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Abstract
We aimed to develop and validate a deep learning-based system using pre-therapy computed tomography (CT) images to detect 
epidermal growth factor receptor (EGFR)-mutant status in patients with non-small cell lung cancer (NSCLC) and predict the prog-
nosis of advanced-stage patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors (TKI). This retrospective, 
multicenter study included 485 patients with NSCLC from four hospitals. Of them, 339 patients from three centers were included 
in the training dataset to develop an EfficientNetV2-L-based model (EME) for predicting EGFR-mutant status, and the remain-
ing patients were assigned to an independent test dataset. EME semantic features were extracted to construct an EME-prognostic 
model to stratify the prognosis of EGFR-mutant NSCLC patients receiving EGFR-TKI. A comparison of EME and radiomics 
was conducted. Additionally, we included patients from The Cancer Genome Atlas lung adenocarcinoma dataset with both CT 
images and RNA sequencing data to explore the biological associations between EME score and EGFR-related biological pro-
cesses. EME obtained an area under the curve (AUC) of 0.907 (95% CI 0.840–0.926) on the test dataset, superior to the radiomics 
model (P = 0.007). The EME and radiomics fusion model showed better (AUC, 0.941) but not significantly increased performance 
(P = 0.895) compared with EME. In prognostic stratification, the EME-prognostic model achieved the best performance (C-index, 
0.711). Moreover, the EME-prognostic score showed strong associations with biological pathways related to EGFR expression and 
EGFR-TKI efficacy. EME demonstrated a non-invasive and biologically interpretable approach to predict EGFR status, stratify 
survival prognosis, and correlate biological pathways in patients with NSCLC.
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Critical Relevance Statement

The model proposed in this study may facilitate individualized 
clinical decision-making for patients with NSCLC, especially for 
the detection of EGFR-mutant status, the prognosis of EGFR-mutant 
NSCLC patients receiving EGFR-TKI, and biological interpretation 
of CT semantic features in patients with advanced NSCLC.

Key Points
• It is critical to propose a biologically interpretable approach for 

the clinical diagnosis and treatment of patients with non-small 
cell lung cancer (NSCLC).

• The proposed model can detect epidermal growth factor receptor 
(EGFR) mutant status in patients with NSCLC and stratify the 
prognosis of patients receiving EGFR tyrosine kinase inhibitors 
(TKI) therapies.

• The proposed model strongly correlated with the biological pathways 
regulating the EGFR mutation and EGFR-TKI efficacy of NSCLC.
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TKI  Tyrosine kinase inhibitors
t-SNE  T-distributed Stochastic Neighbor 

Embedding

Introduction

In terms of morbidity and mortality, lung cancer is one of the 
most common cancers worldwide [1]. Non-small cell lung 
cancer (NSCLC) has been shown to account for approxi-
mately 80–85% of all lung cancer cases [2]. Identifying acti-
vating mutations in the epidermal growth factor receptor 
(EGFR) in patients with NSCLC and developing targeted 
therapies with EGFR tyrosine kinase inhibitors (TKI) have 
drastically improved the clinical diagnosis and treatment of 
NSCLC. Currently, the detection of EGFR mutations relies 
mainly on invasive tumor tissue testing. However, approxi-
mately 75% of patients with NSCLC have advanced-stage 
tumors at diagnosis, making surgical resection or pathologi-
cal puncture impractical [3]. Moreover, EGFR gene sequenc-
ing faces significant limitations, such as high genetic hetero-
geneity of NSCLC and poor DNA quality [4]. On the other 
hand, previous studies have reported that the response rate 
to clinical EGFR-TKI therapies in EGFR-mutant NSCLC 
patients is approximately 70%, whereas the remaining 30% 
of patients with positive EGFR mutations do not show the 
expected survival outcomes [5–7]. In addition, clinical stud-
ies have indicated that stratifying the prognosis of patients 
based solely on clinical characteristics such as gender and 
smoking history was not satisfactory [8, 9]. Therefore, devel-
oping a non-invasive method to detect the EGFR-mutant sta-
tus and predict whether patients could benefit from EGFR-
TKI is critical.

