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Abstract
This study aimed to assess the performance of a deep learning algorithm in helping radiologist achieve improved efficiency 
and accuracy in chest radiograph diagnosis. We adopted a deep learning algorithm to concurrently detect the presence of 
normal findings and 13 different abnormalities in chest radiographs and evaluated its performance in assisting radiologists. 
Each competing radiologist had to determine the presence or absence of these signs based on the label provided by the AI. 
The 100 radiographs were randomly divided into two sets for evaluation: one without AI assistance (control group) and one 
with AI assistance (test group). The accuracy, false-positive rate, false-negative rate, and analysis time of 111 radiologists 
(29 senior, 32 intermediate, and 50 junior) were evaluated. A radiologist was given an initial score of 14 points for each 
image read, with 1 point deducted for an incorrect answer and 0 points given for a correct answer. The final score for each 
doctor was automatically calculated by the backend calculator. We calculated the mean scores of each radiologist in the two 
groups (the control group and the test group) and calculated the mean scores to evaluate the performance of the radiologists 
with and without AI assistance. The average score of the 111 radiologists was 597 (587–605) in the control group and 
619 (612–626) in the test group (P < 0.001). The time spent by the 111 radiologists on the control and test groups was 
3279 (2972–3941) and 1926 (1710–2432) s, respectively (P < 0.001). The performance of the 111 radiologists in the two 
groups was evaluated by the area under the receiver operating characteristic curve (AUC). The radiologists showed better 
performance on the test group of radiographs in terms of normal findings, pulmonary fibrosis, heart shadow enlargement, 
mass, pleural effusion, and pulmonary consolidation recognition, with AUCs of 1.0, 0.950, 0.991, 1.0, 0.993, and 0.982, 
respectively. The radiologists alone showed better performance in aortic calcification (0.993), calcification (0.933), cavity 
(0.963), nodule (0.923), pleural thickening (0.957), and rib fracture (0.987) recognition. This competition verified the positive 
effects of deep learning methods in assisting radiologists in interpreting chest X-rays. AI assistance can help to improve both 
the efficacy and efficiency of radiologists.
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Introduction

In China, radiologists, especially young doctors, have a 
heavy workload of reading plain X-ray films every day. 
Diagnostic radiologists have to face the burdensome task of 
reviewing these images, which occupies much of their time 
and attention [1]. Nevertheless, the diagnosis of chest films 
requires experience and time. Reducing subjective human 
errors and improving efficiency have long been goals that 
everyone in this field would like to achieve. Chest radiogra-
phy is the most common type of imaging examination in the 
world, with over 2 billion procedures performed each year 
[2]. This technique is critical for the screening, diagnosis, 
and management of thoracic diseases, many of which are 
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among the leading causes of mortality worldwide. Chest 
radiography is a very common examination, and X-ray imag-
ing is the primary diagnostic tool used by radiologists to pre-
liminary assess patients for chest diseases. Missing a lesion 
in a radiograph often has severe consequences for patients, 
resulting in delayed further examination and treatment. A 
computer system to interpret chest radiographs as effectively 
as practising radiologists could thus provide substantial ben-
efit in many clinical settings, from improved workflow prior-
itization and clinical decision-making support to large-scale 
screening and global population health initiatives.

Artificial intelligence (AI), particularly deep learning, is 
currently being developed in an effort to assist radiologists. 
Recently, a deep learning model was found to match expert 
human radiologists in diagnosing 10 or more pathologies 
on chest radiographs [3]. Automated diagnosis via chest 
imaging has received increasing attention, with specialized 
algorithms developed for pulmonary tuberculosis 
classification and lung nodule detection, but the use of 
chest radiographs to discover other pathologies, such as 
pneumonia and pneumothorax, necessitates an approach that 
can detect multiple pathologies simultaneously [2]. Only 
recently has the computational power and availability of 
large datasets enabled the development of such an approach. 
The National Institutes of Health’s release of ChestX-ray14 
led to many more studies on using deep learning for chest 
radiograph diagnosis [4, 5]. However, the performance of 
these algorithms has not been demonstrated in a real clinical 
situation.

