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Abstract
Nasal base aesthetics is an interesting and challenging issue that attracts the attention of researchers in recent years. With 
that insight, in this study, we propose a novel automatic framework (AF) for evaluating the nasal base which can be use-
ful to improve the symmetry in rhinoplasty and reconstruction. The introduced AF includes a hybrid model for nasal base 
landmarks recognition and a combined model for predicting nasal base symmetry. The proposed state-of-the-art nasal base 
landmark detection model is trained on the nasal base images for comprehensive qualitative and quantitative assessments. 
Then, the deep convolutional neural networks (CNN) and multi-layer perceptron neural network (MLP) models are integrated 
by concatenating their last hidden layer to evaluate the nasal base symmetry based on geometry features and tiled images 
of the nasal base. This study explores the concept of data augmentation by applying the methods motivated via commonly 
used image augmentation techniques. According to the experimental findings, the results of the AF are closely related to 
the otolaryngologists’ ratings and are useful for preoperative planning, intraoperative decision-making, and postoperative  
assessment. Furthermore, the visualization indicates that the proposed AF is capable of predicting the nasal base symmetry 
and capturing asymmetry areas to facilitate semantic predictions. The codes are accessible at https:// github. com/ Ashoo riMar yam/ 
Nasal- Aesth etic- Asses sment- Deep- learn ing.
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Introduction

The nose is a vital element of a person’s esthetic appearance 
of the face that affects the overall appearance, esthetics, and 
attractiveness of the facial [1, 2]. The appearance and bal-
ance of the nose as important features of rhinoplasty deeply 
affected by the nasal base [3]. The nasal base so-called 
alar-columellar complex provides an ideal starting point to 
develop an analytic approach to quantitative analysis of nasal 

shape [4] that can be useful to distinguish the face character-
istics (for example [5]). This area of nose is a common source 
of patient dissatisfaction and neglecting of it would lead to 
some revision rhinoplasty [6]. Some of the complications 
in rhinoplasty that significantly affect facial attractiveness 
[2] are asymmetry and deformation appearance [7]. Sym-
metry can be considered a major factor in nasal base esthetics 
[8] especially, by using selfies in the digital age, the rate of 
requests for a more symmetrical nose is increased [9, 10].

Recent developments in artificial intelligence, machine 
learning, and deep learning techniques have opened new ave-
nues for efficient knowledge discovery from healthcare data 
[11] which can be trained to carry out tasks that are either chal-
lenging or time-consuming for surgeons [12, 13]. Deep learn-
ing algorithms are a subset of machine learning algorithms 
that have led to the construction of several novel deep neural 
network architectures that are able to illuminate patterns and 
features that are not always visible to the human eye [11].

Several researchers studied rhinoplasty based on computer 
technology such as introducing simulation or prediction models 
for the nasal shape that esthetically matches the patient’s face 
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[14, 15], constructing three-dimensional (3D) facial images from 
two-dimensional images, and producing 3D simulation models 
to revolutionalize the practice of functional and esthetic rhino-
plasty [16, 17]; the others are listed in [18]. Also, A parametric 
model (PM) is used to describe objectively nasal base shape [4], 
and a classification system is created by evaluating and compar-
ing the PM with the categorization by surgeons [19]. Machine 
learning was used to simulate rhinoplasty results according to 
the criteria of the doctors surveyed [13]. Finally, deep learn-
ing was used to predict rhinoplasty status accurately [20] and 
patient’s age before and after rhinoplasty [21] and to find which 
geometric facial features that affect attractiveness in order to 
considered them within the rhinoplasty procedures [22].

In the latest years, deep learning-based object detection 
algorithms have played an important role in reducing human 
efforts in the processing of modern approaches. Object detec-
tion algorithms based on deep learning such as region-based 
convolutional neural networks (R-CNN) [23], Fast R-CNN 
[24], and Faster R-CNN [25] are characterized by the bound-
ing boxes and categories probabilities for each object. Faster 
RCNN as a deep object detection algorithm utilizes region 
proposal networks (RPNs) to generate image regions that 
provide better performance and more speed for object detec-
tion. Object detection to recognize landmarks [26] is one 
of the most state-of-the-art methods that solves the prob-
lem of facial landmark detection [27, 28]. In the most recent 
research works of the latest years [29], two-stage object 
detector methods have excellent performance in object rec-
ognition and localization accuracy [30]. The advantages of 
the R-CNN family as a two-stage method, rather than the 
one-stage detectors are as follows: (1) utilizing the sampling 
heuristics to deal with class imbalance; (2) regressing the 
object box parameters by two-step cascade; (3) describing 
the objects according to two-stage features [31]. However, 
the above discussed previous works related to the nasal base 
have some limitations that addressed as follows:

1. In the previous works of the researchers, the symmetry 
of the nasal base was considered only for evaluating the 
results of rhinoplasty on cleft palate patients [32–36].

2. In these works, extracting the nasal base landmarks has 
been taken by manual methods using either direct or 
indirect anthropometry [32, 35–37]. The important key 
is the lack of an accurate and rapid automated method 
to detect the landmarks of the nasal base.

3. In other related research, the symmetry of the nasal base 
has been studied using some quantitative methods to 
survey the geometry features that are limited to the sta-
tistical methods [4, 8, 32, 34, 37–39]. Barnes and et. Al 
[4] utilized the lateral deviation (symmetry) of the nasal 
base as a parameter of a polar function without calculat-
ing the value of the symmetry. [8] Presented a clinical 

technique to improve the symmetry of the columella and 
nostrils. Then used the �2 test to compare the results of 
pre and post-operative based on patients’ opinion [34]. 
Applied descriptive statistics to compare the nasal sym-
metry of infant with unilateral cleft lip with or without 
cleft palate between time points from frontal, lateral, and 
submental views [37]. Utilized Student’s t test to analyze 
narsi symmetry of the patients were treated by using the 
Hotz plate. [38] used analysis of variance and equality 
of two proportions tests to compare the symmetry after 
fat grafting in paranasal and midface groups based on 
manual extracted measurements and evaluator rating. 
In [32], Pietruski et al. conducted a validation study to 
develop a computer system as a tool for objective anthro-
pometric analysis of the nasolabial region. In addition,the 
practical application of the system was further confirmed 
through a comparative objective analysis of nasolabial 
morphology and symmetry in the both healthy individu-
als and the cleft subjects [39]. It is important to note that 
in the both of the last works the specified number of 
landmarks was set by the user. However, we can’t find 
deep learning algorithms for analyzing the nasal base 
symmetry. Moreover, it is crucial to highlight that none 
of the abovementioned studies included a scoring system 
for evaluating the symmetry of the nasal base.

Therefore, until now there is no unique AF which able to 
evaluate the symmetry of the nasal base based on deep learn-
ing algorithms. So, it is important to propose an exact AF to 
assess the symmetry value of nasal base before and after rhi-
noplasty. Also, this paper pays attention to adopting the Faster 
R-CNN technique to detect the nasal base inside the image 
and then recognize the nasal base landmarks (Appendix 1). 
The main motivation of this research is to suggest an AF that 
is compatible with human opinion to reduce the role of human 
factors to evaluate the symmetry of the nasal base. The remain-
der of the paper is as follows:The “Materials and Methods” 
section illustrates the materials and methods; the “Results and 
Discussion” section describes the experimental results. Finally, 
the paper is concluded in the “Conclusions” section.