Tremendous progress has been made using artificial intel-
ligence, especially deep learning, in the clinical diagnosis and 
treatment of NSCLC [10–13]. Previous studies have revealed 
radiogenomic correlations between gray-level texture fea-
tures on intratumoral computed tomography (CT) and EGFR 
mutation status in patients with lung cancer [8, 11, 14, 15]. 
Meanwhile, it has been proven that the morphometric fea-
tures of medical images, which are imperceptible to human 
eyes but detectable by deep learning, are associated with the 
prognosis of patients with NSCLC [13, 16, 17]. Most previous 
studies have proposed deep learning models that achieve only 
a single goal, and rarely achieve both EGFR gene mutation 
status detection and prognostic evaluation of patients receiv-
ing EGFR-TKI therapies [15, 16]. In addition, the accuracy of 
the models proposed in previous studies is limited, and deep 
learning models with higher accuracy are needed for clinical 
applications [8, 15]. Moreover, current deep learning models 
are limited by the intrinsic “black box” attribute, and studies 
on the validation of the credibility and biological interpretation 
of these models are limited [18–20].

The EfficientNet network proposed by the Google Brain 
team in 2019 ensures the model’s accuracy while reducing 
its parameter scale [21]. The EfficientNetV2 network was 
proposed in 2021 as an update to the EfficientNet network, 
which has made remarkable achievements in the diagnosis 
and prognosis of various human diseases [16, 22–24].

In this study, we proposed an EfficientNetV2-L-based 
deep learning system (EME) to non-invasively predict the 
EGFR-mutant status in patients with NSCLC and stratify 
the prognosis of EGFR-mutant patients receiving TKI thera-
pies. Additionally, we investigated the EME as a biologically  
validated approach to detect EGFR mutation and predict 
EGFR-TKI survival prognosis.

Methods

Study Design and Participants

This was a retrospective, multicenter study conducted in 
compliance with the Declaration of Helsinki and approved 
by the ethics committee of each center. The requirement 
for informed consent was waived because of the study’s 
retrospective nature. The overall study design is shown in 
Fig. 1. The inclusion criteria were as follows: (1) patients 
diagnosed with NSCLC in four centers from north, eastern, 
and central China between January 2015 and May 2021; 
(2) patients who underwent CT examination before treat-
ment; (3) patients who underwent an EGFR-mutant status 
test; and (4) patients with EGFR positive mutation who 
were treated with the recommended EGFR-TKI therapies. 
The exclusion criteria were as follows: (1) patients without 
baseline CT images; (2) patients without records of the 
EGFR mutation status; and (3) patients without clinical 
characteristics. To reveal the correlation between EME 
and biological pathways of EGFR, we used patients from 
The Cancer Genome Atlas lung adenocarcinoma (TCGA-
LUAD) dataset comprising different races from the USA 
and Canada (inclusion and exclusion criteria of patients 
from the TCGA-LUAD dataset are presented in Supple-
mentary A). In this study, patients from the first three hos-
pitals were used as the training dataset, and those from 
the remaining hospitals were the test dataset. The number 
of patients in the training and test datasets to develop and 
validate the EME model follows the 70%:30% principle.

According to the EGFR mutation testing (for detailed 
procedures, see Supplementary B), patients were labeled 
as EGFR-mutant or EGFR wild-type. Patients could have 
multiple EGFR mutation types, such as exon 19 deletions 
and L858R mutations [25]. Patients without any detected 
EGFR mutations were labeled as EGFR wild-type. For 
patients with EGFR mutations, follow-up of progression-
free survival (PFS), defined as the time from initiation of 



Journal of Imaging Informatics in Medicine 

treatment to the first occurrence of disease progression 
according to RECIST 1.1 criteria or death from any cause 
[26], was recorded.

All baseline CT images were reviewed by local radiolo-
gists. The ITK-SNAP software [27] (version 3.6.0; http:// 
www. itksn ap. org) was used to segment the regions of interest 
of the primary CT scans by two radiologists with > 5 years 
of experience. An NSCLC expert with > 10 years of experi-
ence, blinded to the above two radiologists, reviewed all the 
segmentation results. The detailed CT acquisition and recon-
struction parameters are described in Supplementary C.