In this work, we aimed to assess the performance of a 
deep learning algorithm in helping radiologist achieve 
improved efficiency and accuracy in chest radiograph 
diagnosis. We adopted a deep learning algorithm to 
concurrently detect the presence of normal findings and 13 
different abnormalities in chest radiographs and evaluated 
its performance in assisting radiologists.

Methods

Data

This study is based on a chest X-ray image database of 4098 
patients admitted to our hospital. For this experiment, the 
engineer of the Department of Medical Imaging retrieved 
the image data from April 2007 to June 2019 in the picture 
archiving and communication system (PACS) and the 
corresponding clinical information data in the radiology 
information system (RIS). The image inclusion criteria 
were as follows: 1) complete clinical and imaging data, 2) 
clear and complete images without motion artifacts or metal 
artifacts affecting observation, and 3) contemporaneous 
chest CT and frontal plain radiograph images. In order 

to ensure that there was no bias in the observation of the 
lesions, the interval between the two examinations was 
limited to 1 day (24 h). The original pathology labels were 
organized from the clinical CT reports. A set of 100 clear 
frontal chest radiographs was selected from the database for 
the competition according to the following criteria [6]: (1) 
ability to distinguish hilar shadow structures; (2) ability to 
distinguish lung textures in clavicle, mammary gland, and 
left heart shadows; (3) full visualizability of the tips of the 
lungs; (4) projection of the scapula beyond the lung field; 
(5) bilateral thoracic lock joint symmetry; (6) visualization 
of the diaphragm with complete and sharp edges; and (7) 
clear and sharp margin of heart and mediastinum. According 
to these criteria, two radiologists with more than 10 years 
of experience jointly reviewed the chest films and assessed 
their quality; X-ray films that did not meet the criteria 
were excluded. The set was curated to contain at least 10 
cases of each pathology by randomly sampling cases and 
iteratively updating the selected cases by sampling from the 
underrepresented pathologies. The anonymization of all data 
was guaranteed in this research.

The 100 radiographs in the competition, which were 
independent of the multi-center data used to build the 
algorithm model, were further annotated by 3 independent 
board-certified cardiothoracic specialist radiologists (average 
experience, 20 years; range, 18–28 years) for the presence 
of normal findings and 13 different abnormalities. The 
frontal chest radiographs were labeled based on coronal CT 
reconstructions as the gold standard. There was no patient 
overlap among the partitions. All experts were permitted 
to review the patient’s history or prior examinations, and  
that evaluation was limited to a dataset from a single 
institution. We invited the experts to the hospital where the 
data were collected, where they could adjust their diagnoses 
by referring to the CT images, past images of the patients, 
and relevant clinical data on the PACS. The data from 
only a single hospital were used to avoid the interference 
of different machines and scanning conditions. For the 
included images, CT images were available for comparison 
at the same time, and the correct answers were determined 
after consistent interpretation by multiple experts. This 
experiment is designed to imitate the real working status of 
radiologists with diagnostic X-rays and to determine how 
AI can help doctors. Therefore, we randomly divided the 
100 radiographs into a control group, consisting of the first 
50 selected radiographs, which was assessed independently 
by the physicians without the help of AI, and a test group, 
consisting of the remaining 50 radiographs, which was 
assessed by the physicians with AI assistance of AI. The 
experts who were responsible for setting the gold standard 
performed a comparative analysis of the image data between 
the control group and experimental group and attempted 
to ensure that the number of each of the 14 pathologies in 
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the X-ray films of the two groups were similar and that the 
difficulty of diagnosis was similar. There was no significant 
difference in the number of pathological changes between  
the two groups (P > 0.05).

Typical abnormalities are shown in Fig. 1 and the AI sys-
tem output the bounding boxes and labels of the lesions to 
assist radiologists (Fig. 2).

Computer‑Aided Diagnosis System

The experiment was conducted using the Dr. Wise system, 
an intelligent imaging system, which was used to store the 
original DICOM image data in the cloud for later retrieval, 
view, and intelligent auxiliary diagnostic operation, and 

which was integrated with the chest X-ray AI model as 
part of its function.

