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Abstract
Peer review plays a crucial role in accreditation and credentialing processes as it can identify outliers and foster a peer learn-
ing approach, facilitating error analysis and knowledge sharing. However, traditional peer review methods may fall short  
in effectively addressing the interpretive variability among reviewing and primary reading radiologists, hindering scalability and  
effectiveness. Reducing this variability is key to enhancing the reliability of results and instilling confidence in the review 
process. In this paper, we propose a novel statistical approach called “Bayesian Inter-Reviewer Agreement Rate” (BIRAR) 
that integrates radiologist variability. By doing so, BIRAR aims to enhance the accuracy and consistency of peer review 
assessments, providing physicians involved in quality improvement and peer learning programs with valuable and reliable 
insights. A computer simulation was designed to assign predefined interpretive error rates to hypothetical interpreting and 
peer-reviewing radiologists. The Monte Carlo simulation then sampled (100 samples per experiment) the data that would 
be generated by peer reviews. The performances of BIRAR and four other peer review methods for measuring interpretive 
error rates were then evaluated, including a method that uses a gold standard diagnosis. Application of the BIRAR method 
resulted in 93% and 79% higher relative accuracy and 43% and 66% lower relative variability, compared to “Single/Stand-
ard” and “Majority Panel” peer review methods, respectively. Accuracy was defined by the median difference of Monte 
Carlo simulations between measured and pre-defined “actual” interpretive error rates. Variability was defined by the 95% 
CI around the median difference of Monte Carlo simulations between measured and pre-defined “actual” interpretive error 
rates. BIRAR is a practical and scalable peer review method that produces more accurate and less variable assessments of 
interpretive quality by accounting for variability within the group’s radiologists, implicitly applying a standard derived from 
the level of consensus within the group across various types of interpretive findings.
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Introduction

In radiology, quality improvement (QI) programs are key 
to attaining the goals of both improving patient outcome 
and increasing the value of care [1, 2]. To achieve these 
goals, one key element of a QI program is the need to 
evaluate a radiologist’s interpretive performance, which 
requires a program of continuous assessment and feed-
back throughout the radiologist’s career [3]. Quantitative 
metrics, such as “interpretive error rate” seem well suited 
for such continuous training because they can be tracked 
longitudinally and be used to generate feedback [4]. How-
ever, deriving accurate, reliable, and scalable error rates 
has proven challenging, and radiologists often lack con-
fidence in these measurements [5, 6]. The shift from peer 
review to peer learning has, in part, been driven by this 
lack of confidence in the peer review process [7]. Thus, 
one challenge when constructing a quality program that 
includes ongoing professional feedback is defining a reli-
able methodology for measuring radiologist performance 
and demonstrating the method’s efficacy.

Comparison of a radiologist’s interpretation with a 
follow-up gold standard test is one method for calculat-
ing error rates. For example, the rate of missed interval 
cancers at screening mammography can be estimated by 
comparing breast cancer biopsy results with prior mam-
mographic imaging studies and interpretive reports [8]. 
However, this method cannot be scaled broadly across 
radiology because similar gold standards are not avail-
able for many imaging exams. Moreover, when calculat-
ing error rates, it is important to consider the clinical sig-
nificance of the errors and the possibility that the gold 
standard test is positive even though the pathology is not 
visible in images.

Fault detection (e.g., detection of misdiagnosis) is a 
desired property of many mission-critical systems. Peer 
review in radiology has some similarities to fault detection 
approaches used in, e.g., computing systems where com-
putation is performed multiple times using spare capac-
ity, and the obtained results are compared to increase the 
“trustability” of the system [9–11] or using redundant sen-
sors and decision by majority [12]. As a practical alterna-
tive to gold standards, QI programs may use subjective 
secondary image interpretation or multiple image inter-
pretations (peer review) to flag discrepancies in the find-
ings reported on the initial interpretation and use these 
discrepancies as proxies for interpretive errors [13]. A 
concern with this approach is that reviewers themselves 
introduce subjectivity and errors and vary in their sen-
sitivity to “calling” errors or definition of error. Second, 
performing enough peer reviews to enable the calculation 
of statistically valid interpretive error rates can require 
substantial time and resources, which can be compounded 

when incorporating methodology to address the problem 
of inter-reviewer variability using multiple image inter-
pretations per study.

In this paper, a novel approach for using peer review 
to measure interpretive error rates is presented called the 
“Bayesian Inter-Reviewer Agreement Rate” (BIRAR) 
method, which recognizes that reviewers will be imper-
fect but does not require all exams sampled by the QI pro-
gram to be peer-reviewed multiple times in order to reach 
a consensus-based gold standard. Due to the modeling of 
intrinsic subjectivity in peer review data, BIRAR has the 
capability to consider interpretive variability leading to 
more robust conclusions from data. The BIRAR formula-
tion is inspired by the previous work on Bayesian models 
of annotation [14]. This paper compares the accuracy and 
reliability of the BIRAR method with alternate methods 
using peer reviews to assess interpretive error rates, includ-
ing a method that uses gold standard diagnosis. In addition, 
this paper also investigates the impact of reviewer error 
rates and overall QI case volume on the relative efficacy 
of these methods.

