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Abstract
This study aimed to develop an interpretable diagnostic model for subtyping of pulmonary adenocarcinoma, including mini-
mally invasive adenocarcinoma (MIA), adenocarcinoma in situ (AIS), and invasive adenocarcinoma (IAC), by integrating 
3D-radiomic features and clinical data. Data from multiple hospitals were collected, and 10 key features were selected from  
1600 3D radiomic signatures and 11 radiological features. Diverse decision rules were extracted using ensemble learning 
methods (gradient boosting, random forest, and AdaBoost), fused, ranked, and selected via RuleFit and SHAP to construct a 
rule-based diagnostic model. The model’s performance was evaluated using AUC, precision, accuracy, recall, and F1-score 
and compared with other models. The rule-based diagnostic model exhibited excellent performance in the training, testing, 
and validation cohorts, with AUC values of 0.9621, 0.9529, and 0.8953, respectively. This model outperformed counterparts  
relying solely on selected features and previous research models. Specifically, the AUC values for the previous research  
models in the three cohorts were 0.851, 0.893, and 0.836. It is noteworthy that individual models employing GBDT, random 
forest, and AdaBoost demonstrated AUC values of 0.9391, 0.8681, and 0.9449 in the training cohort, 0.9093, 0.8722, and 
0.9363 in the testing cohort, and 0.8440, 0.8640, and 0.8750 in the validation cohort, respectively. These results highlight  
the superiority of the rule-based diagnostic model in the assessment of lung adenocarcinoma subtypes, while also providing 
insights into the performance of individual models. Integrating diverse decision rules enhanced the accuracy and interpret-
ability of the diagnostic model for lung adenocarcinoma subtypes. This approach bridges the gap between complex predictive 
models and clinical utility, offering valuable support to healthcare professionals and patients.
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Introduction

Lung cancer stands as a prominent contributor to both 
the incidence and mortality of malignant neoplasms on 
a global scale, occupying a significant position among 
malignancies [1, 2]. Among these, adenocarcinoma of  
the lung emerges as the most prevalent histological sub-
type. The incidence of lung adenocarcinoma has shown a 
gradual increase in recent years, particularly noticeable 
within the nonsmoker population [3–5]. The subtype clas-
sification of lung adenocarcinoma assumes paramount 
importance in the realms of treatment strategizing and 
prognostic assessment [6]. As delineated by the World 
Health Organization (WHO) classification, lung adenocar-
cinoma undergoes further subclassification into minimally 
invasive adenocarcinoma (MIA), adenocarcinoma in situ 
(AIS), and invasive adenocarcinoma (IAC) [7, 8]. MIA 
and AIS represent early-stage subtypes of lung adenocar-
cinoma, predominantly managed through surgical resec-
tion, which is associated with favorable prognosis [9, 10]. 
In contrast, addressing invasive adenocarcinoma (IAC) 
presents a more intricate clinical challenge. Treatment 
strategies for IAC typically encompass a comprehensive 
approach incorporating surgical resection, chemotherapy, 
and radiotherapy among other modalities [11]. The preci-
sion of subtype classification holds profound significance 
in guiding optimal therapeutic strategies and predicting 
patient prognoses [12–14]. In the realm of clinical medi-
cal informatics research, the utilization of CT imaging for 
the analysis and discernment of various subtypes of lung 
adenocarcinoma stands as a pivotal diagnostic modality 
[15–18].

Contemporary disease diagnostic research has witnessed 
remarkable accomplishments through the application of 
expansive data models, notably exemplified in the realm of 
adjunctive lung cancer diagnosis [19–21]. By amalgamat-
ing analysis of CT imagery with diverse patient multimodal 
data, a pronounced advancement in auxiliary diagnostic 
efficacy has been achieved [22–24]. However, in practical 
clinical use, these models face challenges in describing their 
internal decision-making processes and explaining internal 
features and predictive recommendations to medical pro-
fessionals and patients. These issues have to some extent 
affected the trust that doctors place in the model predictions. 
Therefore, there is a need to explore interpretable methods 
and models to fulfill the requirements of clinical auxiliary 
diagnosis [25–27]. This emerging trend of enhancing model 
transparency and explicability is of paramount importance 
in bridging the gap between complex predictive models and 
their clinical utility. Chao utilized the RuleFit algorithm to 
explore valuable inflammatory rules for prognostic evalu-
ation in nasopharyngeal carcinoma (NPC) patients. They 