The chest X-ray AI model can detect normal chest 
X-rays and those of 13 different pathologies, including 
fibrosis, heart shadow enlargement, masses, pleural effu-
sions, pulmonary consolidation, aortic calcification, cal-
cification, cavities, nodules, pleural thickening, rib frac-
tures, subphrenic free air, and pneumothorax. The AI chest 
X-ray algorithm used in this experiment was published in 
a related technical paper [7], in which the training data 
were further expanded to more than 30,000 images. The 
current AI model (Fig. 3) in the Dr. Wise system uses a 
large amount of data, improving the model performance 
and generalization.

Fig. 1  Typical radiographs showing chest abnormalities. a A small 
amount of pneumothorax on the left side. b A lung nodule in the right 
lower lobe. c A lung mass in the left lower lobe. d A cord shadow in 
the right upper lung lobe. e Thickening of the right pleura. f Aortic 

calcification and an enlarged heart shadow. g A cavity shadow in the 
right upper lung lobe. h Free air under the right diaphragm. i Fracture 
of the 7th rib on the right, with pleural effusion on both sides
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Details of Algorithm Development

We used Faster R-CNN [8], a high-performance convo-
lutional neural network for object detection, to output the 

category and the location (bounding box) of the lesion  
[7]. Faster R-CNN is supported by the feature pyramid 
network, which excels at identifying lesions on various 
scales, e.g., from nodules to consolidation. The first stage  

Fig. 2  The AI system output the bounding boxes and labels of the lesions to assist radiologists

Fig. 3  Flowchart of this study. Note: one hundred chest radiographs 
were randomly divided into two groups at a 1:1 ratio. Images in the 
control group were independently marked by 111 radiologists, and 
those in the test group were labeled by radiologists with AI assis-

tance. Each radiologist interpreted the presence of the 14 signs in 
each case. The total score was recorded, and the scores of the radiolo-
gists without and with AI assistance were compared in detail
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is the region proposal network (RPN) [9], which outputs 
nearly 2000 regions of candidate lesions. The second 
stage is composed of region of interest (ROI) pooling and 
head layers. For lesion recognition and localization, there 
are two heads of fully connected layers for classification 
and bounding box regression, respectively. Finally, non- 
maximum suppression is adopted to remove redundant boxes 
and output the final results as a reference for doctors.

More than 30,000 chest X-ray images were collected from 
multiple medical institutions to build the algorithm model. 
The training procedure was implemented using PyTorch1 
on 4 TITAN-V GPUs. ResNet-50 [10] was pretrained on 
ImageNet. We applied stochastic gradient descent (SGD) 
with a weight decay of 0.0001 and momentum of 0.9 for 
optimization. The first conversion layers of feature pyramid 
networks for object detection (FPN) and C4 were frozen. 
We trained 50 epochs with an image batch size of 2 on each 
GPU. The learning rate started at 0.01 and was reduced by 
a factor of 10 after 20 and 40 epochs. During training, we 
adopted random flipping and multiscale sampling for all 
images. At the testing stage, the shorter side of the image 
was fixed at 1200 pixels. The performance of the AI model 
on internal datasets is detailed in Supplement 1. Different 
from most existing works that have used class activation 

mapping (CAM) [11] to visualize possible lesion areas, our 
network directly provided categories and bounding boxes for 
the predicted lesions, which was more accurate and helpful 
for doctors.

Radiologist Competition

The flowchart of this study is shown in Fig. 4. To verify the 
performance of the AI algorithm in assisting radiologists in 
diagnosis, 111 radiologists participated in the competition 
and observed 50 radiographs without and with AI assistance 
for all 14 labels. We randomly split the data of 100 cases into 
two groups at a ratio of 1:1. The data of the 50 cases in the 
control group were independently labeled by the radiologists 
alone, and the data of the 50 cases in the test group were 
labeled by the radiologists with AI assistance.

In this competition, a university computer teaching 
classroom with 120 available computers was used. Before 
the competition, the computers were all installed with the 
Dr. Wise system. Cloud PACS was used for storage and 
sharing of image data, and cloud AI-assisted diagnosis was 
used to automatically retrieve cloud image data for computer 
vision-based artificial intelligence processing to detect and 
segment lesions. The reorganization and other results are 
presented in the cloud RIS for doctors to consult; the cloud 
PACS is used for doctors to assign the lesion labels. For each 
image, each sign was labeled “no” or “yes”; each image was 

Fig. 4  Fast–R-CNN detection algorithm

1 *https:// pytor ch. org/ docs/ stable/ index. html

https://pytorch.org/docs/stable/index.html
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allowed to have multiple signs. The reading environment 
and computer settings were the same for all participants in 
the competition.