Materials and Methods

Summary of Study Design

This study compares alternative methods for using peer 
reviews of imaging studies to measure the interpretive error 
rates of a population of radiologists. The term “interpretive 
error” is defined as any instance in which the original read-
ing radiologist or the peer-reviewing radiologist assesses the 
presence or grading of the patient’s pathology to be different 
from the “true state” of the pathology that is depicted in the 
radiological images.

There are many reasons why the “true state” of the 
patient’s pathology may be indeterminate or unknown (e.g., 
pathology not clearly visible in images, borderline sever-
ity, or variable nomenclature), which makes it difficult or 
impossible to categorize some reported diagnostic findings 
as interpretive errors. However, this study uses computer-
simulated peer review data, where a software simulation 
generates counts of patient exams and peer reviews that 
contain interpretive errors, given that the radiologists per-
forming the initial interpretations and peer reviews of these 
exams had predefined probabilities of making interpretive 
errors of specific types (Fig. 1).

Using the simulation also enables an explicit compari-
son to be made between the interpretive error rates that are 
assigned to each evaluated radiologist and the error rate 
that is then calculated using the peer review–based meth-
ods. The interpretive error rates calculated by the peer 
review–based measurement methods will deviate from the 
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evaluated radiologists’ true error rates (predefined by the 
simulation) for two reasons: (1) the peer reviewers are also 
assigned interpretive error rates, and (2) the peer reviews 
only cover a finite sample of exams from each evaluated 
radiologist that are selected for review.

The five peer review approaches evaluated in this study 
to calculate interpretive error rates using simulated peer 
review data are depicted in Fig. 2.

To evaluate each of the five approaches described in 
Fig. 2, a set of simulated peer reviews was used to cal-
culate the interpretive error rates for 100 hypothetical 
radiologists. For the “Single / Standard Peer Review” and 
“Perfect / Gold-Standard Review” approaches, scenarios 
were simulated in which 90 exams were sampled for peer 
review from each evaluated radiologist, requiring a total of 
9000 aggregate peer reviews. For the “Majority Panel Peer 
Review” approach, only 30 exams per evaluated radiolo-
gist were subjected to simulated triple peer review in order 
to align with the aggregate total of 9000 peer reviews used 
to assess all 100 radiologists. For the “Majority Panel Peer 
Review × 3” approach, 27,000 peer reviews were simulated 
(90 exams selected for review from each of the 100 radi-
ologists, each peer reviewed three times). For the BIRAR 
approach, in “Step One,” a triple peer review of 300 exams 
was simulated to generate the EDPM, and then in “Step 
Two,” 81 single peer reviews per evaluated radiologist 
were simulated in order to align with the aggregate total 
of 9000 peer reviews used to assess all 100 radiologists.

Calibration of Radiologist Error Rates

For the purposes of this simulation study, the hypothetical 
diagnostic imaging exams were defined to be ones in which 
a radiologist is tasked with the detection and ordinal grad-
ing of a single pathology type with three possible severity 
grades, which are enumerated as 0, 1, and 2. As illustrative 
examples, these simulated imaging exams could be consid-
ered to represent knee MRI in which radiologists assess the 
ACL to be either normal, moderately injured (e.g., partially 
torn), or severely injured (e.g., completely torn), or lum-
bar spine MRI in which central canal stenosis at a specific 
functional spinal unit is assessed to be not present or mild, 
moderate, or severe.

The predefined interpretive error rates of the radiologists 
were determined by two sets of simulation parameters: (1) the 
probability that pathology severity grades 0, 1, and 2 will be 
diagnosed correctly or if the pathology will be misdiagnosed 
as one of the other grades, respectively, and (2) the prevalence 
of imaging exams in which patients suffered from pathology 
grades 0, 1, and 2, respectively. The prevalence of exams with 
true pathology of grades 0, 1, and 2 was simulated to be 50%, 
30%, and 20%, respectively. The “true” overall interpretive 
error rates defined for each of the 100 evaluated reading radi-
ologists were 17% (i.e., in 83% of exams, the radiologist will 
grade the pathology correctly). Further, the evaluated radi-
ologists’ rate of “two-degree errors,” which are defined to be 
errors where a grade 0 pathology is diagnosed as grade 2 or 

Simulated Peer
Review Process

Process Steps

In this mathematical simulation the correct pathology grade, as well as probabilities for interpretive
errors, were predetermined. This allowed the study authors to isolate and quantify the statistical
performance of various approaches using peer review to measure interpretive error rates.

2.  Simulated primary interpretation 3.  Simulated peer-reviews1.  Simulated exams

Each exam is assigned a predeter-
mined grade of pathology:
0 (normal), 1 (moderate), or 2
(severe). While not tied to specific
pathologies, a real-world example
would be a knee MRI of the ACL
interpreted as normal, moderately
injured (partially torn), or severely
injured (completely torn).