identified 22 combined baseline hematological rules, achiev-
ing AUROCs of 0.69 and 0.64 in the training and valida-
tion cohorts, respectively. By developing risk-predictive 
rules from hematological indicators and clinical predictors, 
the final model demonstrated improved predictive preci-
sion over base models and exhibited strong generalizability 
[27]. Similarly, the study by Ke Wan addresses the challenge 
of estimating treatment effects based on real-world data in 
precision medicine. They propose an interpretable machine 
learning method using the RuleFit algorithm to estimate het-
erogeneous treatment effects (HTE). This approach improves 
interpretability while maintaining high prediction accuracy. 
The proposed method, applied to an HIV study dataset, dem-
onstrates superior prediction accuracy compared to previous 
methods, offering a valuable tool for establishing interpret-
able models in precision medicine research [28].

In this study, a new diverse rule extraction method was 
proposed, and a new rule-based prognostic model was con-
structed to access the risk of lung adenocarcinoma subtypes. 
We amalgamated patient radiological features and radiomics 
features to select 10 key features. Employing the RuleFit 
method, diverse decision rules were generated by different 
ensemble learning methods including gradient boosting and 
random forest algorithms and AdaBoost. Then, 15 impor-
tant decision rules are extracted. Subsequently, a rule-based 
auxiliary diagnostic model was constructed for assessing 
the risk of lung adenocarcinoma subtypes and conducted a 
comprehensive analysis.

Methods and Materials

This study was conducted in accordance with the Decla-
ration of Helsinki (as revised in 2013). The study was 
approved by the ethics committee of Shanghai University of 
Medicine & Health Sciences, and the written informed con-
sent of patients was waived by the ethics committee because 
the study was a retrospective experiment and did not involve 
patient privacy.

Patients

This study has utilized the data and initial data analysis 
methods from previous research. The dataset was collected 
from three hospitals (Shanghai Public Health Clinical 
Center, as hospital 1; Shanghai Ruijin Hospital, as hospital 
2; Ningbo Beilun NO.2 Hospital, as hospital 3). Patients 
showed pulmonary nodules on chest CT scan and diagnosed 
as pulmonary adenocarcinomas based on pathologic analysis 
of surgical specimens that were selected for analyses. Other 
inclusion criteria were as follows: (1) routine CT examina-
tion had been conducted the month before surgery; (2) the 
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maximum diameter of the tumor was less than 20 mm; (3) 
the preoperative CT layer thickness was less than 2 mm. 
Multiple nodules from the same patients were analyzed sep-
arately. The exclusion criteria were as follows: (1) obvious 
artifacts around the tumor were found on the CT image; (2) 
the contrast medium was used for CT examination. Mean-
while, the study also collected clinical information from 
patients (Table 1).

CT Image Acquisition

Unenhanced chest CT examinations encompassing entire 
lung scans were conducted on patients within hospital 1, 
hospital 2, and hospital 3. The CT images were acquired 
using distinct devices: a United-Imaging 760 CT device 
(tube voltage 120 kVp, tube current modulation 42–126 mA, 
reconstructed slice thickness 1.0 mm) and a Siemens Emo-
tion 16 CT device (tube voltage 130 kVp, tube current mod-
ulation 34–123 mA, reconstructed slice thickness 1.0 mm) 
with 512 × 512 resolutions and 517.31 ± 16.11 exposure time 
at hospital 1; a Philips iCT 256 CT device (tube voltage 120 
kVp, tube current modulation 161 mA, reconstructed slice 
thickness 1.0 mm) and a Philips Brilliance 16 CT device 
(tube voltage 120 kVp, tube current modulation 219 mA, 
reconstructed slice thickness 1.0 mm) for CT image acquisi-
tion with 512 × 512 resolution and 507.25 ± 8.79 exposure 
time in hospital 2 and hospital 3. To minimize artifacts due 

to respiratory motion, all patients underwent full inspiration 
during the chest CT examination.

Features Extraction and Selection

Utilizing proprietary semi-automated software, all nodules 
in the selected CT images underwent segmentation [29]. 
Subsequent manual review by a radiologist with 6 years of 
experience, corroborated by another with 20 years of expe-
rience, ensured accurate segmentation. From the three-
dimensional region of interest (ROI), a comprehensive set 
of 1600 3D radiomic signatures encompassing tumor attrib-
utes, histogram features, and high-order texture features 
were extracted. Open-source software (PyRadiomics 3.0.1) 
facilitated this extraction.