Materials and Methods

Figure 1 shows the block diagram of the proposed method 
which involves three main steps: data preparation, process-
ing, and comparison. In the initial step, the septorhinolpasty 
dataset (SRD) consisting of the preoperative and one-year 
postoperative photographs of 438 primary rhinoplasty 
patients (comprising 740 women and 136 men, totaling 876 
image data) was randomly divided into a training dataset 
(80%, 720 images) and a testing dataset (20%, 156 images). 



457Journal of Imaging Informatics in Medicine (2024) 37:455–470 

Image annotation was applied to all images in the SRD. 
Subsequently, image augmentation (25 augmented images 
per input image) was performed on each image in the train-
ing dataset, and the nasal base region was cropped based 

on the columellar axis. Additionally, tiled image versions 
of the testing dataset were generated. In the second step, 
the augmented annotated training dataset was used to train 
the hybrid model for nasal base landmarks recognition. The 
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Fig. 1  Detailed block diagram of the proposed method to predict the symmetry of the nasal base. The red, blue, and black arrows correspond to 
the training, testing, and other phases, respectively. The enclosed area between the green dashed lines shows the AF
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original images of the testing dataset (156 images) were fed 
to the predictive model for landmarking during the testing 
phase to extract the geometry features. The tiled images 
and geometry features of the training set (126 images) were 
utilized as input, and structural similarity index measure 
(SSIM) [40] was used as the output for the combined model 
during the training phase. The predictive model for sym-
metry utilized the testing set (30 images) in conjunction 
with geometry features to predict the symmetry value of the 
nasal base. Finally, in the last step, the matching process was 
investigated to compare the results of the predictive model 
for symmetry and otolaryngologists’ ratings.

Dataset Description and Preparation

The color profile photographs of 438 primary rhinoplasty 
patients (370 women and 68 men) are selected from the 
database of all patients who had been referred to the oto-
laryngology office of the third author from 2010 to 2019, 
where almost all of these patients were elective for cosmetic 
procedures. While their initial motivation for seeking treat-
ment was cosmetic enhancement, in a substantial portion of 
subjects (potentially around half), concurrent medical treat-
ment was also provided alongside the cosmetic procedure. 
The mean age and standard deviation of the patients at the 
time of surgery was 30.17 ± 5.01 years (range 13–75 years). 
The skin of the subjects included the types II, III, and IV of 
skin tone categories in the Fitzpatrick scale [41].

Preoperative and 1-year postoperative photographs were 
taken from frontal, lateral, and basal views with a Canon 60 D 
camera in high resolution according to the standard guidelines 
[42] for clinical photography. The resolution of the images was 
72 dpi, and photography was conducted without the use of 
flash due to enough ambient lighting. The image quality was 
not compromised by refraining from applying any compres-
sion during the image acquisition. As the surgery was sep-
torhinoplasty and there was sensitivity, structured illumination 
was used to capture images of the patient. The photographs 
were taken in specialized studios approved by the surgeon and 
were not color-calibrated. Additionally, if the imaging condi-
tions are not met, the surgeon repeats the image. All patient’s 
photographs were included in the study after giving written 
informed consent. Full ethical approval was granted by the 
University of Tehran research ethics committee. The prepara-
tion process of the SRD for training the deep learning models 
includes collecting data, data cleaning, and format conversion, 
bounding box annotation and labeling, dataset partition, and 
data augmentation.

Furthermore, in order to assess the robustness of the hybrid 
model, we construct a new multi-ethnicity rhinoplasty data-
set (MERD) [43, 44] containing paired facial images of 100 
rhinoplasty patients of different races and nations extracted 

from publicly available websites. The MERD includes cat-
egories of Ethnic Rhinoplasty, Middle Eastern Rhinoplasty, 
Latino Rhinoplasty, Asian rhinoplasty, and African American 
Rhinoplasty. The demographic composition of the MERD con-
sists of 74 women and 26 men (with ages approximately rang-
ing from 18 to 70 + years). The selection criteria for images 
from these websites included (1) relevance to the scope of 
this research, (2) a minimum image resolution equal to that 
of the SRD, and (3) the availability of six views of the face 
(frontal, lateral (right and left), three-quarter oblique (right 
and left), and basal). We gathered images depicting frontal, 
lateral, three-quarter oblique, and basal views of rhinoplasty 
subjects, in accordance with the available categories of the 
rhinoplasty images on the websites. Subsequently, we manu-
ally annotated them with 18 nasal base landmarks. In terms of 
size and resolution, the images of SRD and MERD have been 
resized to equal size, but the resolutions of MERD images 
were either 72 or 96 dpi.

Proposed Automatic Framework

The Proposed Hybrid Model

In this subsection, we designed a novel hybrid model com-
bining different architectures including a mixture of Faster 
R-CNN and CNN models to detect nasal base and to pre-
dict nasal base landmarks coordinates automatically. Firstly, 
the augmented data which was obtained from the train-
ing dataset (80% for training: 508 women and 72 men and 
20% for validation: 114 women and 26 men) was used to 
train the hybrid model. Labelme [45, 46] is used to anno-
tate objects, and json file is created for each image to com-
prise nasal base landmark annotations. There are several 
landmarks of the nasal base in surgical books (Appendix 1) 
that produce geometry features including nine scale values 
F = [fg_1, fg_2, fg_3, fg_4, fg_5, fg_6, fg_7, fg_8, fg_9] that are calcu-
lated via Eqs. (1–2) and are shown in Fig. 2.

where fg_1 represents the angular ratio of the angulation of the 
long axis of the left nostril ( a(g_1)L ) and the angulation of the 
long axis of the right nostril ( a(g_1)R ) and fg_i represents the i-th 
geometry ratio feature, d(g_i)L.d(g_i)R are the i-th distances of left 
and right sides of nasal base, left/right midalar widths ( i = 2 ), 
horizontal distance between the left/right subalare and the facial 
midline ( i = 3 ), horizontal distance between the left/right alare 
and the columellar axis ( i = 4 ), left/right midcolumellar apex 
width ( i = 5 ), left/right midcolumellar base width ( i = 6 ), left/
right nostril width ( i = 7 ), left/right nostril height ( i = 8 ), and 
left/right thickness of ala ( i = 9 ), respectively.

(1)fg_1 = a(g_1)L∕a(g_1)R

(2)fg_i = d(g_i)L∕d(g_i)Ri = 2, 3,… , 8, 9
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We use Faster R-CNN with VGG16 as the backbone net-
work for the object detection task to generate a bounding 
box around the nasal base inside the input image (detection 
module). Then, the input is cropped based on this bounding 
box to have a cropped nasal base. After that, we set again the 
landmark annotations based on the corresponding bounding 
region coordinates to build a predictive model that takes a 
set of cropped nasal base boxes and object annotations as 
input. Then a customized pre-trained ResNet152V2 model 
is designed and trained to predict the nasal base landmarks 
coordinates (prediction module) (Fig. 3). In this method, the 
landmark predictive model is trained on the bounding box 
region of the input image, and it can predict the coordinates 
of landmarks more accurately rather than using the whole 
image for prediction.

Implementation Details In the detection module, the ground-
truth box of the nasal base, which is obtained according to the 
pronasal and alars coordinates of object annotations, is used to 
determine the bounding box region in the images. It is trained 
using Adam optimizer [47] with a learning rate of 1e-5. We 
selected the small initial learning rate since the pre-trained 
VGG16 model is not proper for intense changes. In the pre-
diction module, we utilized the Adam optimizer and “Learn-
ingRateScheduler” callback with initalpha equal to 1e-3 to 
calculate the learning rate depending on the current training 
epoch. The activation function of all convolution layers is the 
LeakyReLU [48] function. The value of the batch size of the 
prediction module is 32.