Construction of the EME Model

Previous studies indicated that the peritumoral area on medi-
cal images may be highly correlated with disease progres-
sion and prognosis in patients with NSCLC [28–30]. There-
fore, not only the tumor region but also, at most, 10 mm of 
its peripheral region was included in a patch. The patches 
were then resized to 256 × 256 pixels with three channels to 
input into the EME model.

The EME model was based on the cutting-edge Effi-
cientNetV2-L model [31]. The details of the development 
of the EME model are listed in Supplementary D. The 
output of the EME is the score predicting the presence 
or absence of EGFR mutations for each tumor slice. For 
each patient, the EME score was calculated by averaging 
the scores for all tumor slices.

Further, to stratify the PFS, we used LASSO Cox regres-
sion to build a basic EME-prognostic model based on the 
deep learning features extracted from the last layer con-
nected to the fully connected layer. A stepwise regression 
method based on the Akaike information criterion (AIC) 

was applied to construct the final EME-prognostic model 
[32]. Once the EME-prognostic model was constructed, a 
well-validated prognostic tool for signature cut-off selection 
in the X-tile software (version 3.6.1) [33] was used to select 
the optimal cut-off score to stratify patients into high- or 
low-risk subgroups.

Model Comparison and Integration

To further evaluate the performance of the EME model, 
radiomics features of each patient were extracted using Pyra-
diomics (version 3.0.1) [34]. A detailed description of the 
radiomics features is presented in Supplementary E.

Radiomics models were then constructed to predict 
EGFR-mutant status in patients with NSCLC and to strat-
ify the prognosis after receiving EGFR-TKI. Additionally, 
fusion models were built by integrating the EME and radi-
omics models to verify the improvement of EME perfor-
mance by integrating radiomics.

Feature Visualization

To elucidate the “black box” of the EME model, first, the 
gradient-weighted class activation maps (Grad-CAM) were 
used to produce activation maps highlighting the relevant 
regions activated by the EME model [35]. In addition, we 
used a nonlinear dimensionality reduction method called 
t-distributed Stochastic Neighbor Embedding (t-SNE) to 
reduce the feature dimensions and visualize the relationship 
between the EME features and EGFR mutation status [36]. 
Moreover, we used a heat map to describe the relationship 
between the EME-prognostic features and the prognosis of 
EGFR-mutant NSCLC patients.

Fig. 1  Study flowchart. CT, computed tomography; EGFR, epidermal 
growth factor receptor; EME, the deep learning model proposed in 
this study; GSVA, gene set variation analysis; NSCLC, non-small cell 

lung cancer; TCGA-LUAD, The Cancer Genome Atlas lung adeno-
carcinoma; TKIs, tyrosine kinase inhibitors; PFS, progression-free 
survival

http://www.itksnap.org
http://www.itksnap.org
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Biological Correlation Analysis

The EME was applied to patients with NSCLC from the 
TCGA-LUAD dataset. Pathway enrichment of the RNA-
seq data of TCGA-LUAD patients was conducted, and the 
top-ranked key pathways activating the EGFR mutation and 
regulating the response of EGFR-TKI therapy in patients with 
NSCLC were identified. Gene set variation analysis (GSVA) 
was performed to obtain the patient-level GSVA score of 
each key pathway, and the correlation of the EME signature 
and the patient-level GSVA scores were evaluated to clarify 
the relationship of the radiologic features and the underlying 
biological pathway regulation.

Statistical Analysis

All statistical analyses were conducted using the R soft-
ware (Version 4.2.0). To compare baseline characteristics, 
the chi-square test was used for categorical variables, and the 
Mann–Whitney U test was used for continuous variables. For 
predicting the EGFR mutation status, we used the area under the 
curve (AUC), accuracy, precision, recall, and F1 score to evalu-
ate the performance of the models. The Delong test was used 
to compare the AUCs of different models [37]. The bootstrap 
method was used to calculate 95% confidence intervals (CI). 
Multivariate logistic regression analysis was performed using 
the “glmnet” R package to construct the radiomics model.

