 12 years of experience.

L =
4

�

V

D2

Three slices of each CT scan were randomly selected for 
manual segmentation. It was time-prohibitive to perform 
manual segmentations of every slice of every CT scan, since 
there were hundreds of scans with several hundred slices 
apiece. Instead, three slices were chosen under the constraint 
that the first included the stomach, the second included the 
small bowel, and the third included the colon, to ensure even 
sampling. All parts of the gastrointestinal tract were manu-
ally segmented on each of these three slices. Subjects who 
had more than one scan were slightly overrepresented since 
this analysis was performed across scans.

Multiple query points along the centerline of the gastro-
intestinal tract were randomly selected for diameter meas-
urement. It was also time-prohibitive to perform diameter 
measurements over every voxel within the CT scans. Instead, 
one query point was chosen for each of the fifteen parts 

Fig. 4   Test subject with bowel obstruction. Segmentation (green outline), 
longitude (rainbow), and diameter (hot metal blue) predictions superim-
posed on a coronal slice of a CT scan of a subject from the test data set 
with bowel obstruction. Graphical representations of volume and diameter 
(averaged over 1 unit intervals of longitude) versus longitude and length are 
shown for the same subject. Vertical dotted lines indicate the ligament of 

Treitz and ileocecal valve. Horizontal dotted line indicates the threshold 
for small bowel obstruction. Small bowel dilation and a transition point are 
present are present in this subject, as seen in the graph of diameter versus 
length. Several loops of nondilated distal ileum are noted to be erroneously 
excluded from the segmentation
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Fig. 5   Test subjects with erroneous predictions. Coronal slices illus-
trating errors associated with abnormalities such as a gastrostomy 
tube and breast implants (top), liquid colonic contents (middle), and 
fecalized small bowel contents (bottom). In the first subject (top), the 
left breast implant is erroneously segmented and assigned a longi-
tude corresponding to stomach, while the actual stomach containing 
a percutaneous gastrostomy tube is not included in the segmentation. 

In the second subject (middle), the colon contains fluid due to a diar-
rheal state, rather than feces as usual, and is erroneously assigned a 
longitude corresponding to small bowel. In the third subject (bottom), 
the small bowel contains fecalized contents due to delayed transit, 
rather than liquid as usual, and is erroneously assigned a longitude 
corresponding to colon
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Fig. 6   Test subjects with erroneous predictions. Axial slices illus-
trating errors associated with abnormalities such as a colostomy and 
Hartman’s pouch (top), enteric contrast within the colon (middle), 
and ascites with pneumoperitoneum (bottom). In the first subject 
(top), the ostomy bag is erroneously segmented and assigned a lon-
gitude corresponding to colon, while the small bowel near the Hart-

man’s pouch is excluded from the segmentation. In the second sub-
ject (middle), the colon contains enteric contrast, rather than feces as 
usual, and is erroneously excluded from the segmentation. In the third 
subject (bottom), ascites and pneumoperitoneum outside of the bowel 
are erroneously included in the segmentation
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of the gastrointestinal tract listed in Table 2. Four query 
points were chosen for the jejunum and ileum, including 
the segment of jejunum adjacent to the ligament of Treitz 
and including the terminal ileum, due to their length and 
importance in bowel obstruction. The diameter was manu-
ally measured as the distance between the outer margins of 
the bowel in the short axis at this point. 

The longitude of each query point could not be measured 
with complete accuracy, so was presumed to correspond to 
the midpoint of each part of the gastrointestinal tract. For 
instance, the longitude for a query point in the stomach was 
always presumed to be 25. Subjects who had bowel resec-
tions at which measurements could not be performed were 
slightly underrepresented since this analysis was performed 
across query points.

The manual annotations used for testing took less time to 
perform than the visual annotations used for training; thus, it 
was possible to create a relatively larger test data set, which 
was useful to assess generalization of the neural network’s 
predictions.

Statistical Analysis

Dice scores were calculated to assess agreement between 
manual segmentations and segmentations predicted by the 
model [17], and were compared using the unpaired t-test. 
Intraclass correlation coefficients (ICC, two way, agree-
ment) were calculated to assess agreement between measure-
ments at query points and the values predicted by the model 
for both diameter and longitude [18, 19], and were compared 
using the F-test. Receiver operating curves were calculated 
for diameter, using a threshold of 30 mm corresponding to 
the clinical definition of abnormally dilated small bowel, 
and for longitude, using thresholds of 40 corresponding 
to the ligament of Treitz and 80 corresponding to ileoce-
cal valve, between which lies the small bowel. AUROCs 
between training and test data sets were compared with 
Delong’s test. Results are shown in Fig. 7. Similar analyses 
are shown for subsets of the gastrointestinal tract in Sup-
plemental Figures S1, S2, and S3.

To evaluate the joint performance of all three predictions, 
sensitivity and specificity were calculated for query points 
corresponding to dilated small bowel. Predictions were con-
sidered positive if the query point was included in the binary 
segmentation, had a diameter greater than 30 mm, and had a 
longitude between 40 and 80. Sensitivity and specificity for 
nondilated small bowel was also calculated. McNemar’s test 
was calculated to assess discordance. ROC analysis could 
not be performed for joint predictions, since more than one 
parameter must be varied.