Data Augmentation Image augmentation techniques are 
used to enhance the efficiency and result of the model. The 
flipping, rotating, and color transformation data augmen-
tation was used to improve the quality and generalization 
of images [49] so the hybrid model is trained by random 
augmentations: color jitter, flipping, shifting, rotating, and 
scaling. The number of generated augmented samples from 
each data sample is 25.

Training Loss The task of detecting the object contains both 
classification (object recognition) and regression (localization 
of the object) learning problems. The loss function of Faster 
R-CNN as a two-stage detector can be unified as in (3):
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where i is the index of an anchor in a mini‐batch, pi is the 
predicted probability of the anchor i being an object, p∗

i
 is 

the ground-truth label that is equal to one if the anchor is 
positive, and is zero if the anchor is negative. The vectors 
ti and t∗

i
 represent 4 parameter coordinates of the predicted 

box and ground-truth box associated with a positive anchor, 
respectively, and λ is the weight balance parameter also, 
and Ncls and Nreg are the mini-batch sizes and the number 
of anchor locations, correspondingly. The smooth function 
calculates the loss function between the ground-truth and the 
predicted box. We formulate the task of predicting the nasal 
base landmark coordinates as a regression problem. The loss 
function of the model is the mean absolute error (MAE).

Evaluation Metrics Since in a given image, the aim of object 
detection is to find out where objects are located and each object 
belongs to which category; therefore, the well-known metrics, 
such as precision and recall, are not sufficient for this task. To 
effectively evaluate the performance of the detection module, 
the precision (P), the recall rate (R), F1 score (F1), and the mean 
average precision (mAP) are selected to evaluate the detection 
ability of the model. The metrics of MAE and the normalized 
mean errors (NME) [50] are used to measure the performance 
of the prediction module are given as follows:

where n and m are the numbers of the samples (images) and 
landmarks, respectively, Yj is the ground-truth landmarks, 
Ỹj is the corresponding estimated landmarks, Yj(∶ .k) is the 
kth column of Yj , and dj is 

√
width ∗ height that is the square 

root of the ground-truth bounding box.
In constructing the hybrid model, various experiments 

are performed to fine-tune the architecture and the learning 
process, including changing the pre-trained model, batch 
size, normalization scheme, learning rate, and the num-
ber of augmentation and layers. It should be noted that we 
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examined several schedules of “LearningRateScheduler” as 
the standard, linear, step-based, polynomial learning rate and 
exponential decay for training the prediction module then, 
the best result of them is selected as the result of the models.

Combined Model Based on the Geometry Features 
and Tiled Images

After constructing the hybrid model, the testing part of the data 
(156 images) is partitioned into two parts: the training set (126 
images) for the symmetry predicting model and the testing set 
(30 images). The 156 accumulated nasal base images included 
118 women and 38 men patients. To prepare the images, first, 
the goal area of the nasal base is cropped from the original image 
after standardization (resizing the images to a uniform size for 
annotation of the pupils). Additionally, the rotation of the patient’s 
head is removed to ensure that the inferior right pupil connects 
to the inferior left pupil, which should be parallel to a line of the 
Frankfort plane. Then, the image of the nasal base is masked with 
white color to separate the nasal base region of the image from 
the background. Typically, white color background is more effi-
cient for masking irrelevant parts of the image [51] and id used 
to extract the region of interest (ROI). After that, the nasal base 
is divided into two regions by the line connecting pronasale and 
subnasale Fig. 4. Finally, a tiled image is constructed according to 
a vector of length 4 (the total number of tiles in the tiled image). 
The tiled normalized version of images and geometry features 
( F  ) of the training set (80% for training and 20% for validation) 
is utilized to train the network to find the regression model. The 
tiled image is passed through the CNN, and the symmetry value is 
used as the target predicted value. This approach permits the CNN 
to learn from all images rather than trying to pass the images one 
at a time, it also enables the CNN to learn discriminative filters 
from all images at once. The z-score method is used to obtain the 
normalized pixel value (NPV) as in (7):
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Fig. 4  The combined model (CNN and MLP) to predict the nasal base symmetry
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where PV(x.y.z) is the pixel value of the coordinate (x,y) and 
channel (z). �(PV(z)) and �(PV(z)) are the mean and stand-
ard deviation values of pixels in channel z of the training 
set. Also, the geometry features are transformed into a com-
mon range [0,1]; then, the min–max normalization method 
is used to calculate the normalized geometry feature ( NGFi ) 
for each geometry feature i by (8):

Here, GFmax and GFmin are the maximum and minimum val-
ues of the i-th geometry feature ( F  ), respectively. MLP is trained 
with geometry features, and CNN is trained with tiled images; 
then, CNN and MLP are combined to estimate nasal base symme-
try. Then the obtained ground-truth symmetry by SSIM was used 
as a combined model target. The combined model was compiled 
using Adam optimizer with the learning rate value set at 1e-3 and 
batch size equal to 8. The loss function and performance metric 
of the combined model are MAE and the root mean square error 
(RMSE), respectively. Also, the Pearson correlation coefficient 
(PC) is used to measure the performance of the model. Several 
experiments were examined to fine-tune hyperparameter settings 
to reach optimal performance. The final architecture follows the 
combination of MLP and CNN models depicted in Fig. 4. The 
detailed description of the structure of the parameter setup of the 
combined model components is given in Appendix 2.

Comparing the Outcomes

In this stage, the results generated by the automatic framework 
and the otolaryngologists’ ratings were analyzed. The testing 

(8)NGFi =
GFi − GFmin

GFmax − GFmin

set (30 images) was given to otolaryngologists (2 men and 2 
women) through a visual questionnaire and asked them to rate 
the perceived symmetry (completely symmetric, very sym-
metric, slightly symmetric, asymmetric, and completely asym-
metric). It should be noted that all the images are assigned to 
the patient without any defect in the nasolabial region.

Results and Discussion

In this section, the performance of the proposed symme-
try AF is evaluated. Firstly, the efficiency of the introduced 
hybrid model is explained; then, the performance of the 
combined models is analyzed. The transfer learning tech-
nique is applied in the hybrid model based on the CNN 
approach such that Faster R-CNN with pre-trained VGG16 is 
used to extract bounding box information and a deep learn-
ing model with ResNet152V2 as the backbone is exploited 
to detect landmarks coordinates. Then, the deep CNN and 
multi-layer perceptron neural network models are integrated 
by concatenating their last hidden layer to evaluate the nasal 
base symmetry based on geometry features and tiled images 
of the nasal base. Finally, the process of matching is exe-
cuted between the AF results and otolaryngologists’ ratings. 
All experiments were performed on a Windows machine 
pre-installed with a 64-bit Win 10 Pro. It has a GTX 1080 
Ti 22 GB GPU, 32 GB of RAM, and an Intel(R) Xeon(R) 
CPU E5-2699 v4 @ 2.20 GHz. Also, the AF is developed 
by using the Python programming language.

