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Abstract
Drowning diagnosis is a complicated process in the autopsy, even with the assistance of autopsy imaging and the on-site 
information from where the body was found. Previous studies have developed well-performed deep learning (DL) models 
for drowning diagnosis. However, the validity of the DL models was not assessed, raising doubts about whether the learned 
features accurately represented the medical findings observed by human experts. In this paper, we assessed the medical 
validity of DL models that had achieved high classification performance for drowning diagnosis. This retrospective study 
included autopsy cases aged 8–91 years who underwent postmortem computed tomography between 2012 and 2021 (153 
drowning and 160 non-drowning cases). We first trained three deep learning models from a previous work and generated 
saliency maps that highlight important features in the input. To assess the validity of models, pixel-level annotations were 
created by four radiological technologists and further quantitatively compared with the saliency maps. All the three models 
demonstrated high classification performance with areas under the receiver operating characteristic curves of 0.94, 0.97, and 
0.98, respectively. On the other hand, the assessment results revealed unexpected inconsistency between annotations and 
models’ saliency maps. In fact, each model had, respectively, around 30%, 40%, and 80% of irrelevant areas in the saliency 
maps, suggesting the predictions of the DL models might be unreliable. The result alerts us in the careful assessment of DL 
tools, even those with high classification performance.

Keywords Deep learning · Validity assessment · Computer-aided diagnosis · Postmortem computed tomography · 
Drowning

Introduction

Drowning is one of the leading causes of unnatural death 
worldwide, according to the World Health Organization [1]. 
In forensic medicine, drowning diagnosis via autopsy is dif-
ficult because of its nonspecific pathophysiology [2, 3]. The 
difficulties mainly arise from the absence of a single pathog-
nomonic sign or test. Drowning may present a wide range of 
clinical and radiological manifestations, further complicated 
by variables such as water conditions, drowning scenarios, 
and the postmortem interval. Thus, it is crucial to notice that 
drowning diagnosis is based on sum of all the nonspecific 
findings and exclusion of other causes of death.

Autopsy imaging, such as postmortem computed tomog-
raphy (PMCT), has been introduced to aid in the drown-
ing diagnosis [4]. However, there is a shortage of forensic 
pathologists who can interpret imaging scans. Considering 
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the above challenges, deep learning-based computer-aided 
diagnosis systems have been developed to assist forensic 
pathologists. Previous studies [5–7] have demonstrated the 
feasibility of deep learning (DL) models for drowning diag-
nosis using PMCT. These models have achieved high clas-
sification accuracy, but the validity of the models remains 
unknown. Certain research has raised concerns about the 
potential unreliability of DL models. For instance, some DL-
based classification models for COVID-19 screening might 
generate predictions founded on irrelevant image features 
sourced from different data sources [8].

To prove the validity of the models, most studies [9–13] 
have made efforts to provide visual explanations for model 
predictions using visualization methods like Grad-CAM 
[14]. Although such visualization can provide insight into 
the attention of a model by highlighting the important areas 
on the input images [15, 16], these studies only use it for 
visual verification and did not carry out any assessment. 
Some studies had assessed the visual explanations of clas-
sification models with the ground truth, but they only con-
ducted hit-or-miss evaluation [17, 18]. Given the inherent 
black-box nature of DL models, it becomes crucial to assess 
the validity of these models, which is to determine whether 
the areas to which the model assigns attention (which form 
the basis for its predictions) align with human observations.

In this study, we evaluated the validity of DL models 
for drowning diagnosis by examining the consistency level 
between model attention (saliency maps) and human obser-
vation (manual annotations). Three DL models that had 
reached the state of the art in a related work of drowning 
diagnosis [17] were first trained on an in-house PMCT data-
set to generate saliency maps. Four annotators independently 

annotated lung features related to drowning on the dataset. 
The saliency maps and annotations were then compared 
and analyzed. Finally, we discussed potential problems and 
future work.

Materials and Methods

The review board of our institute approved this retrospective 
study and waived the requirement for informed consent (IRB 
No. 2021–1-495).