Fig. 2  Patient enrollment. CT, 
computed tomography; EGFR, 
epidermal growth factor recep-
tor; EME, the deep learning 
model proposed in this study; 
NSCLC, non-small cell lung 
cancer; TKIs, tyrosine kinase 
inhibitors
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For prognosis evaluation, LASSO Cox regression analy-
sis was conducted using the “glmnet” R package, and sur-
vival analysis was performed using the “Survival” R pack-
age. To reduce the complexity of the prognostic model, we 
used the AIC stepwise regression method to construct a 
final effective prognostic model with minimal AIC score. 
Afterward, Kaplan–Meier analysis and log-rank test were 
used to visualize the survival curves of the two subgroups 
using the “survminer” R package. Harrell’s concordance 
index (C-index) was used to evaluate the performance of the 
prognostic models. Moreover, we calculated each feature’s 
contribution for the prognosis task by utilizing the SHap-
ley Additive exPlanation (SHAP) values obtained from the 
“kernelshap” R package [38, 39].

Additionally, the analysis of t-SNE was conducted using the 
“Rtsne” R package, and scatter diagrams were drawn using the 
“ggplot2.” A heat map of the correlation among the prognostic 
features was drawn using the “ComplexHeatmap” R package. 
Pathway enrichment was performed using the “clusterProfiler” 
package by querying the annotated gene set database of Gene 
Ontology. Biological pathways with a false discovery rate were 
considered to be statistically significant in the enrichment analy-
sis. Pearson's correlation coefficient was used to determine the 
relationship between the EME signature and key biological path-
ways. Statistical significance was set at P < 0.05.

Results

Patient Characteristics

Between January 2015 and May 2021, 542 patients with 
NSCLC from four independent hospitals were recruited. As 
shown in Fig. 2, 485 patients with NSCLC from three cent-
ers were enrolled and grouped into a training dataset (339 
patients), and the patients from the remaining fourth center 
were used as the test dataset (146 patients) to develop and 
validate the EME model. Balanced subgroups were found 
in our training (165 patients with EGFR positive muta-
tion and 174 patients with EGFR wild-type) and test (72 
patients with EGFR positive mutation and 74 patients with 
EGFR wild-type) dataset, and the detailed characteristics are 
presented in Table 1. The characteristics and flowchart for 
patients from TCGA-LUAD are presented in Supplementary 
Table S1 and Fig. S1, respectively.

Prognostic analysis was performed for all EGFR-mutant 
patients (237 patients). Among them, 165 patients from 2 
hospitals were included in the prognostic training dataset, 
with a median PFS of 269 days (range, 18–1948 days), and 
72 patients from another hospital were included in the prog-
nostic test dataset, with a median PFS of 247.5 days (range, 
45–1128 days).

Table 1  Baseline characteristics of all enrolled patients

EGFR epidermal growth factor receptor, N number, M mutant type, W wild-type, PFS progression-free survival. PFS is measured in days

Training dataset Test dataset P

Center 1 (N = 201) Center 2 (N = 54) Center 3 (N = 84) Center 4 (N = 146)

EGFR (M) EGFR (W) EGFR (M) EGFR (W) EGFR (M) EGFR (W) EGFR (M) EGFR (W)

N (%) 111 (55.2%) 90 (44.8%) 54 (100%) 0 0 84 (100%) 72 (49.3%) 74 (50.7%)
Age, N (%) 0.231
   <65 47 (23.4%) 50 (24.9%) 28 (51.9%) 0 0 50 (59.5%) 40 (27.4%) 44 (30.1%)
   ≥65 64 (31.8%) 40 (19.9%) 26 (48.1%) 0 0 34 (40.5%) 32 (21.9%) 30 (20.6%)

Sex, N (%) 0.074
   Male 47 (23.4%) 52 (25.9%) 33 (61.1%) 0 0 53 (63.1%) 44 (30.1%) 45 (30.8%)
   Female 64 (31.8%) 38 (18.9%) 21 (38.9%) 0 0 31 (36.9%) 28 (19.2%) 29 (19.9%)

Smoke, N (%) 0.165
   No 93 (46.3%) 49 (24.4%) 39 (72.2%) 0 0 46 (54.8%) 60 (41.1%) 28 (19.2%)
   Yes 18 (8.9%) 41 (20.4%) 15 (27.8%) 0 0 38 (45.2%) 12 (8.2%) 46 (31.5%)

PFS, median (range) 289 (18–1948) NA 244.5 (42–863) NA NA NA 247.5 (45–1128) NA 0.516
PFS of datasets, 

median (range)
269 (18–1948) 247.5 (45–1128)
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Models for EGFR‑Mutant Status Detection