Evaluating the Hybrid Model

We obtained the results of the precision rate, recall rate, 
F1 score, and mAP value of the “nasal_base” class for the 
Faster RCNN (Table 1). These reported values of the results 
are achieved according to the testing dataset (156 images). 
In addition, the plots of the PR curve, loss, and accuracy 
metric plots are shown to further evaluate the efficiency 
of the Faster R-CNN (Fig. 5) such that the minimum total 
loss of 0.0085 and maximum accuracy of 0.9996 acquired 

Table 1  Performance of the detection module for the Faster and the 
Fast R-CNN methods

Precision rate Recall rate F1 score mAP

Faster R-CNN 0.78 1 0.88 0.92
Fast R-CNN 0.69 1 0.81 0.87
P-value 0.00 0.40 0.88 0.01

(a) (b) (c)

Fig. 5  PR curve (precision at 11 recall levels) (a), training and validation loss for the Faster RCNN (b), training and validation accuracy for the 
Faster RCNN (c)
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during the process of model training in epoch 96. Besides, 
we applied the Fast R-CNN with VGG16 for the nasal base 
detection and the performance-based comparisons in the 
object detection methods indicate that the Faster R-CNN 
model outperforms the Fast R-CNN model (Table 1). The 
paired t-test analysis with a 0.05 significant level was used 
to compare the performance metrics of Faster R-CNN and 
Fast R-CNN. The findings revealed a significant difference 
in the precision rate and mAP metrics as indicated by the 
last row of Table 1.

The prediction module is trained to detect the nasal base 
landmarks based on the predicted bounding box extracted 
by the Faster R-CNN model. The network weights of the 
module were updated after improving the validation loss 
from previous epochs. At the end of the training, we pick the 
model that gives the best performance of validation loss in 
terms of MAE and NME to evaluate the validation and test 
datasets and to use later for the landmark predicting process. 
Table 2 demonstrates the MAE, NME, RMSE, PC, Mean, 
and Std of them for the prediction module on the SRD. The 
validation set is used to tune the parameters of the regressor, 
and the test set is used only to assess the performance of the 
fully specified regression model. Evaluating the validation 
and the test sets using the trained prediction module shows 
that MAE, NME, and RMSE are low for the two sets. The 
independent t-test was conducted at a significance level of 
0.05 to compare the performance metrics of the validation 
and test sets. The results indicated no significant difference 
among the four metrics of the two sets, suggesting that the 
prediction module is equally effective at nasal base land-
marking in both the validation and test sets. Figure 6 shows 
the qualitative results of the hybrid model.

It should be pointed out that we examined two pre-trained 
VGG-16 and Resnet50 architectures for the detection module 

and utilized Resnet152V2 and Xception backbones for the 
prediction module. The hybrid model integrates both detec-
tion and prediction techniques in order to provide accurate 
predictions because each technique is responsible for a dif-
ferent task. Also, the hybrid model decreases the human role 
in landmark detection which facilitates using it.

Performance of the Combined Model

The combined model consisted of the CNN and MLP trained 
to estimate the nasal base symmetry via the tiled images 
and the geometry features. To do this, we randomly selected 
126 images of the testing dataset (156 images) for training 
the combined model. The weights of the network were set 
to update only when the validation loss function improved 
from previous epochs. After training for 100 epochs, we roll 
back to the model with the lowest validation loss in terms of 
the MAE based on the training dataset. The model perfor-
mance metrics (MAE, RMSE, PC) for the validation set (31 
images) are 0.1363, 0.0665, and 0.7669, and the values of 
these metrics for the test set (30 images) are 0.1585, 0.0863, 
and 0.8394, respectively.

In this experiment, we examined the AF to measure the 
prediction results of the nasal base symmetry. Some sample 
images of the testing set and their heatmap visualization 
with the symmetry predicted results of the nasal base images 
by AF beside ground-truth (or the SSIM value) are shown in 
Fig. 7. The heatmap is generated through an intersection of 
the heatmaps derived from both the CNN and the geomet-
ric features. The CNN heatmap highlights the tiles used by 
the network as important features in tiled images, while the 
geometric feature heatmap is generated from features with 
a large distance. The resulting heatmap identifies the region 
of the nasal base that disrupts symmetry.

Table 2  The performance metrics (also their corresponding values of the mean and Std in all epoch) of alignment results of the nasal base

Partition MAE Mean (Std) NME Mean (Std) RMSE Mean (Std) PC Mean (Std)

Validation 0.0442 0.0542 (0.0536) 0.0162 0.0201 (0.0170) 0.1210 0.1245 (0.0607) 0.8607 0.8490 (0.0730)
Test 0.0359 0.0673 (0.0849) 0.0137 0.0268 (0.0359) 0.0953 0.0965 (0.1291) 0.9011 0.7181 (0.5238)
P-value 0.4079 0.4347 0.4341 0.3801

(a) (b) (c) (d) (e)

Fig. 6  Qualitative result of the hybrid model. Input image (a), the 
output of the detection module (b), cropped region (c), output of the 
prediction module (d), and the returned landmarks on the input image 

(e). The black and blue bounding boxes are detected and ground-truth 
bounding boxes (b)
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Therefore, after data preparation, the clinical application 
of AF is according to this process that, when a new nasal 
base image comes in, the landmarks are detected by using 
the hybrid model. Then, based on the detected landmarks, 
the nine paired geometry features are calculated. Then the 
derived geometry features and the tiled image are fed to the 
combined model. Finally, the predicted symmetry value 
obtained from the AF and the heatmap visualization of the 
nasal base is shown to users.

Matching Process of the AF 
and Otolaryngologists’ Results

The matching process of the results of the AF for the test-
ing set (30 images) and otolaryngologists’ ratings reports 
that in 19 cases of 30 patients, the combined model predicts 
the symmetry value according to the opinions of specialist 
doctors. The results of the matching process showed that 
the exact and fine matchings of AF with the otolaryngolo-
gists’ ratings are 0.6333 and 0.7666. The considered range 
for transforming quantitative ranges to qualitative ranks is 
based on the otolaryngologists’ opinions. The important fac-
tors that cause gaps between the otolaryngologists’ ratings 
and the results of the combined model are as follows: there 
are no standard angles of images, errors in human vision, 
and errors in the combined model.

Ablation Study

In order to investigate the effectiveness of the detection 
module, an extensive ablation study was conducted with 
the goal of surveying the impact of the detection module 
to decrease the error of the prediction module’s output. The 
trained prediction module, after 100 epochs, is evaluated 
by MAE, the mean average pixel error (MAPE) [52] (9), 
RMSE, and PC metrics to compute the landmark estima-
tion errors.

(9)MAPE =
1

n

n�

j

m�

k

‖Ỹj(∶, k) − Yj(∶, k)‖2

Module Robustness Analysis

The proposed AF uses the principle of object detection 
before landmarks recognition. Extensive experiments on 
augmented data are conducted. To assess the efficacy of the 
detection module, two models are formed: Model I, predic-
tion module without detection module based on the whole 
image and Model II, prediction module with detection mod-
ule based on the cropped nasal base region. Note that Model 
I and Model II are trained only with the SRD training dataset 
(Fig. 1). Assessing the outputs of Model I and Model II is 
done in two methods: the output of Model I is transformed 
to the scale of the output of Model II (Algorithm 1) and 
on the contrary (Algorithm 2).
Algorithm 1  Transformation to zoom-in for the nasal base 
region (maximize)

Algorithm 2  Transformation to zoom-out for the nasal base 
region (minimize)

To compare the performance of the two models, the 
paired t-test at a significance level of 0.05 is implemented. 
The P-values of Table 3 show that there is a significant 
difference between the evaluation metrics (MAE, MAPE, 

(0.869, 0.848) (0.806, 0.757) (0.778, 0.835) (0.705, 0.728)

Fig. 7  The original image and the heatmap visualization of the cropped nasal base region. The pair values show (the ground-truth value, the pre-
dicted values by AF)
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RMSE, and PC) of the Model I and Model II for both data-
sets. Since the values of the MAE, MAPE, and RMSE of 
the Model II are less or equal to the Model I, Model II has a 
better performance, independent of algorithms 1 and 2. This 
means that the learning on the cropped region of the image 
can be more effective for image feature extraction (Fig. 8). It 
should be noted that the MAE, MAPE, and RMSE values are 
higher on MERD, which indicates the error of the models 
in testing these images. This error can be attributed to the 
diverse nature of the images and, at some times, the lack of 
training of the model on various types of nasal bases.