We recruited radiologists in a provincial annual 
radiologist meeting, explained the purpose and process of the 
competition and the participant requirements for recruitment, 
and sent a link to a webpage where the radiologists could fill 
in the registration information. A total of 128 radiologists 
entered the competition. After reviewing their background 
information, we persuaded 6 doctors from the hospital that 
provided the image data (involving data confidentiality) 
and 11 postgraduate students majoring in medical imaging 
(because of insufficient working years) to withdraw from 
the competition. Among the 111 participating radiologists, 
50 were junior radiologists (less than 6 years of working 
experience), 32 were intermediate radiologists (6–14 years 
of working experience), and 29 were senior radiologists (at 
least 15 years of working experience). The Medical Ethics 
Review Board of the local hospital approved this study, 
and all radiologists consented to participate in the labeling 
process. All radiologists individually reviewed and labeled 
each of the images using a freely available image viewer 
with capabilities for picture archiving and communication 
system features, such as zoom, window leveling, and 
contrast adjustment. The radiologists could have access to 
simple patient information or the disease prevalence in the 
data. Labels were entered into a standardized data entry 
program, and the time to complete each individual review 
and all reviews together were recorded.

Scoring Rules

Each image in the competition was annotated with 1 normal 
or up to 13 different abnormal labels, corresponding to the 
14 X-ray signs (14 pathological findings). Each competing 
radiologist had to determine the presence or absence of these 
signs based on the label provided by the AI. These labels are 
referred to as the 14 X-ray signs, including signs of bony 
abnormalities in the ribs, bullae in the lungs, pulmonary 
infiltrative lesions, atelectasis, masses (> 3 cm), nodules 
(< 3  cm), fibrosis, calcification, cavities, heart shadow 
enlargement, aortic calcification, pleural thickening, pleural 
effusion, pneumothorax, and gas separation downstream of 
the diaphragm. We used the results of the joint diagnoses 
from experts with 18 and 28 years of experience combined 
with CT and X-ray findings as the reference standard. Two 
groups of data were randomly selected at a 1:1 ratio: the 
non-AI-assisted group and the AI-assisted group, with 50 
cases in each group. A total of 111 radiologists (29, senior; 
32, intermediate; and 50, junior) were selected to judge the 
14 signs in the two groups of images.

A radiologist was given an initial score of 14 points for 
each image read, with 1 point deducted for an incorrect 

answer and 0 points given for a correct answer. Thus, the 
maximum score for each person in each group was 700 
points (50 pictures × 14 points per picture = 700 points). 
The final score for each doctor was automatically calculated 
by the backend calculator. Finally, we calculated the mean 
scores of each radiologist in the two groups (the control 
group and the test group) and calculated the mean scores of 
each senior, intermediate and junior radiologist in the two 
groups to evaluate the performance of the radiologists with 
and without AI assistance.

Statistical Analysis

All statistical analyses were completed in the R environment 
for statistical computing. The R package was used to 
calculate the exact Fleiss kappa and Cohen kappa. The boot 
package was used to perform the bootstrapping and construct 
the corresponding 95% confidence intervals (95% CIs). 
The ConSpline package was used to estimate the receiver 
operating characteristic (ROC) curve for the radiologists 
using partial least-squares regression with constrained 
splines, the pROC package was used to estimate the ROC 
curve for the algorithm, and the MESS package was used 
to calculate the area under the ROC curve (AUC) for the 
radiologists with and without AI assistance. Figures were 
created using the ggplot2 and gridExtra packages. Data 
are expressed as the median (25th–75th percentile) (M 
(P25–P75)) and were analyzed using the Wilcoxon signed-
rank test. Moreover, we calculated the statistical power of 
this study, and the final calculated statistical power value 
was 0.83, which is greater than the general statistical power 
value (power = 0.8), indicating that our study has sufficient 
credibility.