The AUC of the EME model was 0.922 (95% CI 
0.878–0.939) in the training dataset and 0.907 (95% CI 
0.840–0.926) in the test dataset. The accuracy of the EME 
model was 0.891 (95% CI 0.866–0.915) for the training data-
set and 0.829 (95% CI: 0.800–0.864) for the test dataset. 
There was no statistically significant difference between 
the training and test datasets (P = 0.062, Delong test). The 
detailed results are presented in Table 2. Notably, the EME 
model showed consistent performance across the three cent-
ers in the training datasets (confusion matrices in different 
centers are shown in Supplementary Fig. S2).

For comparison, we constructed a radiomics model contain-
ing 35 features to predict the EGFR mutation status (detailed 
description is provided in Supplementary F). The contribution 
and importance of the top 15 radiomics features for predicting 
EGFR mutation status described by SHAP values are shown 
in Supplementary Fig. S3. As shown in Table 2, the AUC of 
the radiomics model reached 0.825 (95% CI 0.755–0.896) in 
the test dataset, which is significantly lower than that of the 
EME model (P = 0.007, Delong test). Subsequently, a fusion 
model containing the EME score and radiomics features was 
constructed (a detailed description is provided in Supplemen-
tary G). The AUC of the fusion model reached 0.941 (95% 
CI 0.905–0.978) in the test dataset, which was significantly 
higher than that of the radiomics model (P = 0.001, Delong 
test). However, there was no statistically significant difference 
between the EME and the fusion models in the test dataset 
(P = 0.895, Delong test).

Models for EGFR‑TKI Prognostic Evaluation

The final EME-prognostic model with 49 features is 
presented in Supplementary H. The C-index of the 

EME-prognostic model was 0.778 (95% CI 0.732–0.825) 
in the prognosis training dataset and 0.711 (95% CI 
0.657–0.775) in the prognosis test dataset. The contribu-
tion and importance of the top 15 EME features for survival 
prognosis described by SHAP values are shown in Supple-
mentary Fig. S4.

X-tile indicated that an optimal cut-off of 2.16 was deter-
mined to stratify patients into high- and low-risk subgroups. 
The results showed that patients with an EME-prognostic 
score lower than 2.16 showed a significantly better PFS than 
those with an EME-prognostic score higher than 2.16 (train-
ing dataset, hazard ratio (HR) 0.099, 95% CI 0.022–0.453, 
P < 0.001; test dataset, HR 0.341, 95% CI 0.180–0.647, 
P < 0.001). The Kaplan–Meier curves of EGFR-mutant 
NSCLC patients in the prognostic training and test datasets 
are presented in Fig. 3.

Moreover, a radiomics-prognostic model was con-
structed for comparison. A total of 15 radiomics features 
were selected; the C-index of the prognostic model reached 
0.726 (95% CI 0.678–0.773) in the prognostic training data-
set and 0.551 (95% CI 0.478–0.625) in the test dataset. X-tile 
indicated an optimal cut-off of 1.09 on the prognosis train-
ing dataset for stratifying the risk groups (HR 0.285, 95% 
CI 0.127–0.643, P < 0.001). However, there was no statisti-
cally significant difference between the two groups in the 
test dataset (HR 0.691, 95% CI 0.412–1.158, P = 0.083). The 
Kaplan–Meier curves based on the three models mentioned 
above are shown in Fig. 3.

Visualization

To illustrate the feature maps of EME, the GRAD-CAM 
activation maps of four patients with NSCLC are shown in 
Fig. 4, revealing that the EME model accurately targeted the 
locations of the intratumoral and peritumoral areas. Moreo-
ver, tumor activation maps revealed distinct imaging patterns 

Table 2  The performance of different models in predicting EGFR-mutant status

AUC  area under curve. EME, the deep learning model proposed in this study. The bracketed text indicates 95% confidence intervals. Ref, the 
EME model was used for the reference model for comparison
a Comparison of AUC with the EME model in the training dataset (Delong test)
b Comparison of AUC with the EME model in the test dataset (Delong test)