Hypothetical interpreting radiolo-
gists were assigned predetermined
probabilities of correctly grading
pathology. The interpreting radiolo-
gists were simulated to make
1-degree and 2-degree grading
errors, 14% and 3% of the time,
respectively.

Hypothetical reviewing radiologists
were als assigned predetermined
probabilities of correctly grading
pathology. Reviewers were split into
three cohorts: one third graded
incorrectly at the same rate as the
interpreting radiologists (17%), one
third had a higher error rate (22%),
and one third had a lower error rate
(13%).

Fig. 1   Overview of the computer-simulated peer review process that is used in this study to compare the performance of various approaches for 
using peer reviews to measure interpretive error rates
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Fig. 2   Five approaches evaluated in this study for calculating the interpretive error rates of 100 radiologists using simulated peer review data



493Journal of Imaging Informatics in Medicine (2024) 37:489–503	

vice versa, is 3% (i.e., 97% of exams, the evaluated radiologist 
will grade the pathology in an exam correctly or be just one 
degree off). The prevalence and error rate values used in the 
simulation were derived from a real-world data set containing 
33,989 studies interpreted by subspecialist radiologists. Natu-
rally, prevalence and error rate values vary across pathologies, 
but the values in this study are representative.

The panel of three peer-reviewing radiologists in the simu-
lated QI program were also assigned predefined probabilities 
to make interpretive errors in the same manner as the evaluated 
radiologist; however, three different profiles were defined for 
the reviewing radiologists with respect to the probabilities that 
they would correctly detect and grade the pathology of interest 
in the secondary peer reviews. Each peer-reviewing radiologist 
was assigned a profile with lower, equal, or higher probabilities 
of errors, Profiles 1 through 3, respectively, compared to what 
was defined for the evaluated radiologists. Reviewing radiolo-
gists assigned Profile 1 had an overall interpretive error rate of 
13% and two-degree error rate of 2%; reviewing radiologists 
assigned Profile 3 had an overall interpretive error rate of 22% 
and two-degree error rate of 3%.

The complete details on the simulation’s implementa-
tion and the probabilities assigned to each type of interpre-
tive error for evaluated and peer-reviewing radiologists are 
included in the Supplementary information 1.

Interpretive Error Rate Measurement Using 
the BIRAR Method

The first step when using the peer review–based BIRAR 
method to measure interpretive error rates is the estima-
tion of the error detection probability matrix (EDPM). The 
EDPM characterizes the conditional probabilities that an 
interpretive error of a specific type is present in a peer-
reviewed exam, given that a specific discrepancy is flagged 
by a reviewing radiologist who performed a peer-review 
assessment. In this study, interpretive errors and discrepan-
cies were categorized as either: no error, 1-degree undercall, 
1-degree overcall, 2-degree undercall, or 2-degree overcall. 
Full details on the mathematical formulation and methodol-
ogy used to calculate the EDPM are included in the Supple-
mentary information 1 section, but the central aspect of the 
methodology is the use of Bayes’ theorem to calculate the 
probability of the patient’s true pathology grade, given: (1) 
the pathology grade reported by the initial reading radiolo-
gist, (2) the pathology grade assessed by the peer-reviewing 
radiologist, and (3) information about the rates that radiolo-
gists (both reading and peer reviewing) agree about various 
pathology grades. In this simulation study, the conditional 
probabilities contained in the EDPM are estimated using the 
results of 300 randomly selected exams, each peer-reviewed 
three times by radiologists randomly drawn from the pool of 
reviewing radiologists.

Once the EDPM is estimated, all QI program-sampled 
exams are subjected to a single peer review, but instead of 
using the results of the peer reviews to directly calculate 
interpretive error rates of the evaluated radiologist (i.e., 
treating each discrepancy as evidence of an interpretive 
error) the EDPM is used to transform the results of each peer 
review into a probability distribution over the five possible 
interpretive error statuses (i.e., no error, 1-degree under-
call, 1-degree overcall, 2-degree undercall, and 2-degree 
overcall). These probability distributions can be aggregated 
across all the peer-reviewed exams related to each evaluated 
radiologist such that the expected value can be calculated for 
a radiologist’s overall rate of interpretive errors or the rate 
that interpretive errors of specific types occur (e.g., 2-degree 
undercalls and 2-degree overcalls). Full details on the math-
ematical formulation and methodology used to calculate 
interpretive error rates using the results of peer reviews and 
the EDPM are included in the Supplementary information 1.

In addition to error rate estimation, EDPM can be used 
to calculate sample size estimates. EPDM can be used 
to quantify the uncertainty in the data introduced by the 
inter-reviewer variability and thus allows us to propagate 
that uncertainty correctly into the interpretative error rate 
estimates of the evaluated radiologist. Therefore, sample 
size estimates can be produced to consider the impact of the 
noise in data due to inter-reviewer variability. As an exam-
ple, when the inter-reviewer variability increases, the sample 
size will then be increased in order to keep the uncertainty 
of the interpretative error rates constant.