Study Sample and Scan Protocol

There were 2610 bodies that underwent pre-autopsy screen-
ing and autopsy at the study institution at Tohoku University 
from June 2012 to January 2021. Cases that were no later 
than 2 days after death and underwent drug screens and dia-
tom tests were eligible for inclusion (n = 359). We further 
excluded 46 cases that were without helical scan or with 
damage to the thoracic cavity and obtained a study sample 
of 313 cases, including 153 drowning cases and 160 non-
drowning cases, as shown in Fig. 1. Causes of non-drowning  
death include cardiovascular disease (n = 54), asphyxia 
other than drowning (n = 19), infection (n = 16), intoxication 
(n = 14), trauma (n = 14), alcoholic and diabetic ketoacidosis 
(n = 13), and others (n = 30).

The autopsy diagnosis was based on a comprehensive 
assessment including PMCT, on-site police investiga-
tion, and forensic autopsy. Each case (anonymized) had a 
free-text autopsy report from a forensic pathologist with 
35 years of experience and a free-text radiology report 

Fig. 1  Case inclusion and exclusion of the training and test for the deep learning model development and the annotation
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from a board-certified radiologist with 20 years of experi-
ence (and 14 years of PMCT interpretation experience) 
and a radiological technologist who had 14 years of PMCT 
imaging experience. Both reports had achieved an agree-
ment in the final diagnosis. Due to the particularity of 
autopsy images, we did not conduct external validation 
because it is difficult to obtain reliable dissection-proved 
autopsy imaging data.

PMCT scanning was performed on a multi-channel 
scanner (Canon Medical Systems, Japan). We obtained 
high-resolution (HR) chest scans of the lung with protocol 
of 135 kVp, 190–250 mAs, M-sized field of view (FOV), 
and 1.0-mm slices (size 512 × 512 pixels) every 30 mm 
through the chest in a four-row multi-slice mode and pro-
cessed with lung kernel settings. Following the HR-CT 
scanning, volumetric helical scans were obtained from 
the head to the proximal femurs at 120 kVp with variable 
mAs, a beam pitch of 0.875, LL-sized FOV, and 2.0-mm 
collimation. The volumetric data allowed reconstruction 
of whole lung images from 2.0-mm slices, also with lung 
kernel settings.

Model Architecture and Training

The models are based on AlexNet [19], VGG16 [20], and 
Inception-ResNet-V2 (InResV2) [21] and have 4 M, 15 M, 
and 56 M parameters, respectively. The original layers on 
top of the last convolutional block of AlexNet and VGG16 
were replaced by a global average pooling (GAP) layer, 
two smaller fully connected (FC) layers, and a softmax 
layer. The 313 PMCT cases were randomly split into 
training and test set at a ratio of around 85%:15%, and all 
models were trained from scratch. The loss function was 
binary cross-entropy, and the optimizer was Adam with 
a learning rate of 1e − 5 and a decay rate of 1e − 6. To 
determine whether the training was done, early stopping 
was applied if the validation loss was no longer decreasing 
in ten epochs.

In terms of the model input, we adopted the method men-
tioned in [17], which can produce better classification and 
visualization results. To be more specific, a single 2D image 
only offers information in the transverse plane, resulting in 
the loss of 3D anatomical details, while 3D volumetric input 
requires 3D models, resulting in much more parameters to 
be fitted. Since PMCT data were obtained with a protocol 
of a four-row multi-slice mode (four 1.0-mm slices every 
30 mm), we can pick out images of a case with the same 
interval and concatenate them vertically or horizontally to 
embed 3D information into a 2D image, as shown in Fig. 2. 
The area under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, and specificity were used to 
evaluate the models.