Accuracy Precision Recall F1 score AUC P

Training dataset
   EME model 0.891 (0.866–0.915) 0.965 (0.946–0.984) 0.838 (0.802–0.868) 0.898 (0.872–0.921) 0.922 (0.878–0.939) Ref
   Radiomics model 0.870 (0.844–0.909) 0.820 (0.787–0.887) 0.939 (0.861–0.976) 0.876 (0.824–0.929) 0.931 (0.905–0.957) 0.538a

   Fusion model 0.968 (0.950–0.985) 0.975 (0.941–0.981) 0.958 (0.927–0.988) 0.968 (0.935–0.982) 0.994 (0.989–0.997) 0.038a

Test dataset
   EME model 0.829 (0.800–0.864) 0.812 (0.772–0.847) 0.809 (0.759–0.861) 0.809 (0.774–0.837) 0.907 (0.840–0.926) Ref
   Radiomics model 0.801 (0.747–0.870) 0.779 (0.718–0.877) 0.833 (0.708–0.931) 0.806 (0.714–0.896) 0.825 (0.755–0.896) 0.007b

   Fusion model 0.884 (0.849–0.938) 0.816 (0.774–0.931) 0.972 (0.847–0.986) 0.888 (0.811–0.956) 0.941 (0.905–0.978) 0.895b
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Fig. 3  Kaplan–Meier curves of a, b the EME-prognostic model; c, d radiomics-prognostic model; e, f fusion-prognostic model in the prognostic 
training dataset and test dataset, respectively. EME, the deep learning model proposed in this study
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between EGFR-mutant and EGFR wild-type patients. We 
found that heat maps of the EGFR-mutant patients expressed 
richer heterogeneity in the intratumoral and peritumoral 
areas, suggesting a higher probability of EGFR mutation 
expression than patients without EGFR mutations.

Further, Fig. 5a and b show the relationship between 
the EME features and EGFR-mutant status based on t-SNE 
analysis in the training and test datasets, showing that hidden 
features in the EME were closely related to EGFR-mutant 
status.

Fig. 4  The GRAD-CAM activation maps of patients with NSCLC. 
(a-b) A 61-year-old male with an EME score of 0.996, biopsy-con-
firmed EGFR wild-type. (c-d) A 55-year-old male with an EME score 
of 0.996, biopsy-confirmed EGFR wild-type. (e–f) A 67-year-old 
male with a PFS of 630 days, biopsy-confirmed EGFR exon 19 dele-
tion mutation (with an EME score of 0.030), and the EME-prognos-
tic model predicted as low risk after receiving EGFR-TKI (with an 

EME-prognostic score of − 3.771). (g-h) A 63-year-old female with a 
PFS of 132 days, biopsy-confirmed EGFR exon 20 insertion mutation  
(with an EME score of 0.369), and the EME-prognostic model pre-
dicted as high risk after receiving EGFR-TKI (with an EME-prognostic 
score of 2.281). EGFR, epidermal growth factor receptor; NSCLC, 
non-small cell lung cancer; EGFR, epidermal growth factor receptor; 
PFS, progression-free survival; TKI, tyrosine kinase inhibitors
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Moreover, a heat map (Fig. 5c) containing all EGFR-
mutant patients showed the relationship between the EME-
prognostic features and risk in patients with NSCLC.

Biological Correlation Analysis

In the TCGA-LUAD cohort, we found significant negative 
correlations between the EME-prognostic scores and five 
top-ranked biological pathways (EGFR signaling pathway, 
regulation of EGFR signaling pathway, cellular response to 
epidermal growth factor (EGF) stimulus, response to EGF, 
and protein tyrosine kinase activity, P < 0.05, see Fig. 6 and 
Supplementary Table S2). As mentioned above, the results 
indicated that as the EME-prognostic scores increased, 
patients were more unlikely to benefit from EGFR-TKI. 
These findings suggested that the prognosis of patients with 
NSCLC predicted by the EME was positively correlated with 
the expression of the pathways. Specifically, the results indi-
cated that the survival prognosis predicted by the EME was 
positively correlated with the expression level of the EGFR 
signaling pathway and the regulation of the EGFR signal-
ing pathway. As previously reported, patients with EGFR 

mutations or increased copy number of the EGFR gene are 
more likely to benefit from EGFR-TKI therapies and poten-
tially show better survival outcomes [40, 41], suggesting 
that the EME model could potentially reveal the clinical out-
come of patients with NSCLC which are regulated by the 
underlying biological mechanism of EGFR. Moreover, the 
results showed that the prognosis of patients with NSCLC 
predicted by the EME was significantly correlated with the 
pathways of cellular response to EGF stimulus and response 
to EGF and protein tyrosine kinase activity, which are asso-
ciated with EGFR binding and kinase activity activation. 
This finding is consistent with previous reports that EGF 
binding activates the EGFR tyrosine kinase activity [42, 43].