Sensitivity Analyses

Two main sensitivity analyses were included in this study 
to evaluate the impact that different assumptions about the 
peer-reviewing radiologists’ error rates and different con-
figurations of the BIRAR methodology would have on the 
overall study results.

The first sensitivity analysis evaluated the impact of using 
a different number of peer-reviewed exams to estimate the 
EDPM. The simulation described above used the results 
of 300 randomly selected exams, each peer-reviewed three 
times, to estimate the EDPM. In this sensitivity analysis, the 
simulation was rerun using the following alternate choices 
for the number of triple-peer-reviewed exams used to esti-
mate the EDPM: 30, 50, 100, 300, 900, 2700.

The second sensitivity analysis evaluated the impact of 
the peer-reviewing radiologists’ error rates on the overall 
study results. In the simulation described above, the panel 
of reviewing radiologists was modeled to include, in equal 
amounts, radiologists with error rates that were lower than, 
equal to, and greater than the evaluated radiologists. For 
this sensitivity analysis, the simulation was rerun with two 
alternate configurations. The first alternate configuration 
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set all of the reviewing radiologists to have error rate Profile 
1, which as described above, defines a lower error rate than 
the evaluated radiologists. The second configuration set all 
of the reviewing radiologists to have error rate Profile 3, 
which as described above, defines a higher error rate than 
the evaluated radiologists.

Results

The initial step using BIRAR for interpretive error rate 
measurement is the calculation of the EDPM (see Sup-
plementary information 1). Figure 3 shows the resulting 

EDPM when using data from 300 exams, each peer-
reviewed three times by radiologists who themselves had 
error rates that were either lower than, equal to, or higher 
than the evaluated radiologists (one-third of reviewing 
radiologists had each of the respective error rate pro-
files). The rows of the matrix indicate the peer-reviewing 
radiologist’s assessment, and the columns indicate the 
correct assessment for the exam; for example, the values 
in the fifth row indicate that if a reviewing radiologist 
records in a peer review that the pathology in an exam is 
Grade 1 and the initial reading radiologist committed a 
one-degree under call error (i.e., the evaluated radiolo-
gist reported Grade 0), there is a 60% probability that the 

Fig. 3   Error detection probability matrix (EDPM) that is calculated 
when using the data from 300 exams, each peer-reviewed three times. 
The pool of reviewing radiologists included, in equal amounts, radiol-

ogists who themselves had error rates lower than, equal to, and higher 
than the evaluated radiologists
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peer-reviewing radiologist is correct (shown in column 
five), a 34% probability that the peer-reviewing radiologist 
is mistaken and the evaluated radiologist is correct (shown 
in column one), and a 6% probability that they are both 
mistaken and the correct finding for the exam is Grade 2 
pathology. The probabilities in each row sum to one. It 
is important to note that the BIRAR method calculates 
the probabilities in the EDPM through statistical analy-
sis of peer review–derived inter-reviewer agreement data 
and does not require any explicit information about the 
peer-reviewed exams’ true diagnosis (i.e., no gold standard 
diagnosis or consensus opinion is required).

The results of the simulation of five methods for using 
peer reviews to measure the interpretive error rates of a 
population of 100 radiologists, with the peer-reviewing 

radiologists comprised of an equal number of radiologists 
with lower, equal, and higher error rates than the evaluated 
radiologists, are depicted in Fig. 4 and Table 1. As described 
in the “Materials and Methods” section, each of the evalu-
ated reading radiologists had an actual overall interpretive 
error rate of 17%.

These results show that the BIRAR method is more accu-
rate, as quantified by the median difference between the 
measured and actual interpretive error rates of the evaluated 
radiologists, compared to any of the other methods tested in 
this study except for the “Perfect / Gold Standard Review-
ing” method, which is not a practical method to leverage 
in most QI programs due to the limited availability of gold 
standard diagnostic tests and given that “perfect peer review-
ing radiologists” do not exist in the real world. The BIRAR 

Fig. 4   Boxplots of the differ-
ence between the measured and 
actual interpretive error rates 
of 100 radiologists using the 
five peer review–based error 
rate measurement methods 
simulated in this study. Standard 
boxplot notation is used with 
outliers not included in the 
graph. Boxplots are derived 
from 100 simulations

Table 1   Tabular summarization of results from the simulation of five 
methods for using peer review data to measure the overall interpretive 
error rates of 100 radiologists. Reported values are the median differ-

ence between the measured and actual interpretive error rates and the 
95% credible interval (CI) around the median. Summary statistics are 
derived from 50 simulations

Interpretive error rate measurement method Median difference (reported in percentage points) 
between measured and actual interpretive error rate and 
95% CI

BIRAR​  − 0.62 [− 5.64, 4.81]
Perfect/gold standard review 0.00 [− 6.88, 8.14]
Single/standard peer review 9.41 [0.67, 18.83]
Majority panel 2.91 [− 10.60, 20.12]
Majority panel with 3 × total peer review volume 3.15 [− 4.95, 11.98]
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measurements are 93.4% more accurate than the “Single / 
Standard Peer Review” method (median differences between 
the measured and actual interpretive error rates of − 0.62 
versus + 9.41 percentage points, respectively) and 80.3% 
more accurate than the “Majority Panel with 3 × Total Peer 
Review Volume” method (median differences between the 
measured and actual interpretive error rates of − 0.62 ver-
sus + 3.15 percentage points, respectively).