The Impact of Landmarks

A study was conducted to analyze the impact of incorrect 
landmarks on the performance of the prediction module. This 
involved randomly shifting the position of correct 3–7 land-
marks on two datasets by 1–5 pixel points in different directions 
(top, bottom, right, and left). The results of paired t-tests, as 
shown in Table 4, indicate that there is a significant difference 
between the Model I and Model Î  , except for the algorithms 
2 for MERD dataset. However, no significant difference was 
observed between Model II and Model ÎI , suggesting that 
Model II is more robust in the presence of incorrect landmarks 
compared to Model I . Additionally, the P-value between Model 
Î  and Model ÎI declares a significant difference in the evalu-
ation metrics (MAE, MAPE, and RMSE) for both datasets. 
Furthermore, the model evaluation metrics (except PC) with 
incorrect landmarks are slightly greater than those with correct 
landmarks (PC: 0.9169 vs. 0.9565, 0.9479 vs. 0.9817, 0.7669 
vs. 0.8813, 0. 8632 vs. 0.9262).

The Impact of Noise in Images

We utilized Gaussian noise, as observed in recent studies 
on assessing robustness [53–56], to study its impact on the 

images. Subsequently, we compared the outcomes of the 
noise dataset with those of the non-noise dataset (Table 5). 
The results of the paired t-test to investigate the effect of 
noise on the Model I and Model II indicate a significant 
difference between the noisy ( ̈I ) and noiseless (I) modes, 
while for the Model II, there is no significant difference 
between the noise ( ÏI ) and noiseless (II) modes. There-
fore, the robustness of Model II, which is based on object 
detection, is confirmed. Moreover, the P-value comparison 
between Model Ï and Model ÏI suggests a significant dis-
parity in the evaluation metrics (MAE, MAPE, and RMSE) 
for both datasets.

The limitations of prior studies include the use of statis-
tical analysis to examine medical interventions in surgery 
[8, 34, 38], reliance on user participation until the result 
is obtained [4, 32, 37], and the inability of the presented 
methods to provide a quantitative measure of symmetry [4, 
32, 37, 39]. These studies have advantages in addressing the 
issues of a specific range of patients and offering computer-
based approaches. In our research, we have addressed the 
limitations of previous studies by employing an automated 
method with repeatability and high accuracy to predict the 
quantitative value of symmetry.

The issue of imprecise bounding box localization presents 
a significant area for future research. In an attempt to mini-
mize this problem in this research, after accurate annotations 
for training through manual and labor-intensive labeling by 
motivation of [57], we initiated with a larger bounding box. 
However, our team has thoroughly investigated this topic and 
plans to address it in an upcoming article, utilizing insights 
from recent publications [58–60]. As this matter exceeds the 
scope of the current work, we have conducted a comprehen-
sive examination and analysis to be incorporated into the  
forthcoming article. The authors have openly shared the model, 
including its code, and have made it available to all interested 
researchers, while excluding the dataset.

Table 3  Performance of the 
prediction module for Model I 
and Model II

Dataset Transformation
method

Model MAE MAPE RMSE PC

SRD Algorithm 1 I 0.0375 0.2870 0.0478 0.9447
II 0.0329 0.2577 0.0429 0.9529
P-value 0.0000 0.0000 0.0000 0.0002

Algorithm 2 I 0.0077 0.0604 0.0101 0.9763
II 0.0079 0.0604 0.0101 0.9817
P-value 0.0004 0.0021 0.0021 0.1401

MERD Algorithm 1 I 0.0796 0.6404 0.1067 0.7632
II 0.0533 0.4313 0.0719 0.8813
P-value 0.0000 0.0000 0.0000 0.0004

Algorithm 2 I 0.0257 0.2150 0.0358 0.8135
II 0.0140 0.1154 0.0192 0.9262
P-value 0.0000 0.0000 0.0000 0.0000
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Output of the model Output of the algorithm 1 Output of the algorithm 2

Model I

Model II

Model I

Model II

Model I

Model II

Fig. 8  Qualitative results of the AF on SRD. Blue: ground-truth land-
marks. Green: detected landmarks by Model I. Red: detected land-
marks by Model II. The first column is the model output, the second 

column is the results of zoom-in using algorithm 1, and the third col-
umn is the results of zoom-out by algorithm 2



466 Journal of Imaging Informatics in Medicine (2024) 37:455–470

Table 4  Impact of landmarks on the prediction module for two datasets according to Model I and Model II ( ^ represents the model with the 
incorrect landmarks. P-value⁎ is between Î  and ÎI models)

Dataset Transformation
method

Model MAE P-value MAPE P-value RMSE P-value PC P-value

SRD Algorithm 1 Î 0.0464 0.0048 0.3583 0.0109 0.0597 0.0109 0.9165 0.1670

I 0.0375 0.2870 0.0478 0.9447

ÎI 0.0323 0.8530 0.2652 0.7850 0.0442 0.7850 0.9169 0.0486

II 0.0329 0.2577 0.0429 0.9529
P-value⁎ 0.0083 0.0499 0.0499 0.9992

Algorithm 2 Î 0.0094 0.0181 0.0740 0.0389 0.0123 0.0389 0.9525 0.1304

I 0.0077 0.0604 0.0101 0.9763

ÎI 0.0080 0.9879 0.0671 0.5357 0.0112 0.5357 0.9479 0.0806

II 0.0079 0.0604 0.0101 0.9817
P-value⁎ 0.0000 0.0000 0.0000 0.3296

MERD Algorithm 1 Î 0.0944 0.0000 0.7332 0.0000 0.1222 0.0000 0.7511 0.2822

I 0.0796 0.6404 0.1067 0.7632

ÎI 0.0717 0.6054 0.6011 0.9168 0.1002 0.9168 0.7669 0.0000

II 0.0533 0.4313 0.0719 0.8813
P-value⁎ 0.0000 0.0000 0.0000 0.0004

Algorithm 2 Î 0.0274 0.2915 0.2311 0.2958 0.0385 0.2958 0.7719 0.1180

I 0.0257 0.2150 0.0358 0.8135

ÎI 0.0198 0.0554 0.1693 0.0631 0.0282 0.0631 0.8632 0.1053

II 0.0140 0.1154 0.0192 0.9262
P-value⁎ 0.0003 0.0014 0.0014 0.0020

Table 5  Performance of the noise and non-noise on two datasets applying Model I and Model II ( ̈I and ÏI represent the models with the noise. 
P-value⁎ is between Ï and ÏI models)

Dataset Transformation
method

Model MAE P-value MAPE P-value RMSE P-value PC P-value

SRD Algorithm 1 Ï 0.0579 0.0006 0.4651 0.0143 0.0775 0.0143 0.8382 0.0001
I 0.0375 0.2870 0.0478 0.9447
ÏI 0.0428 0.7120 0.3535 0.5982 0.0589 0.5892 0.8703 0.1283
II 0.0329 0.2577 0.0429 0.9529
P-value 0.0101 0.0289 0.0289 0.2755