Saliency Maps

For most of the papers that generated visual explanation 
to model predictions, the major saliency methods can be 
summed up into two kinds: perturbation-based [22, 23] and 
gradient-based methods [14, 15, 24, 25]. Perturbation-based 
methods are intuitive and simple to implement but are also 
time consuming, and gradient-based methods could be of 
low quality and noisy or show false confidence in visuali-
zation results due to the global pooling operation and the 
gradient vanishing issue in models [16, 26]. Following this 
discover, Wang et al. proposed a novel gradient-free method 
named Score-CAM [27], which bridges the gap between per-
turbation-based and gradient-based methods. In this study, 
we adopted the Score-CAM to generate saliency maps and 
compared them with annotations, as shown in Fig. 3. A 

Fig. 2  The input of the models [17]. PMCT images with the same 
interval were concatenated into one 2D image, which was used as an 
input of the models

Fig. 3  A simple illustration of a model and its visualization. Models 
take PMCT images as the input and classify them into non-drown-
ing and drowning. Then, saliency maps are then calculated using 
the weights of models and further projected to the input to get visu-
alization results. A warmer color in the saliency maps represents a 
stronger model attention
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warmer color (red) in the saliency maps represents a stronger 
model attention (higher activation).

Human Annotations

To evaluate the saliency maps, four annotators (radiological 
technologists with over 1 year of clinical experience) used 
an annotation tool (Labelme, v5.1.1) [28] to annotate 150 
images selected at the same interval from the 25 drowning 
test cases, and finally, we obtained 600 annotation maps. 
To ensure the quality and validity of the annotations, we 
invited the experienced radiological technologist (14 years 
of PMCT imaging experience) as an annotation supervisor 
and made some rules. 

The rules are as below:

1) Annotate features that are associated with drown-
ing according to the reports: consolidation and opac-
ity (granular opacity, ground-glass opacity, edema-
like opacity, etc.) in lungs, airway with fluid or solid 
(only above the carina of trachea), and pleural effusion. 
Note that we did not distinguish them in the evaluation 
because the models were for binary classification.

2) Follow both the autopsy and radiology reports and 
ensure coherency among continuous images.

3) Empty annotation is allowed if features are not signifi-
cant.

The annotation process referred to the two-phase annota-
tion process of a benchmark dataset called LIDC/IDRI [29] 
and was organized as below:

1) In the initial blinded-read phase, four annotators inde-
pendently annotated PMCT scans. Then, the annotation 
supervisor blindly reviewed and gave comments on each 
annotation.

2) In the second unblinded-read phase, annotators indepen-
dently revised their annotations according to the com-
ments.

By following this two-phase process, we aimed to 
enhance the accuracy of the annotations. Instead of aver-
aging or fusing annotations to achieve an agreement, we 
kept the differences to evaluate the DL models with the real-
world variability of image interpretation.

Validity Assessment

Intersection over union (IoU) was used to measure the 
consistency between annotations and saliency maps. Two 
IoU-derived metrics [30], namely Saliency Cover (SC) 
and Ground Truth Cover (GC), were used to describe the 
how saliency maps and annotations cover each other. Let S 

represent saliency maps and G represent annotations, then 
the metrics can be denoted as:

All metrics range from 0 to 1, with 1 indicating a per-
fect match between the predicted saliency map (S) and 
the ground truth (G). IoU, or Jaccard index, measures the 
overlap between S and G. SC assesses how much of S 
aligns with G, while GC evaluates how much of G is cov-
ered by S. In essence, SC reflects precision, representing 
the true saliency among all predictions, and GC implies 
sensitivity, indicating the true saliency among all ground 
truth annotations.

To decide whether the saliency maps are consistent 
with annotation, we adopted a default threshold of 0.5 for 
IoU, as also used in many other benchmark tasks [31, 32]. 
An example of annotations and saliency maps are shown 
in Fig. 4. Annotations are binary masks, while saliency 
maps have continuous pixel values, so in addition to the 
original saliency maps So, we applied Otsu thresholding 
[33] to obtain highly activated saliency maps Sh to see the 
discriminative areas.

Statistics Analysis

Dunn’s test was used for comparison of two groups and 
Kruskal–Wallis H test for three or more groups, with 
P < 0.05 for significance. AUC, accuracy, sensitivity, and 
specificity of the models were described by means with 
95% CIs using nonparametric bootstrapping. Considering 
the asymmetric distributions of IoU, SC, and GC, they were 
described by medians with interquartile ranges (IQRs). All 
analysis was performed using Python (v3.9.10, with SciPy 
v1.9.3 and scikit-learn v1.2.0; Python Software Foundation).