Radiographic features underwent independent assessment 
by the aforementioned experienced radiologists, with any 
disparities resolved through consensus. Noteworthy radio-
logical features for each lesion encompassed margin clarity, 
lobulation presence, spiculation presence, pleural attachment 
(including pleural tag and indentation), air bronchogram 
presence, vessel changes, bubble lucency, nodule location, 
and major/minor axis measurements (computed from the 
ROI area using “PyRadiomics” software) [30].

A comprehensive set of 1611 features characteriz-
ing the 3D lesion area within CT images was assembled, 

Table 1   Patient characteristic information in training cohort, testing cohort, and validation cohort

Training cohort (n = 282) Testing cohort (n = 139) Validation cohort (n = 85)

Characteristics MIA/AIS 
(n = 216)

IAC (n = 66) P value MIA/AIS 
(n = 107)

IAC (n = 32) P value MIA/AIS 
(n = 42)

IAC (n = 43) P value

Age (years) 50.74 ± 11.19 54.60 ± 11.66 < 0.05 51.43 ± 11.31 53.28 ± 11.34 < 0.05 54.02 ± 13.39 62.74 ± 11.36 < 0.05
Gender 0.211 0.1148
Male 55 22 35 12 28 23
Female 161 44 72 20 14 20
Nodule type < 0.05 < 0.05 < 0.05
PGGN 152 29 76 10 29 20
MGGN 64 37 31 22 13 23
Segment 0.7653 0.562 0.07993
Left upper lobe 62 18 34 7 14 7
Left lower lobe 35 7 18 4 3 7
Right upper 

lobe
73 26 33 15 11 21

Right middle 
lobe

16 4 10 2 3 2

Right lower 
lobe

30 11 12 4 11 6

Average major 
axis (mm)

8.59 ± 2.31 11.02 ± 2.47 < 0.05 8.73 ± 2.55 11.19 ± 2.80 < 0.05 10.80 ± 4.26 18.58 ± 8.52 < 0.05

Average minor 
axis (mm)

7.15 ± 2.00 8.61 ± 1.70 < 0.05 7.31 ± 2.21 8.53 ± 1.91 < 0.05 8.67 ± 3.38 14.18 ± 5.95 < 0.05
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encompassing 1600 radiomics signatures and 11 radiologi-
cal features. The high dimension of radiomics signatures 
brought difficulties for modeling and analysis; therefore, a 
2-phase feature selection approach was applied to remove 
redundancy and to identify the key features for identifying 
different subtypes of lung adenocarcinoma. The process of 
the proposed 2-phases feature selection approach is shown 
in Fig. 1.

Initially, phase 1 is to reduce the redundancy in the 
radiomics signatures. All radiomics signatures underwent 
scaling normalization, followed by variance calculation 
to identify and subsequently exclude those nearing zero. 
Meanwhile, the pair-wise Spearman correlation analysis 
was used to calculate the correlation strength between 
features. Features whose absolute correlation value was 
above 0.9 were identified as strong interference features 
and were subsequently removed. After this preprocess-
ing, the top 100 features were selected using the minimum 
redundancy maximum relevance (mRMR) method. Then, 
phase 2 is to identify key features related to the outcomes 
of lung cancer. The selected features in phase 1 were 
then employed as input for LASSO models to determine 
the optimal subsets for evaluating IAC and MIA/AIS. 
To account for potential randomness, the feature subset 
computation was iterated 500 times to ascertain the best 
result. Finally, 10 key features were sifted as the ultimate 
features, including “spiculated margin,” “lbp-3D-k_glcm_
Imc2,” “original_firstorder_90Percentile,” “wavelet-LLH_
firstorder_Maximum,” “original_shape_MajorAxisLength,” 
“wavelet-LLH_glszm_LargeAreaHighGrayLevelEmpha-
sis,” “original_glcm_JointEntropy,” “pleural indenta-
tion,” “lbp-3D-m1_glrlm_LongRunEmphasis,” “original_
firstorder_10Percentile” (Fig. 2).