Results

AI and Radiologists’ Scores in Diagnosing  
Chest Radiographs

All participating radiologists assessed the first 50 chest 
radiographs without AI assistance and the second 50 chest 
radiographs with AI assistance. The average score achieved 
by the 111 radiologists was 597 (587–605) in the first 50 
cases and 619 (612–626) in the second 50 cases (P < 0.001). 
Among them, the average scores achieved by the 50 junior 
doctors were 593 (583.75–595) and 613 (607.75–619.75), 
respectively (P > 0.05). The average scores achieved by the 
32 intermediate doctors were 597 (590.5–604.5) and 622 
(616.5–626), respectively (P < 0.05). The average scores 
achieved by the 29 senior doctors were 599 (588–606) and 
616 (610–623.5), respectively (P < 0.05). The performance 
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of all radiologists with and without AI assistance is illus-
trated in Fig. 5.

The time spent by 111 radiologists on the first and second 
50 cases was 3279 (2972–3941) s and 1926 (1710–2432) s, 
respectively (P < 0.001). The time spent by junior doctors 
on the first and second 50 cases was 3148 (2730–3793) s 
and 1771 (1439–2167) s, respectively (P < 0.05). The time 
spent by intermediate doctors on the first and second 50 
cases was 3417 (2918–3980) s and 1885 (1613–2432) s, 
respectively (P < 0.001). The time spent by senior doctors 
on the first and second 50 cases was 3215 (2996–3908) s 
and 2062 (1845–2500) s, respectively (P < 0.001). These 
data are expressed as the median (25th–75th percentile) (M 
(P25–P75)) and were analyzed using the Wilcoxon signed-
rank test. The time for radiologists to assess the first and 
second 50 chest radiographs is displayed in Fig. 6. The aver-
age time for the radiologists to interpret the 100 radiographs 

was substantially longer for the first part (3279 s) than the 
second part (1926s).

The decrease in the time consumption for all radiologists 
in the second part showed that AI assistance also helped 
to improve efficiency. The performance of all radiologists 
with and without AI assistance showed that AI improved the 
diagnostic accuracy of the doctors, suggesting that AI can 
help radiologists provide better healthcare to their patients. 
The numbers of junior, intermediate and senior doctors who 
achieved improvements in diagnostic accuracy are shown in 
Fig. 7. We further analyzed the significance analysis of pri-
mary radiologist scores (with and without AI) for different 
time groups. The results showed that there was no difference 
in the scores of the group with AI (P=0.741) and the group 
without AI (P=0.154) between the high and low time con-
suming groups (Fig 8). The performance of all radiologists 
in identifying normal findings and 13 abnormalities was 

Fig. 5  Effects of the relabeling 
procedure on AI performance. 
a The AI relabeling procedure 
resulted in an increase in the 
total score for all radiologists. b 
The mean proportion of correct 
values with the scores of the 
junior, intermediate, and senior 
radiologists are illustrated
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different with and without AI assistance. The performance in 
rib fracture, consolidation, mass, nodule, fibrosis, calcifica-
tion, cavity, heart shadow enlargement, aortic calcification, 
pleural thickening, pleural effusion, pneumothorax, and sub-
phrenic free air identification is illustrated, and numerical 
values for the 14 X-ray signs are reported in Table 1.

Significance of AI Assistance in Diagnosing 
Different Signs

The radiologists performed as well with AI as without AI 
for 2 signs, performed better with AI than without AI for 6 
signs, and performed poorer with AI than without AI for the 
other 6 signs. The radiologists achieved AUCs of 1.0 (95% 
CI: 1.000–1.000), 0.950 (95% CI: 0.896–1.000), 0.991 (95% 
CI: 0.970–1.000), 1.0 (95% CI: 1.000–1.000), 0.993 (95% 
CI: 0.979–1.000), and 0.982 (95% CI: 0.951–1.000) with 
AI in normal, fibrosis, heart shadow enlargement, mass, 
pleural effusion, and pulmonary consolidation recognition, 