Further, the accuracy of the BIRAR measurements dis-
played lower variability than all of the other methods includ-
ing the “Perfect / Gold Standard Reviewing” method, as 
quantified by 95% CI around the median difference between 
the evaluated radiologists’ measured and actual interpretive 
error rates. The variability present in the “Perfect / Gold 
Standard Reviewing” interpretive error rate measurements 

is due to the fact that a finite sample of 90 peer-reviewed 
exams per evaluated radiologist is used to calculate inter-
pretive error rates; the BIRAR method is able to reduce the 
measurement variability by 30.9% (i.e., 95% CI is 30.9% 
narrower) in the context of a QI program that aims to meas-
ure the interpretive error rates of 100 radiologists using 9000 
total peer reviews. Similarly, the BIRAR method reduced the 
measurement variability by 42.5% and 66.0%, respectively, 
compared to what was observed using the “Single / Standard 
Peer Review” and “Majority Panel” methods.

Figure 5 and Table 2 present a similar view of the study 
results, with the only difference being that the five-peer 
review–based methods were used to calculate the “two-
degree” interpretive error rate of each evaluated radiolo-
gist. A “two-degree” interpretive error is when the reported 

Fig. 5   Boxplots of the differ-
ence between the measured and 
actual rates of “two-degree” 
interpretive errors for 100 
radiologists using the five peer 
review–based error rate meas-
urement methods simulated in 
this study. Standard boxplot 
notation is used with outli-
ers not included in the graph. 
Boxplots are derived from 100 
simulations

Table 2   Tabular summarization of results from the simulation of 
five methods for using peer review data to measure the “two-degree” 
interpretive error rates of 100 radiologists. Reported values are the 

median difference between the measured and actual interpretive error 
rates and the 95% credible interval (CI) around the median. Summary 
statistics are derived from 50 simulations

Interpretive error rate measurement method Median difference (reported in percentage points) 
between measured and actual interpretive error rate and 
95% CI

BIRAR​ 0.05 [− 1.79, 2.88]
Perfect/gold standard review  − 0.17 [− 2.67, 3.94]
Single/standard peer review 2.25 [− 1.61, 7.35]
Majority panel 0.08 [− 2.67, 9.08]
Majority panel with 3 × total peer review volume 0.39 [− 2.67, 4.74]
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finding indicates that a pathology is two degrees more or less 
severe than it actually is (i.e., a grade 0 pathology is reported 
as grade 2 or vice versa). As described in the “Materials and 
Methods” section, each of the evaluated radiologists was 
defined to have a two-degree interpretive error rate of 3%.

These results for the measurement of “two-degree” 
interpretive errors are consistent with the results presented 
above for the measurement of overall interpretive error 
rates. In this case, the simulation results demonstrated that 
the BIRAR method was more accurate, as quantified by 
the median difference between the evaluated radiologists’ 
measured and actual interpretive error rates, compared to 
all of the other methods tested, including the “Perfect / Gold 
Standard Reviewing” method. The BIRAR measurements 
are 97.8% more accurate than the “Single / Standard Peer 
Review” method (median differences between measured and 
actual interpretive error rates of + 0.05 versus + 2.25 per-
centage points, respectively) and 87.2% more accurate than 
the “Majority Panel with 3 × Total Peer Review Volume” 
method (median differences between measured and actual 
interpretive error rates of + 0.05 versus + 0.39 percentage 
points, respectively).

The BIRAR measurements of “two-degree” error rates 
also displayed lower variability than all of the other meth-
ods, as quantified by 95% CI around the median difference 
between the evaluated radiologists’ measured and actual 
interpretive error rates. The BIRAR method demonstrated 
49.7% and 60.3% reductions in measurement variabil-
ity compared to the “Single / Standard Peer Review” and 
“Majority Panel” methods, respectively.

The results of the sensitivity analysis to evaluate the 
impact of using a different number of peer-reviewed exams 
to estimate the EDPM are shown in Fig. 6. The simulation 
results show that when all other simulation configuration 

parameters remain constant, the measurement error of the 
BIRAR method, as quantified by the median difference 
between the evaluated radiologists’ measured and actual 
interpretive error rates, is approximately zero when using 
more than 100 triple-peer-reviewed exams. Modest addi-
tional reductions in the variability of the measurement 
accuracy are observed up to using 900 exams to calculate 
the EDPM.