Generation of Rules

To obtain diverse rules related to different subtypes of lung 
adenocarcinoma, three ensemble learning methods were 

applied for extracting different types of decision rules, 
including gradient boosting decision trees (GBDT), random 
forest, and AdaBoosting. Firstly, we will explain how diverse 
rules are generated from ensemble learning methods.

Assume that x represents the features of radiomics. The 
decision tree in each ensemble learning method is denoted 
as hm(x;rm) . rm denotes the rules in the mth decision tree in 
an ensemble learning model. Fm(X) denotes the ensemble 
learning model in the mth iteration, while F(x) represents 
the integration of all meta-learners.

AdaBoosting is a boosting ensemble model, in which 
instances and meta-learners are reweighted in each iteration 
according to the prediction error achieved in the last itera-
tion. The weighting mechanism can be expressed by Eq. (1):

where �m denotes the weight of the mth decision tree in an 
AdaBoosting. Therefore, the decision rules extracted from 
an AdaBoosting is weighted and sequentially correlated.

A GBDT is also a boosting ensemble model stacking 
the weak decision tree. Each tree is applied to predict 
the residuals of the preceding trees. In the mth iteration 
( m = 1 ∶ M ) of training, a GBDT is updated by summing 
the previous models and decision tree of the mth iteration 
multiplied by the weight �m:

Similar to AdaBoosting, the optimal step size �m is the 
weight of the current model, and rm denotes the rules of 
the mth decision tree in a GBDT model. Therefore, the 
decision rules extracted from a GBDT is also weighted 
and sequentially correlated.

Comparatively, a random forest is a collection of many 
independent decision trees. The prediction result of a 

(1)Fm(X) = Fm−1(X) + �mh
(
x;rm

)

(2)F(x) = sign
(
Fm

(
x;rm

))
=
∑M

m=1
�mFm

(
x;rm

)

(3)F(x) = Fm(X) = Fm−1(X) + �mh
(
x;rm

)

Fig. 1   The process of the proposed 2-phases feature selection method. 
Phases 1: Utilizing PyRadiomics, 1600 imaging features were com-
puted from lesion CT images. These features underwent analysis, and 
the mRMR method was applied to select the top 100 features. Phases 
2: 11 radiological features from patient lesions were collected by pro-

fessional radiologists. After merging these features with the previously 
obtained 100 features, the least absolute shrinkage and selection oper-
ator (LASSO) method was employed to extract the final set of 10 key 
features
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random forest is determined by the average vote of these 
independent decision trees. The voting process can be for-
mulated as:

The M in Eq. (4) denotes the number of trees in a ran-
dom forest. Therefore, the decision rules extracted from a 
random forest are equal and independent, which are differ-
ent from rules from GBDT or AdaBoosting.

(4)F(X) = sign
(
hm

(
x;rm

))
=

1

M

M∑

m=1

hm
(
x;rm

)

To sum up, the decision rules extracted from GBDT 
and AdaBoosting are weighted and sequentially correlated, 
while decision rules extracted from the random forest are 
independent, determined by different architectures and 
mechanisms that decision trees integrated in these ensem-
ble learning methods.

Three ensemble learning methods for rule generation 
are based on the selected 10 features. In the experimental 
phase, rule generation models were built using the Gradi-
entBoostingClassifier function (n_estimators = 500, max_
depth = 5, learning_rate = 0.1), the RandomForestClassifier 

Fig. 2   Correlation heatmap between the final 10 features
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function (n_estimators = 500, min_samples_leaf = 1), 
and the AdaBoostClassifier function (base_estima-
tor = DecisionTreeClassifier(max_depth = 5), n_estima-
tors = 30, algorithm = ‘SAMME’) from the sklearn-ensemble 
package.

RuleFit via Sparse Linear Method and Rule Selection

The RuleFit algorithm automatically extracted and selected 
decision rules generated from tree-based models such as 
random forest [31]. In the RuleFit, the original features, 
low-order and high-order rules, are combined as input to 
a sparse linear model, LASSO, which can sift the most 
useful rules through L1 penalty during the training pro-
cess [32]. Compared with vanilla LASSO, the sparse linear 
model learned by RuleFit incorporates nonlinear feature 
interactions which can help us to capture more complex 
patterns hidden in high-dimensional 3D radiomics.