Algorithm 2 Ï 0.0122 0.0000 0.1001 0.0000 0.0167 0.0000 0.8872 0.0617
I 0.0077 0.0604 0.0101 0.9763
ÏI 0.0105 0.0393 0.0889 0.2320 0.0148 0.2320 0.9032 0.0312
II 0.0079 0.0604 0.0101 0.9817
P-value 0.0000 0.0003 0.0003 0.3187

MERD Algorithm 1 Ï 0.1739 0.0313 1.4912 0.0005 0.2485 0.0005 0.1641 0.0000
I 0.0796 0.6404 0.1067 0.7632
ÏI 0.0822 0.5719 0.7035 0.1740 0.1172 0.1740 0.6868 0.0000
II 0.0533 0.4313 0.0719 0.8813
P-value 0.0383 0.0019 0.0019 0.0069

Algorithm 2 Ï 0.0486 0.0000 0.4273 0.0000 0.0712 0.0000 0.4980 0.0000
I 0.0257 0.2150 0.0358 0.8135
ÏI 0.0229 0.0777 0.1993 0.0640 0.0332 0.0640 0.8053 0.2870
II 0.0140 0.1154 0.0192 0.9262
P-value 0.0000 0.0000 0.0000 0.0000
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Conclusions

This study presented a novel automatic framework (AF) based 
on deep learning algorithms for evaluating nasal base sym-
metry. The goal of this framework is to improve the previ-
ous symmetry methods based on quantitative and qualitative 
assessments. The suggested AF is compatible with otolar-
yngologists’ ratings and reduces the role of human factors 
in evaluating symmetry, thereby aiding surgeons in planning 
expedited operations and improving surgical outcomes. In 
the proposed framework, two detection and prediction mod-
ules are combined into an integrated hybrid model to address 
the problem of nasal base landmark recognition. The stand-
ard data augmentation techniques and Adam optimizer are 
implemented to achieve the optimum value of the loss func-
tion during the training process. The evaluated results of the 
trained prediction module show that learning on the cropped 
region of the image can be more effective for image feature 

extraction. A combined model was developed and trained 
using tiled images and the geometric features of the nasal 
base to predict nasal base symmetry. The results of the match-
ing process confirmed that the AF was consistent at 0.7666 
with the otolaryngologists’ ratings which demonstrates the 
efficiency of the proposed framework. Also, the capability 
of the proposed AF can be seen in decreasing the rhinoplasty 
reconstructive surgery, especially, in cleft palate subjects that 
require a precise description of the symmetry and a visual 
representation of its changes. To sum up, the proposed AF is 
capable of sensing the nasal base symmetry and capturing the 
asymmetry regions to demonstrate a heatmap visualization 
for patients and otolaryngologists. Consequently, our future 
research will concentrate on studying and designing unsuper-
vised learning-based object detectors to develop our hybrid 
model and construct a real-time symmetry AF. Furthermore, 
we suggest that future studies of the introduced hybrid model 
can be utilized in various application domains.

Appendix 1

List of landmarks of the nasal base [32, 61]

Facial landmark Abbreviation Description

Alare L/R Al L/R The most lateral point in the curved of each ala
Subalare L/R Sbal L/R The point at the lower limit of each alar base, where the 

alar base disappears into the skin of the upper lip
Al L/R Al L/R The marking level at the midportion of the alae
Nostril tip L/R Nt L/R The most cranial point of the inner border of the nostril
Nostril base L/R Nb L/R The most caudal point of the inner border of the nostril
Nostril mediale L/R Nm L/R The most medial point of the inner border of the nostril
Nostril laterale L/R Nl L/R The most lateral point of the inner border of the nostril
Pronasale Prn The most protruding point on nasal tip
Subnasale Sn The midline point at the junction of the inferior margin 

of the columella and the upper lip skin
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Appendix 2

General parameters of the structure utilized to setup the 
combined model.

Layers Input size Kernel size Strides Activation 
function

Padding Output size

MLP Dense_1 9 - - ReLU - 18
Dense_2 18 - - ReLU - 9

CNN Block_1 Conv2D_1 64 × 64 × 3 3 × 3 × 32 1,1 - same 64 × 64 × 32
BatchNormalization_1 64 × 64 × 32 - - - - 64 × 64 × 32
Activation_1 64 × 64 × 32 - - ReLU - 64 × 64 × 32
MaxPooling2D_1 64 × 64 × 32 2 × 2 - - - 32 × 32 × 32

Block_2 Conv2D_2 32 × 32 × 32 3 × 3 × 64 1,1 - same 32 × 32 × 64
BatchNormalization_2 32 × 32 × 64 - - - - 32 × 32 × 64
Activation_2 32 × 32 × 64 - - ReLU - 32 × 32 × 64
MaxPooling2D_2 32 × 32 × 64 2 × 2 - - - 16 × 16 × 64

Block_3 Conv2D_3 16 × 16 × 64 3 × 3 × 128 1,1 - same 16 × 16 × 128
BatchNormalization_3 16 × 16 × 128 - - - - 16 × 16 × 128
Activation_3 16 × 16 × 128 - - ReLU - 16 × 16 × 128
MaxPooling2D_3 16 × 16 × 128 2 × 2 - - - 8 × 8 × 128

Block_4 Conv2D_4 8 × 8 × 128 3 × 3 × 256 1,1 - same 8 × 8 × 256
BatchNormalization_4 8 × 8 × 256 - - - - 8 × 8 × 256
Activation_4 8 × 8 × 256 - - ReLU - 8 × 8 × 256
MaxPooling2D_4 8 × 8 × 256 2 × 2 - - - 4 × 4 × 256

Block_5 Conv2D_5 4 × 4 × 256 3 × 3 × 512 1,1 - same 4 × 4 × 512
BatchNormalization_5 4 × 4 × 512 - - - - 4 × 4 × 512
Activation_5 4 × 4 × 512 - - ReLU - 4 × 4 × 512
MaxPooling2D_5 4 × 4 × 512 2 × 2 - - - 2 × 2 × 512
Flatten 2 × 2 × 512 - - - - 2048
Dense_3 2048 - - - - 36
Activation_6 36 - - ReLU - 36
BatchNormalization_6 36 - - - - 36
Dropout_1 36 - - - - 36
Dense_4 36 - - - - 9
Activation_7 9 - - ReLU - 9

Combined Concatenate_1 [9] - - - - 18
Dense_1 18 - - ReLU - 9
Dense_2 9 - - Linear - 1



469Journal of Imaging Informatics in Medicine (2024) 37:455–470 

Acknowledgements We would like to extend our sincere gratitude to 
the anonymous reviewers for their meticulous evaluation and construc-
tive feedback, which significantly enhanced the quality and rigor of this 
paper. Their expertise and thoughtful comments have been invaluable 
in shaping the final version of this work. The authors also would like to 
thank Dr. Amin Amali for preparing and evaluating the results.

Author Contribution All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were 
performed by Maryam Ashoori, Reza A. Zoroofi, and Mohammad 
Sadeghi. The first draft of the manuscript was written by Maryam 
Ashoori, and all authors commented on previous versions of the 
manuscript. All authors read and approved the final manuscript.

Declarations 

Informed Consent Written informed consent was obtained from all 
individual participants included in the study.