The results of the sensitivity analysis to evaluate the 
impact of the peer-reviewing radiologists’ error rates on the 
overall study results are shown below in Fig. 7 and Table 3. 
Figure 7A shows the results of the simulation of the five 
methods for using peer reviews to measure interpretive error 
rates of a population of 100 radiologists when the peer-
reviewing radiologists all have a lower error rate than the 
evaluated radiologists (13% versus 17% overall error rate). 
Figure 7B shows the results of the same simulation with the 
reviewing radiologists’ error rates all defined to be higher 
than the evaluated radiologists (22% versus 17% overall 
error rate).

The results of both sensitivity analyses show that the 
BIRAR method is more accurate even under conditions 
when peer-reviewing radiologists all have either lower or 
higher error rates than the evaluated radiologist, as quanti-
fied by the median difference between the measured and 
actual interpretive error rates of the evaluated radiologist, 
compared to all of the other methods tested in this study 
except for the “Perfect / Gold Standard Reviewing” method. 
When the peer-reviewing radiologists have lower error 
rates than the evaluated radiologists, BIRAR measurements 
are 96.9% more accurate than the “Single / Standard Peer 
Review” method, and 85.6% more accurate than the “Major-
ity Panel with 3 × Total Peer Review Volume.” When the 
peer-reviewing radiologists have higher error rates than the 

Fig. 6   Boxplots of the dif-
ference between the BIRAR 
measured and actual interpretive 
error rates of 100 radiologists 
when using different volumes of 
triple-peer-reviewed exams to 
calculate the EDPM. Standard 
boxplot notation is used with 
outliers not included in the 
graph. Boxplots are derived 
from 100 simulations
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evaluated radiologists, BIRAR measurements are 91.9% 
more accurate than the “Single / Standard Peer Review” 
method, and 76.6% more accurate than the “Majority Panel 
with 3 × Total Peer Review Volume.”

Similarly, the accuracy of the BIRAR measurements again 
displayed lower variability than all of the other methods, as 
quantified by 95% CI around the median difference between 
the evaluated radiologists’ measured and actual interpretive 
error rates. When the peer-reviewing radiologists have lower 

error rates than the evaluated radiologists, BIRAR reduced the 
measurement variability by 20.4%, 32.3%, and 59.0%, respec-
tively, compared to the “Perfect / Gold Standard Reviewing,” 
“Single / Standard Peer Review,” and “Majority Panel” meth-
ods. When the peer-reviewing radiologists have higher error 
rates than the evaluated radiologists, BIRAR reduced the meas-
urement variability by 23.3%, 37.5%, and 64.1%, respectively, 
compared to the “Perfect / Gold Standard Reviewing,” “Single 
/ Standard Peer Review,” and “Majority Panel” methods.

Fig. 7   Boxplots of the differ-
ence between the measured and 
actual interpretive error rates of 
100 radiologists using the five 
peer review–based error rate 
measurement methods simu-
lated in this study. 7A shows the 
results simulated under condi-
tions where the peer-reviewing 
radiologists have lower error 
rates than evaluated radiolo-
gists. 7B shows the results sim-
ulated under conditions where 
the peer-reviewing radiologists 
have higher error rates than 
evaluated radiologists. Standard 
boxplot notation is used with 
outliers not included in the 
graph. Boxplots are derived 
from 100 simulations

A

B
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Discussion

QI programs need practical strategies that provide meaning-
ful and robust measures of quality in order to better support 
peer learning and quality improvement efforts. BIRAR is 
novel because it uses a small number of exams that are sub-
jected to multiple peer reviews to incorporate inter-reviewer 
variation into the metric, which yields better accuracy, lower 
variability, and practicality. In the sections below, the ways 
in which this strategy improves accuracy and robustness are 
discussed first, and then the method is placed in the context 
of current common strategies for peer review to show prac-
ticality. Finally, limitations are discussed.

BIRAR Produces Accurate and Robust Measurements

In the simulation study, the “Single / Standard Peer Review” 
and “Majority Panel Peer Review” methods demonstrated a 
consistent tendency to overestimate interpretive error rates: 
the median difference between the estimated and actual inter-
pretive error rates for the “Single / Standard Peer Review” 
method was + 9.4% (55.4% overestimation); for the “Majority 
Panel Peer Review” method, it was + 2.9% (17.1% overestima-
tion); and for the BIRAR method, − 0.62% (3.6% underestima-
tion). The reason for the overestimation is that the errors made 
by the peer-reviewing radiologists are accounted for by the 
evaluated radiologists. Even though the overestimation bias is 
smaller with the “Majority Panel Peer Review” method, it is 
not negligible with three reviewers as the consensus opinion 
is still sometimes wrong. In addition, the “Single / Standard 
Peer Review” method’s 95% CI range was completely posi-
tive, indicating that error rates were overestimated for 100% 
of evaluated radiologists. The “Majority Panel Peer Review” 
method’s 95% CI was 66% positive, while BIRAR appeared 
more balanced, overestimating 54% and underestimating 46%.