IoU =
|S ∩ G|

|S ∪ G|
, SC =

|S ∩ G|

|S|
,GC =

|S ∩ G|

|G|

Fig. 4  An example of the annotations and saliency maps used for 
validity assessment. Saliency maps were binarized into the original 
maps and highly activated maps to compare with the annotations. 
So = original maps, Sh = highly activated maps
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Results

Characteristics of the Study Sample

The study sample is described in Fig. 1 and Table 1. There 
were 359 cases from 2012 to 2021 that met our inclusion 
criteria; 46 were excluded due to lacking helical scans 
or having damage to the thoracic cavities. A total of 313 
PMCT cases contained 153 drowning cases (128 for train-
ing and 25 for test) and 160 non-drowning cases (135 for 
training and 25 for test). There was no significant differ-
ence between the age of training set and test set according 
to Dunn’s test (P > 0.05).

Classification Performance of DL Models

The receiver operating characteristic (ROC) curves and the 
classification performance of models are summarized in 

Fig. 5 and Table 2. As can be observed, the three models 
had achieved high AUC, accuracy, sensitivity, and speci-
ficity. VGG16 achieved almost the same performance  
as InResV2, but with a simpler architecture and fewer 
parameters. This suggests that the improvement from using 
deeper models on small dataset is limited.

Human Annotations

Unlike risk assessment or diagnosis results, analyzing vari-
ability in annotations is challenging because such pixel-level 
annotations are unstructured data with nonuniform shapes, 
quantities, and positions. The intraobserver variability was 
not applicable because of the second unblinded-read phase 
in the annotation process. To show the interobserver vari-
ability among four annotators (A1–A4), we used the area 
of each annotation map as an index, which was simple but 
efficient. For the annotation area of each image, A2, A3, and 
A4 showed no difference (P = 0.20, Kruskal–Wallis H test), 
but they were significantly different from A1 (P < 0.001, 
Kruskal–Wallis H test). However, we did not exclude A1’s 
annotations because there is no specific criterion for the 
interobserver variability, especially for image interpretation 

Table 1  Baseline characteristics 
of the study sample

a Data are means ± standard deviations
*Data are numbers of participants, with percentages in parentheses

Drowning P value Non-drowning P value

Dataset Training Test Training Test

Agea

Male 61.28 ± 11.36 62.0 ± 12.87 0.85 55.17 ± 20.0 52 ± 14.12 0.14
Female 67.67 ± 14.93 73.18 ± 14.29 0.10 56.73 ± 22.58 63.33 ± 24.25 0.96
Sex*
Male 80 (62.5) 14 (56) 84 (62.2) 16 (64)
Female 48 (37.5) 11 (44) 51 (37.8) 9 (36)
Total 128 25 135 25

Fig. 5  Receiver operating characteristic curves of the deep learning 
models with 95% CIs

Table 2  Classification performance of the deep learning models

Data are the mean with 95% CI in brackets and the number of cases 
in parentheses. AUC = area under the receiver operating characteristic 
curve

Model AUC Accuracy 
(%)

Sensitivity 
(%)

Specificity (%)

AlexNet 0.94
[0.93, 0.95]

88.9
[88.5, 89.4]
(327, 368)

87.5
[86.9, 88.3]
(161, 184)

90.2
[89.6, 90.9]
(166, 184)

VGG16 0.97
[0.96, 0.98]

92.1
[91.6, 92.4]
(338, 368)

95.7
[95.3, 96.1]
(176, 184)

88.5
[87.8, 89.0]
(163, 184)

InResV2 0.98
[0.97, 0.99]

92.1
[91.8, 92.5]
(338, 368)

91.3
[90.7, 91.8]
(168, 184)

92.9
[92.5, 93.4]
(171, 184)
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[34]. In addition, the radiologists approved all annotations 
as “annotations made by different individuals may not be 
precise but could be correct.”