Competing Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Dong Y, Zhao Y, Bai S, Wu G, Wang B: Three-dimensional 
anthropometric analysis of the Chinese nose. J Plast Reconstr 
Aesthet Surg, 63 (11): 1832-1839, 2010

 2. Roxbury C, Ishii M, Godoy A, Papel I, Byrne P. J, Boahene K. D. O, 
Ishii L. E: Impact of Crooked Nose Rhinoplasty on Observer Percep-
tions Of Attractiveness. Laryngoscope, 122 (4): 773-778, 2012

 3. Choi J.Y: Alar base reduction and alar-columellar relationship. 
Facial Plast Surg Clin North Am, 26 (3): 367–375, 2018

 4. Barnes C.H, Chen H, Chen J.J, Su E, Moy W.J, Wong B.J: Quantitative 
Analysis and Classification of the Nasal Base Using a Parametric 
Model. JAMA Facial Plast. Surg, 20 (2): 160–165, 2018

 5. Chandaliya P.K, Nain N: ChildGAN: Face aging and rejuvenation 
to find missing children. Pattern Recognit, 129, 2022

 6. Cohn J.E, Shokri T, Othman S, Sokoya M, Ducic Y: Surgical 
Techniques to Improve the Soft Tissue Triangle in Rhinoplasty: 
A Systematic Review. Facial Plast Surg, 36 (1): 120-128, 2020

 7. Heilbronn C, Cragun D, Won B.J.F: Complications in Rhinoplasty: A 
Literature Review and Comparison with a Survey of Consent Forms. 
Facial plast. surg. aesthet. med, 22 (1): 50–56, 2020

 8. Cabbarzade C: Rhinoplasty Technique for Improving Nasal Base 
Aesthetics: Lateral Columellar Grafting. Ann Plast Surg, 90 
(5):419-424, 2023.

 9. Eggerstedt M, Schumacher J, Urban M.J, Smith R.M, Revenaugh 
P.C: The Selfie View: Perioperative Photography in the Digital 
Age. Aesthetic Plast Surg, 44 (3): 1066–1070, 2020

 10. Cabbarzade C: Septal bony paste graft: a life-savingmaterial in rhi-
noplasty camouflage. Aesthetic Plast Surg, 47(5):1967-1974, 2023

 11. Thomas J, Raj E.D: Deep Learning and Multimodal Artificial Neural 
Network Architectures for Disease Diagnosis and Clinical Applica-
tions: Machine Learning and Deep Learning in Efficacy Improvement 
of Healthcare Systems.  1st edition, Boca Raton: CRC, 2022, p. 27

 12. Hidaka T, Kurita M, Ogawa K, Tomioka Y, Okazaki M: Applica-
tion of Artificial Intelligence for Real-Time Facial Asymmetry 
Analysis. Plast. Reconstr. Surg, 146 (2): 243e-245e, 2020

 13. Chinski H, Lerch R, Tournour D, Chinski L, Caruso D: An Artifi-
cial Intelligence Tool for Image Simulation in Rhinoplasty. Facial 
Plast Surg, 38 (02): 201-206, 2022

 14. Lee T.-Y, Lin C.-H, Lin H.-Y: Computer-Aided Prototype Sys-
tem for Nose Surgery. IEEE Trans. Inf. Technol. Biomed, 5 (4): 
271–278, 2001

 15. Bashiri-Bawil M, Rahavi-Ezabadi S, Sadeghi M, Zoroofi R. A, 
Amali A: Preoperative Computer Simulation in Rhinoplasty Using 
Previous Postoperative Images. Facial Plast Surg Aesthet Med, 22 
(6): 406-411, 2020

 16. Mao Z, Siebert J. P, Cockshott W. P , Ayoub A.F: Constructing Dense 
Correspondences to Analyze 3D Facial Change. InProceedings of the 
17th International Conference on Pattern Recognition, 2004.

 17. Bottino A, Simone M.D, Laurentini A, Sforza C: A New 3-D Tool 
for Planning Plastic Surgery. IEEE Trans. Biomed. Eng, 59 (12): 
3439-3449, 2012

 18. Eldaly A.S, Avila F.R, Torres-Guzman R.A, Maita K, Garcia J.P, 
Serrano L.P, Forte A.J: Simulation and Artificial Intelligence in 
Rhinoplasty: A Systematic Review. Aesthetic Plast. Surg, 46: 
2368–2377, 2022

 19. Zhukhovitskaya A, Cragun D, Su E, Barnes C.H, Wong B.J.F: 
Categorization and Analysis of Nasal Base Shapes Using a Para-
metric Model. JAMA Facial Plast. Surg, 21 (5): 440–445, 2019

 20. Borsting E, DeSimone R, Ascha M, Ascha M: Applied Deep 
Learning in Plastic Surgery: Classifying Rhinoplasty With a 
Mobile App. J Craniofac Surg, 31 (1): 102-106, 2020

 21. Dorfman R, Chang I, Saadat S, Roostaeian J: Making the Sub-
jective Objective: Machine Learning and Rhinoplasty. Aes-
thet. Surg. J, 40 (5): 493-498, 2020

 22. Štěpánek L, Kasal P, Měšťák J: Machine-Learning and R in Plastic 
Surgery – Evaluation of Facial Attractiveness and Classification 
of Facial Emotions. InInternational Conference on Information 
Systems Architecture and Technology, 2019. Cham: Springer 
International Publishing.

 23. Girshick R, Donahue J, Darrell T, Malik J: Rich Feature Hierar-
chies for Accurate Object Detection and Semantic Segmentation. 
InProceedings of the IEEE conference on computer vision and 
pattern recognition, 2014.

 24. Girshick R: Fast R-CNN. InProceedings of the IEEE international 
conference on computer vision, 2015.

 25. S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards 
Real-Time Object Detection with Region Proposal Networks. 
Advances in Neural Information Processing Systems 28, 2015.

 26. Hoang V.-T, Huang D.-S, Jo K.-H: 3-D Facial Landmarks Detec-
tion for Intelligent Video Systems. IEEE Trans. Industr. Inform, 
17 (1): 578–586, 2021

 27. Wu Y, Ji Q: Facial Landmark Detection: A Literature Survey. 
Int. J. Comput. Vis, 127: 115-142, 2019

 28. Agarkar S, Hande K: Real-Time Markerless Facial Landmark 
Detection Using Deep Learning. InICT Systems and Sustainabil-
ity: Proceedings of ICT4SD, 2021. Singapore: Springer Nature 
Singapore

 29. Vo X.-T, Jo K.-H: A review on anchor assignment and sampling 
heuristics in deep learning-based object detection. Neurocomput-
ing, 506: 96–116, 2022

 30. Dhiraj, Jain D. K: An evaluation of deep learning based object 
detection strategies for threat object detection in baggage security 
imagery. Pattern Recognit Lett, 120: 112–119, 2019

http://creativecommons.org/licenses/by/4.0/


470 Journal of Imaging Informatics in Medicine (2024) 37:455–470

 31. Mittal P, Singh R, Sharma A: Deep learning-based object detection in 
low-altitude UAV datasets: A survey. Image Vis. Comput, 104, 2020.