As expected, the performance of all of the interpre-
tive error rate measurement methods was degraded 

when simulating peer-reviewing radiologists with higher 
error rates than the evaluated radiologists, though the 
BIRAR proved to be more robust: “Single / Standard 
Peer Review” + 15.09% (95% CI 5.98–24.71); “Major-
ity Panel Peer Review” + 5.09% (95% CI − 9.87–22.77); 
BIRAR + 1.22% (95% CI − 3.75–7.96). Thus, BIRAR can be 
used in a variety of practice settings, including those where 
“expert” reviewers are not available. This is a direct con-
sequence of incorporating information from inter-reviewer 
agreement rates into the metric.

In general, BIRAR offers important enhancements to the 
most common current state implementations of peer review 
(Fig. 8). Specific enhancements vary by the type of program 
to which it is compared:

Gold Standard Follow‑Up Tests

BIRAR is a practical alternative to using a gold standard 
because it may be employed to assess any exam currently 
undergoing peer review. In practice, a gold standard strategy 
is not viable because (1) only a limited subset of radiology 
exam types and patient studies occur prior to gold standard 
diagnostic tests, (2) generally the gold standard follow-up 
test will only be performed after an initial positive radiology 
finding, which limits the ability for this approach to detect 
false negatives, and (3) the gold standard tests can also suffer 
from errors, which reduces the error measurement reliability.

Single Review

Single reviewer discrepancy rates have been shown to be 
unreliable measures of actual rates of interpretive error and 
agreement among peer reviewers is poor [5, 13, 15, 16]. 
BIRAR addresses both shortcomings, as its interpretive error 
rate measurements are more accurate, and this enhanced 
accuracy is directly because the method specifically incor-
porates inter-reviewer variability.

Table 3   Tabular summarization of results from the simulation of five 
peer review–based methods used to measure the overall interpretive 
error rates of 100 radiologists, simulated under conditions where the 
peer-reviewing radiologists have lower (middle column) and higher 

(rightmost column) error rates than evaluated radiologists. Reported 
values are the median difference between the measured and actual 
interpretive error rates and the 95% credible interval (CI) around the 
median

Interpretive error rate measurement method Median difference (reported in percentage points) between measured and actual 
interpretive error rate and 95% CI

Reviewing radiologists’ error rates lower than 
evaluated radiologists

Reviewing radiologists’ error rates 
higher than evaluated radiologists

BIRAR​ 0.29 [− 5.39, 6.67] 1.22 [− 3.75, 7.96]
Perfect/gold standard review 0.06 [− 7.24, 7.92] 0.06 [− 7.24, 8.02]
Single/standard peer review 9.38 [0.84, 18.66] 15.09 [5.98, 24.71]
Majority panel 1.77 [− 11.24, 18.19] 5.09 [− 9.87, 22.77]
Majority panel with 3 × total peer review volume 2.02 [− 5.53, 10.49] 5.21 [− 3.33, 14.53]



500	 Journal of Imaging Informatics in Medicine (2024) 37:489–503

Panel Review

Panel review has been proposed as a solution to reducing the 
impact of variation between reviewers [5, 17]. For example, 
some mammography quality assurance and improvement 
programs assign exams initially classified as negative to 
three independent secondary peer reviews; if two of three 
radiologists concur on the presence and location of cancer, 
this is considered evidence of a false negative interpretive 
error [18]. Approaches like these may yield more reliable 
measures of interpretive error rates compared to a single 
review, but the requirement for multiple secondary assess-
ments or dedicated consensus discussions creates signifi-
cant demands on radiologists’ time and resources. BIRAR 
incorporates features of panel review, with only a relatively 
small subset of exams assessed by more than one reviewer 
and removing the requirement for peer reviewers to reach 
consensus. Again, in this simulation study, BIRAR’s perfor-
mance exceeded that of the “Majority Panel with 3 × Total 
Peer Review Volume” method, even though it required less 
total peer reviews to measure the interpretive error rates of 
the evaluated radiologists.

Uncertainty in Radiology: When Is an Error Not 
an Error?

Practicing radiologists (and indeed all physicians) daily 
face inherent variations in disease presentation, natural his-
tory, and imaging appearance that often makes diagnosis 
uncertain. In fact, experienced thoracic subspecialists may 
disagree on pulmonary nodule characterization [19], and 
radiologists may come to different classifications when 
applying well-defined standards such as TIRADS [20] or 
PIRADS [21] or obtain different results when performing 
seemingly straightforward size measurements on PACS [22, 
23]. Disagreement between radiologists does not necessarily 
indicate an interpretive error has occurred, but instead, it has 
been proposed that variation in interpretation may at times 
be more accurately described as “differing opinions” in the 
face of an unclear diagnosis [2]. By not incorporating meas-
urements of peer reviewer variation, most QI programs do 
not formally acknowledge the unavoidable uncertainty that 
radiologists face, and this may be one cause for radiologists’ 
lack of confidence in quality metrics. In contrast, instead 
of calculating a simple interpretive error rate, BIRAR uses 

Fig. 8   Comparison of the current state of peer review in QI programs to a “future state” in which BIRAR is used to improve the accuracy and 
reliability of peer review
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a small number of triple-peer-reviewed studies to also cal-
culate a confidence interval for the error rate. If a particu-
lar diagnosis tends to be difficult with much disagreement 
(variation) among radiologists (peer reviewing and reading), 
this will contribute to a wide confidence interval and low 
probabilities in the EDPM associated with the likelihood of 
an error in the initial interpretation given a peer review dis-
crepancy. Therefore, in this case, a difference in interpreta-
tion between peer-reviewing and initial-reading radiologists 
for difficult diagnoses would be recorded, but the BIRAR 
method accounts for the uncertainty and will not classify 
such discrepancies as errors.