which were higher than the radiologists’ AUCs of 0.991 
(0.971–1.000), 0.900 (95% CI: 0.818–0.982), 0.980 (95% CI: 
0.948–1.000), 0.951 (95% CI: 0.896–1.000), 0.949 (95% CI: 
0.886–1.000), and 0.904 (95% CI: 0.816–0.992) without AI. 
The radiologists achieved higher AUCs without AI in aortic 
calcification, calcification, cavity, nodule, pleural thickening, 
and rib fracture recognition, with AUCs of 0.993 (95% CI: 
0.978–1.000), 0.933 (95% CI: 0.812–1.000), and 0.963 (95% 
CI: 0.906–1.000), 0.923 (95% CI: 0.840–1.000), 0.957 (95% 
CI: 0.909–1.000), and 0.987 (95% CI: 0.958–1.000), respec-
tively, compared with AUCs of 0.981 (95% CI: 0.953–1.000), 
0.915 (95% CI: 0.832–0.998), 0.847 (95% CI: 0.742–0.952), 
0.881 (95% CI: 0.786–0.976), 0.895 (95% CI: 0.806–0.984), 
and 0.980 (95% CI: 0.937–1.000), respectively, with AI. There 
was no significant difference in the AUC (AUC = 1.0) for the 
other two signs, i.e., pneumothorax and subphrenic free air.

Using the relabeling procedure, the radiologists’ perfor-
mance improved for 6 signs and worsened for 6 signs. The AI 
performed significantly worse than the radiologists in aortic 
calcification, calcification, cavity, nodule, pleural thickening, 
and rib fracture recognition, and the prevalence of all of these 
signs except nodules was low in the original training set. In 
pneumothorax and subphrenic free air recognition, however, 
the AI performed as well as the radiologists even though the 

Fig. 6  The total time for radiologists to assess the first and second 50 
chest radiographs (Fig.  5a). The total time for junior, intermediate, 
and senior radiologists to assess the first and second 50 chest radio-
graphs (Fig. 5b)

◂

Fig. 7  The numbers of junior, intermediate, and senior doctors who achieved improvements in diagnostic accuracy
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prevalence of these signs in the original training set was low. 
In normal, fibrosis, heart shadow enlargement, mass, pleural 
effusion, and pulmonary consolidation recognition, the AI 
performed better than the radiologists.

Discussion

This competition demonstrated the value of AI in detecting 
and localizing many pathologies in chest radiographs by 
simulating the real work situations of radiologists. The 111 
radiologists participating in the competition independently 
completed 100 judgement tasks without AI assistance in 

the first 50 cases and with AI assistance in the last 50 
cases. After the competition, the average scores of the par-
ticipating radiologists were compared. We found that the 
average scores were significantly higher with than without 
AI assistance (P < 0.001). The radiologists were classified 
according to seniority, determined by years of experience. 
The average scores of intermediate and senior doctors 
were significantly higher with than without AI assistance 
(P < 0.05), while the average scores of junior doctors were 
similar with and without AI assistance (P > 0.05). Studies 
in the literature have illustrated the potential utility of AI 
models in improving the work efficiency and diagnostic 
accuracy of radiologists [12–15]. The present study shows 

Fig. 8  The scores in the high-time-consuming and low-time-consuming groups (with and without AI)

Table 1  AUC of radiologists 
and AI with CIs

Non-parametric bootstrapping was used to estimate the variability around each of the performance meas-
ures; 10,000 bootstrap replicates from the validation set were drawn, and each performance measure was 
calculated for the algorithm and the radiologists on these same 10,000 bootstrap replicates. This produced a 
distribution for each estimate, and the 95% confidence intervals (2.5th and 97.5th percentiles) are reported
AUC  area under the receiver operating characteristic curve, CI confidence interval