Validity Assessment

IoU measures the consistency level between the human 
annotations and the saliency maps; SC and GC describe how 
much saliency and annotation was covered by each other, 
respectively. We used the overall medians of IoU, SC, and 
GC between four annotators and saliency maps in the fol-
lowing unless otherwise noted. 

Table 3 summarized the detailed statistical descriptions 
calculated on the original saliency maps So. Both IoU and 
SC of A1 were significantly smaller than A2, A3, and A4 (all 
P < 0.001, Dunn’s test). AlexNet exhibited moderate con-
sistency (IoU of 0.48, SC/GC of 0.66/0.67), with approxi-
mately 33% of human annotations not covered and 34% of 
the saliency maps containing irrelevant information. VGG16 
displayed poor consistency with a high GC of 0.90 and low 
IoU/SC of 0.34/0.37, mainly as a superset of annotations, 

encompassing over 60% irrelevant content. InResV2 had low 
IoU/SC of 0.14/0.14, with a GC of 1 indicating complete 
annotation coverage but producing coarse-grained maps that 
extended to the entire annotation area.

Similarly, Table 4 showed the results on the highly acti-
vated saliency maps Sh. Both IoU and SC of A1 were signifi-
cantly smaller than A2, A3, and A4 (all P < 0.001, Dunn’s 
test). AlexNet showed poor consistency with a high SC of 
0.80 but low IoU/GC of 0.19/0.20, primarily representing a 
subset of annotations, covering only 20%. VGG16 also dis-
played poor consistency, with a decrease in GC (from 0.90 to 
0.36) and an increase in SC (from 0.37 to 0.62), resulting in 
a slight IoU change (from 0.34 to 0.29) due to the removal of 
a substantial irrelevant portion after thresholding. InResV2 
had a decrease in GC to 0.63 after thresholding and low IoU/
SC of 0.17/0.19, indicating poor consistency in its highly 
activated saliency maps.

For a better view, we also presented the overall medians 
of the IoU, SC, and GC scores using bar plot. It can be 
observed that So of the models exhibited varying levels of 
consistency with the annotations in Fig. 6a. In the highly 

Table 3  Consistency analysis of 
the original saliency map So

Except where indicated, data are medians with IQRs in parentheses
A1–A4 Annotator1–Annotator4, IoU intersection over union, SC saliency cover, GC ground truth cover
*Data are overall median of each score on A1–A4

Model Metrics Medians* A1 A2 A3 A4

AlexNet IoU 0.48 0.42 (0.34, 0.47) 0.49 (0.35, 0.55) 0.50 (0.37, 0.56) 0.52 (0.41, 0.58)
SC 0.66 0.55 (0.43, 0.59) 0.67 (0.57, 0.70) 0.68 (0.62, 0.74) 0.72 (0.65, 0.79)
GC 0.67 0.68 (0.63, 0.80) 0.67 (0.61, 0.77) 0.67 (0.61, 0.77) 0.67 (0.63, 0.77)

VGG16 IoU 0.34 0.29 (0.21, 0.34) 0.33 (0.26, 0.42) 0.37 (0.27, 0.43) 0.38 (0.29, 0.46)
SC 0.37 0.31 (0.21, 0.36) 0.36 (0.27, 0.44) 0.39 (0.28, 0.46) 0.40 (0.31, 0.48)
GC 0.90 0.90 (0.83, 0.95) 0.90 (0.82, 0.93) 0.90 (0.83, 0.93) 0.90 (0.84, 0.94)

InResV2 IoU 0.14 0.12 (0.09, 0.13) 0.14 (0.12, 0.16) 0.14 (0.12, 0.17) 0.15 (0.13, 0.17)
SC 0.14 0.12 (0.10, 0.13) 0.14 (0.12, 0.16) 0.14 (0.12, 0.17) 0.15 (0.13, 0.17)
GC 1 1 (1, 1) 1 (1, 1) 1 (1, 1) 1 (1, 1)