Comparisons with manual annotations are reported for 
training as well as test data sets, since the model was trained 

on visual annotations but not on manual annotations. All 
statistical analysis was performed in R using the ISS and 
pROC packages [20].

Results

Demographics

Demographics and technical features of subjects and scans 
included in the training and test data sets are reported in 
Table 1. The number and proportion of query points at which 
measured and predicted values met thresholds for diameter 
and longitude are reported in Table 4.

Segmentation

Dice scores between model predictions and manual segmen-
tations were calculated over all scans in the training and test 
data sets (n = 60 and n = 142), as shown in Fig. 7 (top). The 
Dice scores were 82 ± 5% and 78 ± 8% for the training and 
test data sets. An unpaired t-test indicated that the that the 
decrease in Dice scores between training and test data sets 
was statistically significant (p = 3.6e-6).

Diameter

Intraclass correlation coefficients between model predictions 
and manual measurements of diameter were calculated over 
all query points along the gastrointestinal tract in the train-
ing and test data sets (n = 1105 and n = 2569), as shown in 
Fig. 7 (middle). The intraclass correlation coefficients were 
0.8 and 0.72 for the training and test data sets. An F-test 
indicated both were statistically significantly different than 
zero (p = 6.0e-10 and p = 1.5e-18). This represents moderate 
agreement for the test data set, using standard thresholds for 
agreement [19].

An ROC curve for diameter was calculated over these 
same query points (n = 1105 and n = 2569), as shown in 
Fig. 7 (bottom). The proportion of query points at which 
measured and predicted diameter was above 30 mm for the 
training and test data sets are given in Table 4. The AUROC 
for diameter above 30 mm was 0.95 and 0.90 for the training 
and test data sets. DeLong’s test indicated that the decrease 
in AUROC between training and test data was statistically 
significant for diameter (p = 2.1e-6).

Longitude

Intraclass correlation coefficients between model predic-
tions and manual measurements of longitude were calculated 
over all query points along the gastrointestinal tract in the 
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training and test data sets (n = 1105 and n = 2569), as shown 
in Fig. 7 (middle). The intraclass correlation coefficients s 
were 0.85 and 0.85 for the training and test data sets. An 
F-test indicated both were statistically significantly differ-
ent than zero (p = 9.7e-173 and p = 6.2e-52). This represents 
good agreement for the test data set.

ROC curves for longitude were calculated over the same 
query points (n = 1105 and n = 2569), as shown in Fig. 7 
(bottom). The proportion of query points at which measured 
and predicted longitude was below 40 or above 80 for the 
training and test data sets are given in Table 4. The AUROC 
for prediction of longitude below 40 was 0.99 and 0.95 in 
the training and test data sets. The AUROC for prediction 
of longitude above 80 was 0.99 and 0.90 in the training and 
test data sets. DeLong’s test indicated that the decrease in 
AUROC between training and test data was statistically sig-
nificant both for both longitude thresholds (p = 2.9e-11 and 
p = 2.2e-16).

Joint Performance

Joint performance of both diameter and longitude was 
assessed using thresholds that represented dilated small 
bowel and nondilated small bowel. The proportion of query 
points meeting these thresholds is given in Table 4. Sensitiv-
ity and specificity of predictions for measurements were cal-
culated over all query points in the training and test data sets.

Dilated small bowel was defined as diameter above 
30 mm and longitude between 40 and 80. Sensitivity and 
specificity for dilated small bowel were 0.90 and 0.96 in 
the training data set, and 0.83 and 0.90 in the test data set.

Nondilated small bowel was defined as diameter below 
30 mm and longitude between 40 and 80. Sensitivity and 
specificity for nondilated small bowel were 0.82 and 0.90 in 
the training data set, and 0.54 and 0.92 in the test data set, 
reflecting relative insensitivity of segmentation of smaller 
structures.

McNemar’s test indicated that the discordance between 
measurements and predictions was statistically significant 
both for dilated and nondilated small bowel in the training 
and test data sets (p < 2.2e-16).

Discussion

Summary

These results demonstrate moderate-to-good agreement 
and strong diagnostic performance for features of bowel 
obstruction, despite lower performance for segmentation. 
Automated detection of acute abnormalities for patient triage 
is an established use case for artificial intelligence in radiol-
ogy [1, 2]. These results may add small bowel obstruction to 
the list of abnormalities amenable to automated detection.

In addition, characterization of quantitative imaging fea-
tures may bolster the explainability of model predictions 
beyond detection alone. Graphical representations can depict 
the relationship between longitude and diameter across the 
bowel, as an EKG does for time and voltage across the heart, 
so may serve analogously as an “EKG for SBO”. Such char-
acterization may facilitate patient triage by quantifying the 
severity of obstruction based on the diameter and length of 
the involved segments.