Fourteen X-ray signs AI (95% CI) Radiologists (95% CI) Advantage

Normal 1.0 (95% CI: 1.000–1.000) 0.991 (0.971–1.000) AI
Fibrosis 0.950 (95% CI: 0.896–1.000) 0.900 (95% CI: 0.818–0.982) AI
Heart shadow enlargement 0.991 (95% CI: 0.970–1.000) 0.980 (95% CI: 0.948–1.000) AI
Mass 1.0 (95% CI: 1.000–1.000) 0.951 (95% CI: 0.896–1.000) AI
Pleural effusion 0.993 (95% CI: 0.979–1.000)) 0.949 (95% CI: 0.886–1.000) AI
Pulmonary consolidation 0.982 (95% CI: 0.951–1.000) 0.904 (95% CI: 0.816–0.992)) AI
Aortic calcification 0.981 (95% CI: 0.953–1.000) 0.993 (95% CI: 0.978–1.000) Radiologists
Calcification 0.915 (95% CI: 0.832–0.998) 0.933 (95% CI: 0.812–1.000) Radiologists
Cavity 0.847 (95% CI: 0.742–0.952) 0.963 (95% CI: 0.906–1.000) Radiologists
Nodule 0.881 (95% CI: 0.786–0.976) 0.923 (95% CI: 0.840–1.000) Radiologists
Pleural thickening 0.895 (95% CI: 0.806–0.984) 0.957 (95% CI: 0.909–1.000) Radiologists
Rib fracture 0.980 (95% CI: 0.937–1.000) 0.987 (95% CI: 0.958–1.000) Radiologists
Subphrenic free air 1.0 1.0 No difference
Pneumothorax 1.0 1.0 No difference
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that when radiologists are provided with the assistance 
of AI, their ability to detect disease can be significantly 
improved, thus diminishing diagnostic errors. However, 
there was no significant difference in the average scores 
of the junior doctors with and without AI assistance. There 
may be many reasons for this situation. The gold standard 
in our cases were the CT images in the same period. We 
inferred that this due to the false positives or false nega-
tives generated by the AI [16], which are more difficult 
for junior doctors to eliminate. Less qualified doctors have 
more practical experience but lack diagnostic capacity and 
thus require higher-level doctors to review their reports 
based on day-to-day experience [17]. Secondly, it may be 
due to the relatively few X-rays used in the study, and 
subsequent studies need more cases to improve statistical 
ability. Lastly, it may also be due to individual differences 
in the group of junior radiologists participating in the com-
petition, and more radiologists should be included to study 
this issue in the future. These speculations will be further 
verified in the future.

A chest X-ray screening system that automatically 
detects lung abnormalities can provide tremendous utility 
in countries where health care resources are constrained 
[2]. Furthermore, even experienced radiologists are still 
subject to human limitations, including fatigue, perceptual 
biases, and cognitive biases, all of which lead to errors 
[18–20]. Previous studies have shown that it is possible 
to reduce perception errors and prejudice by providing 
radiologists with feedback on the presence and location of 
abnormalities on X-ray images [21]. This situation is very 
suitable for our proposed algorithm.

At present, the main method of diagnosis based on chest 
X-ray images is to rely on radiologists to retrieve the images 
and compare them with the patient’s medical history [22]. 
The manual reading and large workloads significantly 
increase the job-related pressure of radiologists in exami-
nations, leading to long-term, high-load, and high-tension 
work conditions for radiologists [23]. Such long-term work 
increases the fatigue of radiologists and increases the odds 
of missing the diagnosis of small lesions [24]. AI can accu-
rately identify lesions and reduce the rate of missed diag-
nosis, but sometimes, it produces false positive and false 
negative results and gives incorrect advice to the doctors. 
Therefore, radiologists are required to review the lesions to 
improve the accuracy of the image diagnosis.

This competition simulates the daily work mode by 
comparing the first 50 radiographs assessed without AI 
assistance and the latter 50 radiographs assessed with AI 
assistance, confirming that the time for radiologists to assess 
images with AI assistance is shortened. In our competition, 
the average radiologist experienced a relative reduction in 
the misinterpretation rate of 3.01% and in the time required 
of 1353  s. The significant improvements in diagnostic 

accuracy that we observed in this competition showed that 
deep learning methods are a mechanism by which substan-
tial improvements to patient care can be provided in radiol-
ogy [25]. The shorter time required for all radiologists to 
assess the second 50 cases and the improvements in diag-
nostic accuracy show that AI assistance can enhance the 
efficiency and effectiveness of doctors.