Discussion

In this study, we constructed and validated a deep learn-
ing system called EME to detect EGFR mutation status 
in patients with NSCLC, predict the prognosis of EGFR-
mutant NSCLC patients receiving EGFR-TKI therapies, 
and reveal the biological correlation of the EME-prognostic 

Fig. 5  Visualization of the features in the EME system. The t-SNE 
analysis of the relationship between the EME features and EGFR-
mutant status in the a training and b test datasets. c Heat map 
revealing the relationship between the EME-prognostic features 

and risk of all EGFR-mutant NSCLC patients receiving EGFR-
TKI therapies. EGFR, epidermal growth factor receptor; NSCLC, 
non-small cell lung cancer; TKI, tyrosine kinase inhibitors; t-SNE, 
t-distributed Stochastic Neighbor Embedding
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score. The EME system showed competitive performance in 
predicting EGFR-mutant status and evaluating EGFR-TKI 
therapy prognosis. In addition, this study demonstrated the 
biological pathway correlation between the EME score 
and EGFR regulation in patients with NSCLC, indicating 
that the EME system is an efficient non-invasive approach 
for advancing individualized clinical decision-making for 
patients with NSCLC.

Previous studies have indicated that the proportion of patients 
with NSCLC with EGFR mutations has reached 10% in the 
USA and 40% in East Asia [44, 45]. Currently, the determination 
of EGFR mutation status relies on invasive testing of tumor tis-
sue, which entails multiple manual interventions and is accom-
panied by significant spatial and temporal intratumoral hetero-
geneity [4]. Therefore, developing non-invasive and assessable 
radiological assessment for EGFR mutation detection and iden-
tifying patients who are likely to benefit from EGFR-TKI are 
crucial for clinical decision-making.

Compared with results from previous studies, the EME 
system achieved competitive accuracy in predicting EGFR-
mutant status [8, 15]. Wang et al. proposed a deep learning 

model to predict the EGFR mutation status in lung adeno-
carcinoma using CT, and their model reached an AUC of 
0.810 in the test dataset [15]. Recently, a new CT-based deep 
learning model was proposed to predict the EGFR mutation 
status and reached an AUC of 0.813 in the test dataset [8]. 
According to the results presented here, the EME model 
achieved an AUC of 0.907 (95% CI 0.840–0.926), which is 
superior to that of the previous models.

Due to individual differences, it is difficult to accurately 
identify patients who can benefit from EGFR-TKI in clinical 
practice. Even patients with detected EGFR mutations may 
not benefit from EGFR-TKI [5–7]. Previous studies have 
indicated the ability of deep learning models to evaluate the 
survival prognosis in EGFR-mutant NSCLC patients receiv-
ing EGFR-TKI therapies [8, 12, 13]. The EME-prognostic 
model proposed in this study further demonstrated its value 
in separating patients receiving EGFR-TKI treatment into 
high- and low-risk prognostic groups.

Furthermore, the majority of models proposed in pre-
vious studies were constrained to accomplish only one 
objective, namely predicting EGFR mutation status [15] or 

Fig. 6  Correlation of the patient-level gene set variation analysis scores of top-ranked key pathways and the EME-prognostic score. The Pear-
son’s correlation coefficient (r) was presented with a false discovery rate-adjusted P < 0.05. EME, the deep learning model proposed in this study
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evaluating the prognosis of patients receiving EGFR-TKI 
therapies [16]. The EME model proposed in this study can 
not only detect EGFR mutation status, but it can also predict 
EGFR-TKI prognosis in patients with NSCLC. This capabil-
ity facilitates early treatment initiation, thereby enhancing 
the potential for improved therapeutic outcomes. Moreo-
ver, since deep learning is a “black box,” the mechanisms 
involved are difficult to understand. Whereas previous stud-
ies have not further explained the internal mechanism of the 
reported deep learning models [15, 16], this study interprets 
it from heat maps and scatter distributions and identifies the 
relevant biological pathways, which improves the interpret-
ability of the model from a biological point of view.