 32. Pietruski P, Majak M, Debski T, Antoszewski B. A novel com-
puter system for the evaluation of nasolabial morphology, sym-
metry and aesthetics after cleft lip and palate treatment. Part 1: 
General concept and validation. J Craniomaxillofac Surg, 45 (4): 
491–504, 2016

 33. Linden O. E, Taylor H. O, Vasudavan S, Byrne M. E, Deutsch C. K, 
Mulliken J. B, Sullivan S. R: Three-Dimensional Analysis of Nasal 
Symmetry Following Primary Correction of Unilateral Cleft Lip 
Nasal Deformity. Cleft Palate Craniofac J, 54 (6): 715-719, 2017

 34. Mancini L, Gibson T. L, Grayson B. H, Flores R. L, Staffenberg 
D, Shetye P. R: Three-Dimensional Soft Tissue Nasal Changes 
After Nasoalveolar Molding and Primary Cheilorhinoplasty in 
Infants With Unilateral Cleft Lip and Palate. Cleft Palate Crani-
ofac J, 56 (1): 31-38, 2019

 35. Mercan E, Morrison C. S, Stuhaug E, Shapiro L. G, Tse R. W: 
Novel Computer Vision Analysis of Nasal Shape in Children with 
Unilateral Cleft Lip. J Craniomaxillofac Surg, 46 (1): 35-43, 2018

 36. Morselli P. G, Pinto V, Negosanti L, Firinu A, Fabbri E: Early 
Correction of Septum JJ Deformity in Unilateral Cleft Lip–Cleft 
Palate. J Plast Recontr Surg, 130 (3): 434e-441e, 2012

 37. Karube R, Sasaki H, Togashi S, Yanagawa T, Nakane S, Ishibashi 
N, Yamagata K, Onizawa K, Adachi K, Tabuchi K, Sekido M, 
Bukawa H: A novel method for evaluating postsurgical results of 
unilateral cleft lip and palate with the use of Hausdorff distance: 
presurgical orthopedic treatment improves nasal symmetry after 
primary cheiloplasty. Oral Surg. Oral Med. Oral Radiol, 114 (6): 
704-711, 2012

 38. Denadai R, Raposo-Amaral C. A, Buzzo C. L, Raposo-Amaral 
C. E: Paranasal Fat Grafting Improves the Nasal Symmetry in 
Patients With Parry-Romberg Syndrome. J Craniofac Surg, 30 
(3): 958-960, 2019

 39. Pietruski P, Majak M, Pawlowska E, Skiba A, Antoszewski B: 
A novel computer system for the evaluation of nasolabial mor-
phology, symmetry and aesthetics after cleft lip and palate treat-
ment. Part 2: Comparative anthropometric analysis of patients 
with repaired unilateral complete cleft lip and palate and healthy 
individual. J Craniomaxillofac Surg, 45 (5): 505–514, 2017

 40. Wang Z, Bovik A. C, Sheikh H. R, Simoncelli E. P: Image quality 
assessment: from error visibility to structural similarity similarity. 
IEEE Trans. Image Process, 13 (4): 600-612, 2004

 41. Sachdeva S: Fitzpatrick skin typing: Applications in dermatology. 
Indian J. Dermatol. Venereol. Leprol, 75 (1): 93-96, 2009

 42. Rhinoplasty and Septorhinoplasty Photography. J. Vis. Com-
mun. Med, 30 (3): 135-139, 2007

 43. Dr Sedgh, facial Plastic Surgery. Available at https:// www. 
sedgh plast icsur gery. com. Accessed 16 July 2023.

 44. Quaba Edinburgh Ltd. Available at https:// www. quaba. co. uk. 
Accessed 19 July 2023.

 45. Russell B. C, Torralba A, Murphy K. P, Freeman W. T: LabelMe: 
A Database and Web-Based Tool for Image Annotation. Int J 
Comput Vis, 77: 157-173, 2008

 46. Torralba A, Russell B. C, Yuen J: LabelMe: Online Image Annota-
tion and Applications. Proc. IEEE, 98 (8): 1467-1484, 2010

 47. Kingma D. P, Ba J: Adam: A method for stochastic optimization. 
arXiv preprint arXiv: 1412. 6980, 2014.

 48. Maas A. L, Hannun A. Y, Ng A. Y: Rectifier Nonlinearities 
Improve Neural Network Acoustic Models. InProceedings of the 
30 th International Conference on Machine Learning, 2013

 49. Parvathi S, Selvi S: Detection of maturity stages of coconuts in 
complex background using Faster R-CNN model. Biosyst. Eng, 
202: 119-132, 2021

 50. Jourabloo A, Liu X: Pose-invariant 3D face alignment. InProceed-
ings of the IEEE international conference on computer vision, 2015

 51. Kocejko T, Rumiński J, Mazur-Milecka M, Romanowska-
Kocejko M, Chlebus K, Jo K.-H: Using convolutional neural 
networks for corneal arcus detection towards familial hyper-
cholesterolemia screening. J. King Saud Univ. - Comput. Inf, 
34 (9): 7225–7235, 2022

 52. Yu X, Huang J, Zhang S, Yan W, Metaxas D. N: Pose-Free Facial 
Landmark Fitting via Optimized Part Mixtures and Cascaded 
Deformable Shape Model. InProceedings of the IEEE interna-
tional conference on computer vision, 2013

 53. Hong S, Kang M, Kim J, Baek J: Sequential application of denois-
ing autoencoder and long-short recurrent convolutional network 
for noise-robust remaining-useful-life prediction framework of 
lithium-ion batteries. Comput Ind En, 179: 2023.

 54. LIU Y, HUANG Y.-X, ZHANG X, QI W, GUO J, HU Y, ZHANG 
L, SU H: Deep C-LSTM Neural Network for Epileptic Seizure 
and Tumor Detection Using High-Dimension EEG Signals. IEEE 
Access, 8: 37495–37504, 2020

 55. Wang Z, Zhang S, Zhang C, Wang B: RPFNet: Recurrent Pyramid 
Frequency Feature Fusion Network for Instance Segmentation in 
Side-Scan Sonar Images. IEEE J Sel Top Appl Earth Obs Remote 
Sens, 2023.

 56. Ghafari S, Ghobadi Tarnik M, Sadoghi Yazdi H: Robustness of 
convolutional neural network models in hyperspectral noisy data-
sets with loss functions. Comput. Electr. Eng, 90, 2021

 57. Skadins A, Ivanovs M, Rava R, Nesenbergs K: Edge pre-
processing of traffic surveillance video for bandwidth and 
privacy optimization in smart cities. In 2020 17th Biennial 
Baltic Electronics Conference (BEC), 2020

 58. Xu Y, Zhu L, Yang Y, Wu F: Training Robust Object Detectors 
From Noisy Category Labels and Imprecise Bounding Boxes. 
IEEE Trans Image Process, 30: 5782 - 5792, 2021

 59. Wu D, Chen P, Yu X, Li G, Han Z, Jiao J: Spatial Self-Distillation 
for Object Detection with Inaccurate Bounding Boxes. InProceed-
ings of the IEEE/CVF International Conference on Computer 
Vision, 2023

 60. Liu C, Wang K, Lu H, Cao Z, Zhang Z: Robust Object Detec-
tion With Inaccurate Bounding Boxes. InEuropean Conference 
on Computer Vision, 2022

 61. Farkas L. G: Anthropometry of the head and face,  2nd edition, 
USA: Raven Press, 1994.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.sedghplasticsurgery.com
https://www.sedghplasticsurgery.com
https://www.quaba.co.uk
http://arxiv.org/abs/1412.6980

	An Automatic Framework for Nasal Esthetic Assessment by ResNet Convolutional Neural Network
	Abstract
	Introduction
	Materials and Methods
	Dataset Description and Preparation
	Proposed Automatic Framework
	The Proposed Hybrid Model
	Implementation Details 
	Data Augmentation 
	Training Loss 
	Evaluation Metrics 

	Combined Model Based on the Geometry Features and Tiled Images

	Comparing the Outcomes

	Results and Discussion
	Evaluating the Hybrid Model
	Performance of the Combined Model
	Matching Process of the AF and Otolaryngologists’ Results
	Ablation Study
	Module Robustness Analysis
	The Impact of Landmarks
	The Impact of Noise in Images


	Conclusions
	Appendix 1
	Appendix 2
	Acknowledgements 
	References