Using AI to mark lesions and locations, the radiologists’ 
diagnostic effectiveness improved for six signs but decreased 
for six others. The competition demonstrated that the algo-
rithm performed worse than radiologists in terms of recog-
nizing aortic calcification, calcification, cavities, nodules, 
pleural thickening, and rib fractures. We infer that the reason 
for these results may be that in the original training set, the 
prevalence of all of these signs, except nodules, was low. 
However, in terms of pneumothorax and free air under the 
diaphragm, even if the prevalence of labels in the original 
training set is low, the effect of this algorithm is equivalent 
to that of radiologists. In terms of normal, fibrosis, heart 
shadow enlargement, mass, pleural effusion and lung con-
solidation recognition, the performance of this algorithm 
is better than that of radiologists. In fact, our research find-
ings have shown that radiologists can efficiently diagnose 14 
signs regardless of whether AI is used or not. The benefits 
of AI for radiologists are greatly improved diagnostic effi-
ciency and stability. In addition, among the 14 individual 
signs, AI contributes to normal, fibrosis, enlargement of the 
heart shadow, masses, pleural effusion, and lung consolida-
tion. The other 6 signs that do not benefit from AI are aortic 
calcification, calcification, cavities, nodules, pleural thick-
ening, and rib fractures. The diagnostic efficiency of radi-
ologists is also very high, and patients can benefit from the 
combination of radiologists and AI. The AI has lower sen-
sitivity in detecting the three signs of rib fractures, nodules, 
and cavities. Radiologists are more cautious about these 
three signs, resulting in better results. This makes it diffi-
cult for AI to provide much help beyond the performance of 
individual radiologists. In future research, we will continue 
to optimize AI models to achieve higher performance. For 
the three signs of calcification, pleural thickening, and aortic 
calcification, it is easier to diagnose clinically, so radiolo-
gists have good results. We have added these explains in the 
discussion section.

Limitations of this study include some potential biases, 
which may cause the results of the radiologist evaluation and 
algorithm performance in the competition to be more con-
servative than in reality. First, the radiologists and algorithm 
only had access to frontal radiographs during reading, and it 
has been shown that up to 15% of accurate diagnoses require 
the lateral view [26]. The lack of a side view in the dataset 
may limit the detection of certain clinical findings, such as 
subtle pleural effusions that cannot be detected only on the 
frontal view. Future work may consider the use of lateral 
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views when applicable in diagnosis and algorithm devel-
opment. Second, the reference standard was determined by 
the consensus of thoracic radiologists on cross-sectional CT 
images. Histopathological examination is an ideal reference 
standard, but it is difficult or impossible to obtain patho-
logical specimens in some disease states. Comparison with 
the pathological gold standard in all cases is beyond the 
scope and purpose of this study. Therefore, the goal was to 
use a forward-looking approach based on the interpretations 
of panels of experts to evaluate the performance of a deep 
learning algorithm in X-ray diagnostic tasks.

There are also several additional limitations that should 
be considered when interpreting our results. The main lim-
itation of this study is that the dataset used for the com-
petition was from a single institution; in our future work, 
we plan to address the generalizability of the algorithm to 
datasets from multiple institutions [27]. Additionally, the 
experimental design used to assess radiologist performance 
in this work does not replicate the clinical environment, so 
the radiologist performance scores presented in this study 
may not exactly reflect the true performance in a more real-
istic setting. Specifically, disagreement in chest radiograph 
interpretation between clinical radiologists has been well 
described and would not always be interpreted as an error 
in clinical practice. In that way, the labeling task performed 
by the radiologists in this study differs from routine clinical 
interpretation because in this work, all relevant findings in 
each image were labeled as present regardless of the poten-
tial clinical significance. Finally, comparison of the primary 
performance metric in this study required estimation of the 
ROC curve for radiologists. To evaluate the algorithm based 
on the results obtained, it is important to estimate how the 
predictive model will perform in practice based on several 
performance metrics. While we assumed that the specificity 
and sensitivity were balanced, allowing for a better fit, we 
acknowledge that this is not a perfect comparison, and for 
this reason, we also provided a comprehensive view of the 
algorithm performance metrics (S1).

Conclusion

Through this competition, we showed that AI demonstrated 
comparable performance in assisting radiologists in detect-
ing multiple chest abnormalities on frontal chest X-rays. 
Artificial intelligence methods can help to increase both the 
accuracy of the diagnoses and the efficiency of radiologists. 
Further studies are necessary to determine the feasibility of 
these outcomes in a prospective clinical setting.
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