In Fig. 3, each path through a tree can be transformed 
into a decision rule by combining the split decisions into a 
rule. Any model that generates decision trees can be used 
for RuleFit, such as random forest.

Diverse decision rules extracted from decision trees 
generated from three ensemble learning methods and the 
original radiomics features are combined as input for train-
ing a sparse linear model with LASSO, with the following 
structure:

(5)f̂ (x) = �̂0 +

K∑

k=1

�̂krk(x) +

p∑

j=1

�̂jlj
(
xj
)

where �̂ is the estimated weight vector for the rule features 
and �̂  the weight vector for the original radiomics features. 
The loss function forces some of the weights to get a zero 
estimate due to the penalty item in LASSO:

Diverse rules help to capture more important patterns 
hidden in the radiomics. The rule extraction, fusion, and 
selection process were automated using the RuleFit func-
tion (tree_generator = GradientBoostingClassifier/ Ran-
domForestClassifier, rfmode = ‘classifier’, max_rules = 80), 
which extracted rules generated by the first two methods. A 
rule tree extraction method was designed to acquire rules 
generated by the AdaBoost method (GitHub code).

To obtain a minimum number of rules and increase the 
explanation ability. Several steps are applied to reduce 
the scale of the rules related to different subtypes of lung 
adenocarcinoma. As demonstrated in Fig. 4, the rules are 
extracted and selected via RuleFit, LASSO, and Shapley 
additive explanations (SHAP).

For the rules extracted by the first two methods using 
RuleFit, those with an “importance” exceeding 0.1 were 
retained. Subsequently, the occurrence of each rule in 
various samples (true/false) was assessed and annotated 
with 0/1 labels. This process resulted in the creation of 
two novel dataset based on rules. Following the above 
approach, a new dataset based on rules was constructed 
for the rules generated using the AdaBoost method. Later, 
rules with a correlation to the diagnostic results exceeding 
0.4 were retained. Merging the three rule-based datasets, 
followed by applying the LASSO method to select the opti-
mal subset of rule-based features. Finally, employing the 
SHAP method, we conducted an analysis of the contribu-
tions of each rule within the initial model, retaining SHAP 
values not less than 0.5.

Construction and Validation of Rule‑Based Model

In this study, the diagnostic assistance model for IAC risk 
assessment was developed through multivariate logistic 
regression using the aforementioned selected rules. Subse-
quently, the model’s diagnostic performance was validated 
using both testing and validation datasets. ROC curves were 
generated, and the area under the curve (AUC) values were 
computed for the training, testing, and validation sets. Addi-
tionally, precision, accuracy, recall, and F1-score were cal-
culated to comprehensively evaluate the model. Moreover, 
we conducted individual training and validation of the rules 
for the three methods using the same dataset. A compara-
tive analysis was carried out against results from previous 
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Fig. 3   The process of radiomic rule extraction in a decision tree
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relevant research models to further evaluate the models’ per-
formance. Furthermore, we also employed SHAP analysis to 
further investigate the rule features within the model.

Statistical Analysis

Quantitative data were presented as either mean ± SD or 
median (25th–75th percentile), while qualitative data were 
represented as counts (n). Fisher’s exact test was used for 
intergroup comparisons of qualitative variables, and t-tests 
or Wilcoxon tests were employed for comparisons of quan-
titative variables between groups. A significance level 
of < 0.05 on a two-sided P value was considered statistically 
significant. The relevant statistical analyses in the study 
were conducted within the Python 3.9 environment. Addi-
tionally, certain graphical representations were generated 
using the features provided by the ChiPlot website (https://​
www.​chipl​ot.​online/).

Results

Patients

A total of 401 patients from hospital 1, meeting inclusion 
criteria, were identified with 421 pulmonary nodules (MIA/
AIS 323, 76.7%; IAC 98, 23.3%). Simultaneously, hospital 
2 and hospital 3 contributed 82 patients with 85 pulmonary 
nodules (MIA/AIS 42, 49.4%; IAC 43, 50.6%). Subse-
quently, this cohort of 483 patients, featuring 506 pulmonary 
nodules, was categorized into distinct groups: the training 
cohort encompassed 278 patients with 282 nodules spanning 
April 2015 to February 2017, the testing cohort included 123 
patients with 139 nodules from February 2015 to December 
2016, and the validation cohort comprised 82 patients with 

85 nodules extending from September 2017 to February 
2018. Importantly, no significant variations in gender and 
age were observed across these cohorts.