BIRAR in Practice

Realizing the benefits of BIRAR requires standardized data 
collection, data tabulation, statistical analysis, and multi-
ple peer reviews. Ideally, BIRAR should be implemented in 
practice using structured templated reports. Utilization of 
structured reports can facilitate the identification of inter-
reviewer variability for specific pathologies from a set of 
studies reviewed by multiple reviewers. BIRAR can be most 
useful for pathologies that exhibit relatively high inter-reader 
variability, and applying BIRAR to these pathologies may 
result in increased confidence in the peer-review process. 
Data pipelines have to be implemented to ingest and ana-
lyze peer-review data using BIRAR on an ongoing basis. 
Some (but not all) of these requirements are already inher-
ent in existing quality programs, but BIRAR will likely 
require additional time, resources, and statistical expertise. 
For instance, translating the output of BIRAR into action-
able and useful feedback will require additional work and 
is outside of the scope of this study. It should be noted that 
BIRAR can be deployed with alternative configurations that 
may better suit the needs of a particular institution. EDPM 
used in BIRAR has to be estimated for each pathology type 
separately since inter-reviewer variability is pathology-type 
specific. For example, BIRAR was presented in this study 
as a two-step process, with a smaller number of triple-peer-
reviewed studies followed by a larger number of single 
peer-reviewed studies, but instead, sites may intersperse or 
periodically collect the data from multiple-peer-reviewed 
exams. Importantly, if the pool of experts or their perfor-
mance changes significantly over time, then a new set of 
triple-reviewed study data should be collected, and the 
inter-reviewer variability (i.e., EPDM) should be recalcu-
lated. Notably, if peer-reviewing radiologists are selected 
for each study from a large pool of radiologists with vary-
ing performance levels, then it can be difficult to get a rep-
resentative sample for estimating inter-reviewer variability 
accurately. That is, BIRAR would be easiest to deploy in 
settings where the panel of experts is relatively small, and it 
does not change over time. Finally, BIRAR can be deployed 

in a targeted manner only assessing a particular study type or 
specific pathology, and it can also be used in a research con-
text or to improve the selection of studies for peer learning.

Limitations

While simulation studies can fail to capture all aspects of 
how a methodology may work in the “real world,” the authors 
believe that evaluating the performance of this novel approach 
using simulated peer review data was the best choice because 
it allowed explicit and precise comparisons to be made 
between the interpretive error rates calculated using vari-
ous peer review–based measurement methods and the actual 
“true” interpretive error rate of hypothetical radiologists under 
evaluation, which were predetermined within the simulation. 
A study that instead used real patient exams and peer review 
data would suffer from several complicating issues, includ-
ing uncertainty related to the gold standard(s) used, unknown 
evaluated and peer-reviewing radiologist error rates, and/or 
the potential lack of generalizability of the study’s results 
to other clinical contexts where interpretive error rates and 
their ability to be reliably flagged through secondary assess-
ments may vary. BIRAR has limited value in areas of imag-
ing where inter-reviewer variability is low. The authors made 
efforts to choose realistic values to calibrate the simulation 
and to also investigate the sensitivity of the results to impor-
tant calibration parameters, like the relative error rates of the 
peer-reviewing and evaluated radiologists. Real-world con-
straints can limit BIRAR performance when introduced into 
clinical practice, but the current study provides value because 
simulations are often precursors to real-world implementa-
tion. Finally, the method described in this study covers the 
analysis of the data collected in quality programs while taking 
into account inter-reviewer variability, but it does not address 
how quality programs should be implemented in practice.

Conclusions

BIRAR can increase the value of peer review within QI 
programs by enabling more accurate and less variable peer 
review–based quality measures. These quality measures can be 
useful for identifying outlying providers who generate reports 
that diverge from the accepted norm of the group’s collec-
tive interpretation standards. The BIRAR method’s statisti-
cal approach allows for a more standardized assessment of 
quality even when there is variability in the sensitivity of the 
radiologists performing peer reviews. BIRAR enables QI pro-
grams to assess interpretive accuracy without relying on gold 
standard comparison tests by implicitly deriving a standard 
from the levels of consensus within the group across various 
types of interpretive findings; however, multiple peer review 
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assessments or consensus discussions are not required for 
every study evaluated by the QI program. These features allow 
this approach to be scaled across a large population of radiolo-
gists and practically implemented in a group’s QI program.
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