Table 4  Consistency analysis 
of the highly activated saliency 
map Sh

Except where indicated, data are medians with IQRs in parentheses
A1–A4 Annotator1–Annotator4, IoU intersection over union, SC saliency cover, GC ground truth cover
*Data are overall median of each score on A1–A4

Model Metrics Medians* A1 A2 A3 A4

AlexNet IoU 0.19 0.17 (0.13, 0.25) 0.19 (0.12, 0.22) 0.20 (0.12, 0.23) 0.18 (0.11, 0.24)
SC 0.80 0.66 (0.55, 0.78) 0.82 (0.63, 0.88) 0.84 (0.70, 0.91) 0.88 (0.75, 0.95)
GC 0.20 0.20 (0.13, 0.27) 0.21 (0.12, 0.24) 0.21 (0.12, 0.24) 0.18 (0.12, 0.24)

VGG16 IoU 0.29 0.24 (0.15, 0.33) 0.28 (0.20, 0.35) 0.31 (0.19, 0.36) 0.32 (0.22, 0.38)
SC 0.62 0.50 (0.39, 0.62) 0.62 (0.46, 0.76) 0.67 (0.53, 0.77) 0.68 (0.59, 0.78)
GC 0.36 0.36 (0.25, 0.48) 0.36 (0.24, 0.47) 0.37 (0.25, 0.46) 0.36 (0.26, 0.46)

InResV2 IoU 0.17 0.13 (0.10, 0.19) 0.16 (0.13, 0.21) 0.18 (0.14, 0.23) 0.20 (0.15, 0.24)
SC 0.19 0.15 (0.11, 0.19) 0.18 (0.14, 0.23) 0.20 (0.15, 0.25) 0.22 (0.17, 0.26)
GC 0.63 0.58 (0.54, 0.77) 0.64 (0.51, 0.78) 0.64 (0.55, 0.79) 0.64 (0.57, 0.78)
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activated saliency maps Sh (Fig. 6b), there were shifts in 
the patterns, which was mainly caused by reduced irrel-
evant information after thresholding. 

In summary, we found significant inconsistency 
between the human annotations and the saliency maps of 
the models. Additionally, models with higher classification 
performance showed more inconsistency, possibly due to 
overfitting on the small-scale dataset.

To illustrate the inconsistency between model attention 
and human annotations, we showed a true positive cases 
and a false negative case of VGG16. In Fig. 7a, there is a 
notable inconsistency between the saliency maps and their 
corresponding annotations. While most annotators marked 
the areas with pleural effusion, the model did not effec-
tively capture this feature, resulting in a lack of response. 
In the false negative case depicted in Fig. 7b, the model’s 

Fig. 6  Averaged median IoU, 
SC, and GC of the original 
saliency maps So (a) and the 
highly activated saliency maps 
Sh (b). Error bars indicate the 
interquartile ranges

Fig. 7  Examples of saliency maps (top rows) and corresponding over-
lapped annotations (bottom rows) are provided for a true positive case 
(a) and a false negative case (b). The red arrows highlight the region 

of pleural effusion that the model overlooked. Warmer colors indicate 
higher activation in the saliency maps and stronger agreement among 
annotators



 Journal of Imaging Informatics in Medicine

prediction was primarily based on the identification of dry 
airways and airway-like cavities, while it ignored the pres-
ence of fluid-filled airways and pleural effusion. This might 
be attributed to the fact that dry airways possess well-defined 
edges that can be more easily detected by computer vision, 
leading the model to regard them as feature-rich objects. 
In contrast, the fluid-filled airways and pleural effusion can 
resemble blood vessels and tissues and are therefore more 
difficult to distinguish. Furthermore, we observed variations 
among annotators’ interpretations: one annotator omitted the 
lung area, while all others included it in their annotations.