To further clarify the value of CT images in this con-
text, we constructed radiomics models for comparison and 
fusion. In predicting EGFR mutation status, the radiomics 
results (Table 2) demonstrated good performance, which 
confirmed that medical images contain substantial infor-
mation for detecting EFGR mutation-derived variations 
[46, 47]. Therefore, a fusion model containing EME and 
radiomics models was constructed. As listed in Table 2, the 
fusion model achieved the best performance. However, no 
statistically significant difference was observed between the 
EME and fusion models in the test dataset, indicating that 
the radiomics features were not significant for the fusion 
model in terms of accuracy improvement, which is consist-
ent with previous works [48–50]. Furthermore, in contrast 
to radiomics models, the EME model does not necessitate 
the laborious task of manually outlining ROIs, which allows 
radiologists to be freed from the burdensome workload asso-
ciated with segmentation, thereby increasing the acceptabil-
ity of the EME model.

In terms of prognosis evaluation, radiomics features were 
used to construct a radiomics-prognostic model; however, 
the results on survival prognosis of the radiomics and fusion 
model were inferior (C-index < 0.600 on the test dataset), 
which is consistent with the findings of previous compara-
tive studies [51, 52]. In contrast, the proposed method, in 
addition to detecting EGFR mutation status, enables the 
EME model to identify patients who are more likely to 
derive benefits from EGFR-TKI. This capability facilitates 
early treatment initiation, thereby enhancing the potential 
for improved therapeutic outcomes.

Recently, GRAD-CAM and t-SNE have been widely 
used to reveal hidden features of deep learning models 
[36, 53]. In this study, the GRAD-CAM activation maps 
demonstrated that our model primarily directed attention 
toward the intratumoral and peritumoral regions. This 
observation aligns with the findings of previous stud-
ies, which have concluded that activation maps can assist 
physicians in identifying high-risk lung areas in patients, 
thereby facilitating early intervention and enabling adjust-
ments to treatment plans. In addition, the t-SNE analysis 

revealed a strong correlation between the EME features 
and EGFR-mutant status, indicating that the EME features 
correctly detect the distinct features on CT images between 
patients with EGFR-mutant and EGFR wild-type NSCLC. 
Moreover, according to the EME-prognostic model fea-
tures in EGFR-mutant NSCLC patients, the differences 
between the patient subgroups with different prognostic 
risks in Fig. 5 revealed the potential feature divergence of 
patients with distinct responses to EGFR-TKI therapies, 
which aids in providing better individualized clinical treat-
ment for patients with NSCLC. Moreover, our study dem-
onstrated that the EME-prognostic score was significantly 
associated with biological pathways linked to the EGFR 
mutation and efficacy of EGFR-TKI, which could help 
clinicians better understand the prognostic information on 
radiological images that are regulated by these underlying 
biological pathways.

This study had some limitations. First, we only included 
Asian patients to develop and validate the EME model, 
and future research should be based on more ethnicities, in 
order to improve the universality of the deep learning model. 
Moreover, EGFR mutation subtypes, such as exon 19 dele-
tions and L858R mutations [25], may be associated with 
patient prognosis; therefore, studies on different subtypes 
of EGFR mutations should further investigate this. Second, 
histopathological images may contain more information and 
should be considered in further studies to comprehensively 
analyze the image characteristics of EGFR-mutant NSCLC 
patients. Next, owing to the correlation between the clini-
cal features and survival prognosis of patients with NSCLC 
[54], a fusion model containing clinical features should 
be considered. While we have uncovered the correlation 
between the EME and biological pathways, it is imperative 
to conduct in vitro or in vivo experiments to provide further 
evidence and substantiate these biological associations.

In conclusion, our study proposed a non-invasive and bio-
logically interpretable method to detect the EGFR mutation 
status in patients with NSCLC and predict the prognosis 
of patients receiving EGFR-TKI based on pre-therapy CT 
images. The EME deep learning system can facilitate more 
individualized clinical decision-making for patients with 
NSCLC.
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