This study also demonstrates that eye tracking can be 
used for development of artificial intelligence tools with 
clinical applications. Eye tracking enabled visual annota-
tion of features that would be prohibitive to perform manu-
ally. As the accuracy and precision of eye tracking devices 
improve, more applications of these devices in radiology 
research and clinical practice may develop as well.

Previous studies

Dice scores for segmentation of the gastrointestinal tract 
are similar to some but lower than other results reported 

Fig. 7   Statistical analysis. Dice scores were calculated between man-
ual and predicted segmentations. The p-value of a t-test between Dice 
scores of the training and test data sets is also shown. Intraclass corre-
lations were calculated between manual and predicted values for diam-
eters and longitudes. The equation of the best linear fit and thresholds 
used for ROC analysis are also shown. The longitude scatterplot is 
made with jitter to avoid superimposition of presumed longitudes. ROC 
curves and AUROCs were calculated using thresholds of 30 mm for 
diameter, and 40 and 80 for longitude. Sensitivity and specificity are 
shown using the same thresholds for predictions as measurements. Each 
statistic was calculated for the training and test data sets separately

◂ Table 4   Query Points. Proportion (and number) of query points in the 
training and test data sets meeting thresholds for diameter and longi-
tude. “Measured” indicates that the manual measurement of diameter 
and longitude at that query point met the threshold. “Predicted” indi-
cates that the model prediction at that query point met the threshold

 Threshold  Type Training Test

Number of Query Points 1105 2569
Diameter > 30 mm Measured 0.29 (323) 0.31 (800)

Predicted 0.40 (446) 0.44 (1136)
Longitude < 40 Measured 0.16 (186) 0.16 (420)

Predicted 0.17 (192) 0.18 (459)
Longitude > 80 Measured 0.32 (423) 0.40 (1015)

Predicted 0.38 (415) 0.34 (882)
Dilated Small Bowel Measured 0.11 (120) 0.10 (267)

Predicted 0.13 (148) 0.18 (450)
Nondilated Small Bowel Measured 0.34 (376) 0.34 (867)

Predicted 0.29 (316) 0.23 (597)
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previously [3, 21–27], which range from 0.60 to 0.95 over 
different modalities and parts of the gastrointestinal tract. 
This may represent a limitation of training with visual anno-
tations exclusively, arising from the need to annotate diam-
eter and longitude in addition to segmentation. Utilization 
of publicly available training data and models [3] for seg-
mentation may improve performance in future efforts; how-
ever, the prevalence of bowel obstruction in those resources 
remains to be evaluated, and additional diameter and longi-
tude annotations may still be required.

Intraclass correlation coefficients for diameter are similar 
to prior studies using this same training dataset (reference 
blinded for review), but ICC for longitude and AUROC for 
diameter and longitude were not reported previously. AUROC 
reported in this study are also similar to those reported in 
other studies that have used neural networks to detect bowel 
obstructions on radiographs and transition points on CT 
[28–31], which ranged from 0.84 to 0.97 though direct com-
parison is limited due to differences in modality and approach.

Limitations

There are several limitations to this study.
First, diameter is widely used clinically [6, 8], but is not 

well-defined since the gastrointestinal tract is not a per-
fect cylinder. The short axis outer diameter was used as a 
reference standard in this study, but the long axis or inner 
diameters were not measured. Incorporating those features 
into future models will be the subject of future research. 
Any geometric model can only approximate the underly-
ing structures. Nonetheless, diameter is relevant alongside 
segmentation volumes, since it differentiates dilated bowel 
from a cluster of nondilated bowel that may have the same 
volume even if segmented accurately. Concurrent diameter 
and volume predictions may also allow the calculation of 
bowel length, which will be the topic of future research.

Second, longitude is based on anatomic landmarks that 
can be easily identified on CT scans, such as the gastroe-
sophageal junction or pylorus. However, few such anatomic 
landmarks exist, particularly for the small bowel between 
the ligament of Treitz and the ileocecal valve. This limits 
assessment of longitude, especially within the part of the 
gastrointestinal tract that is the longest and most important 
for bowel obstruction. Nonetheless, differentiation between 
jejunum and ileum by longitude predictions is appreciated in 
examples such as Fig. 4 and in Supplemental Fig. 7.

Lastly, the results of this study were evaluated over only a 
subset of slices and points within the CT scans. These slices 
were chosen randomly, and points were chosen randomly 
along the centerline of the gastrointestinal tract; thus, these 
results may generalize. It was time-prohibitive to assess 
performance outside this subset. Assessment was limited 
in other ways as well. Model predictions were not evaluated 

against clinical outcomes at the subject level, and it is uncer-
tain whether the performance obtained in this study will suf-
fice to be useful clinically. This was a single institution study 
including a limited number of subjects in both the training 
and test data sets, since an external validation set of patients 
with bowel obstruction was not available. These limitations 
will also be topics of future research.

Conclusion

The results of this study demonstrate strong diagnostic per-
formance of a neural network for features of bowel obstruc-
tion. The embedding of diameter and longitude may help 
characterize aspects of this disease beyond merely its pres-
ence or absence. Neural networks such as described here 
promise to revolutionize quantitative imaging of bowel 
obstruction, as they have other aspects of radiology.
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