Discussion

In this study, we trained three DL classification models for 
drowning diagnosis, and obtained high AUCs of 0.94 (95% 
CI: 0.93, 0.95), 0.97 (95% CI: 0.96, 0.98), and 0.98 (95% 
CI: 0.97, 0.99), respectively. To evaluate the validity of these 
models, we measured the consistency level between the sali-
ency maps of models and human annotations. Unexpect-
edly, the best IoU scores were only 0.52, 0.38, and 0.20, 
respectively, with 30%, 40%, and 80% of the areas in the 
saliency maps being irrelevant according to the SC and GC 
scores. To our surprise, the models with higher classifica-
tion performance had higher inconsistency compared to the 
human annotations, which may indicate overfitting due to 
the excessive parameters of the models.

One challenge we faced in this study is interobserver 
variability, which is especially prevalent in image interpre-
tation tasks that rely on subjective perception. For example, 
when one person annotates a cat image, he or she may mark 
the cat’s face, while another may mark the entire profile, 
and both approaches may be considered correct. In medical 
imaging, where images may contain ambiguous features, this 
variability may be even more pronounced. Our results show 
that the total area of annotations from one of the annotators 
(A1) was significantly smaller than that of the other annota-
tors (P < 0.001, Kruskal–Wallis H test), resulting in smaller 
scores of IoU and SC, as all metrics were calculated based 
on the area of annotations and saliency maps. This highlights 
the significant impact that ground truth annotations can have 
on the training and evaluation of models.

Some possible solutions to this challenge are as follows. 
First, keeping a detailed record of the annotation process 
could help identify and correct errors or biases that may have 
occurred. Second, having an expert supervise and review 
the annotation process can help improve the accuracy and 
quality of the annotations, as was employed in this study. 
Finally, crowdsourcing could be an effective approach to 
obtain high-quality annotations. For example, a collabora-
tive framework [35] has been proposed to engage medical 
students and pathologists in producing quality labels for cell 

nuclei, without sacrificing diversity. By collecting a larger 
number of annotations from multiple annotators, we can 
mitigate the bias and variability in the training and evalua-
tion of our models.

There are some limitations in this study. First, we could 
not find a forensic pathologist who can interpret radiologi-
cal images to make annotations directly, which is one of the 
motivations for developing the CAD system. To ensure the 
credibility of the annotations, we adopted a two-phase anno-
tation process, referred to the autopsy and radiology reports 
during annotation, and revised the annotations according to 
the comments of the experienced radiologist. The second 
issue is an inherent problem in the evaluation method. We 
used IoU and its derivatives SC and GC to measure the simi-
larity and inclusive relation between annotations and saliency 
maps. IoU is a common and suitable metric for detection 
and segmentation tasks because the outputs of models, e.g., 
bounding boxes and segmented maps, are designed to be as 
close as possible to the annotations. However, the original 
outputs of a classification model are numbers correspond-
ing to numerical labels, not annotation maps, which leads to 
a significant difference in area between saliency maps and 
annotations. In fact, the area of So was 2.92 to 3.97 times that 
of the annotations, while Sh was only 0.60 to 0.82 times that 
of the annotations. Consequently, even if all saliency maps 
and annotations overlap perfectly, we can only have a maxi-
mum IoU score of around 0.35 for So and 0.82 for Sh, not 1, 
so do the SC and GC. Although it seems improper to evaluate 
classification models using these metrics, there is no criterion 
for such evaluation, especially for image interpretation.

To address these problems, the validity of classification 
models needs further research, possibly by combining deep 
learning with detailed human expertise, as is common in 
detection/segmentation tasks. It is worth noting that interob-
server variability can be observed among annotators, which 
may affect the evaluation results. Therefore, the annotation 
process and evaluation metrics should be carefully con-
sidered. Our future work will focus on developing deeply 
supervised methods to improve the validity of our models 
and alleviate the negative impact of interobserver variability 
on evaluation results.

Conclusion

Three DL models were trained for drowning diagnosis and 
achieved high classification performance. However, the sali-
ency maps generated from these models showed inconsist-
ency attention with human annotations, suggesting that the 
models may be unreliable from the perspective of medical 
image diagnosis, or the annotations were subjective and 
prone to biases. The result alerts us in the careful assessment 
of DL tools, even those with high classification performance.
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