Rule Generation, Selection, and Analysis

Feature selection was built upon previous research out-
comes. Following dataset standardization, an analysis of fea-
ture variance and inter-feature correlations was conducted. 
Subsequently, the mRMR method was employed for feature 
ranking, followed by cross-validation for LASSO analysis 
on the remaining features. This process resulted in the iden-
tification of the top 10 optimal features.

Leveraging the aforementioned 10 features, the RuleFit 
method was employed with gradient boosting as the core 
to generate 34 rules (including 8 original features), while 
employing random forest as the core led to the creation of 44 
rules (including 7 original features). Additionally, the Ada-
Boost method resulted in the formulation of 670 rules. Fol-
lowing the selection process, the gradient boosting approach 
retained 27 rules (including 6 original features), the random 
forest approach retained 33 rules (including 7 original fea-
tures), and the AdaBoost method retained 14 rules. After 
applying the LASSO method, 36 rules were selected. Subse-
quently, utilizing SHAP analysis, 11 rules with low contribu-
tion values were removed.

Following further refinement, a total of 15 rules were 
retained, with 5 from gradient boosting, 2 from random for-
est, and 9 from AdaBoost (Table 2, use ID to represent the 
corresponding rule). Notably, there was 1 duplicated rule 
shared by gradient boosting and random forest. Furthermore, 
we will present the distribution of assessment metrics for 
each discrete feature in the range of feature values accord-
ing to the defined rules. The results indicate that all features 
exhibit a certain degree of inter-group variation, notably the 

Fig. 4   The process of diverse 
rules extraction, merge, selec-
tion, and model construction

44 equal and

Independent

Rules

670 sequential 

and Weighted

Rules
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“orginal_shape_MajorAxisLength.” Additionally, a majority 
of the data points are concentrated within the overlapping 
region of the groups, which is also the range of particular 
interest for the assessment metrics. The main continuity 
numerical features and the distribution of judgment values 
in the rules are shown in Fig. 5.

Additionally, we conducted SHAP to rank and scrutinize 
the individual features of the model. The results revealed 
that Rule1 exhibited significantly high feature importance 
within the model. Among the top 10 influential rules, 7 
were generated by the AdaBoost method, 3 by the gradi-
ent boosting method, and 1 by the random forest method 
(which coincided with a rule generated by gradient boost-
ing). Notably, “spiculated margin,” the only original fea-
tures involved in model training, made a substantial con-
tribution, ranking fourth in importance. Except for Rule 2 
and Rule 3, there is no redundancy present in the remaining 
rules (Fig. 6).

Model Construction, Evaluation, and Comparison

By conducting multivariate logistic regression analysis on 
the training dataset constructed from the aforementioned 15 
rules, the formulated multivariate logistic regression equa-
tion is as follows.

The model demonstrates robust performance across all 
three datasets. In the training cohort, the model achieves 
an AUC of 0.9621 (95% CI, 0.9421–0.9822), an accuracy 
of 0.9433, a precision of 0.9464, a recall of 0.9815, and 
an F1 score of 0.9636. Similarly, in the testing cohort, 
the AUC is 0.9529 (95% CI, 0.9168–0.9889), accuracy 

Y = − 0.3265 − 0.7705 × Rule1 − 0.4823 × Rule2 − 0.4478 × Rule3 − 0.2747

× Rule4 − 0.2537 × Rule5 + 0.3795 × Rule6 + 0.4433 × Rule7 − 0.3869

× Rule8 + 0.5280 × Rule9 + 0.5978 × Rule10 + 0.4615 × Rule11 + 0.6856

× Rule12 + 0.4334 × Rule13 + 0.5789 × Rule14 + 0.3891 × Rule15

Table 2   Information for 15 rules

ID Method Rule

Rule1 AdaBoost original_shape_MajorAxisLength <  = 12.46 & original_firstorder_10Percentile <  =  −768.75 & wavelet-LLH_
glszm_LargeAreaHighGrayLevelEmphasis <  = 45,043.45 & wavelet-LLH_firstorder_Maximum <  = 487.20

Rule2 AdaBoost original_glcm_JointEntropy <  = 8.48 & original_shape_MajorAxisLength <  = 10.01 & original_firstorder_10Perce
ntile <  =  −658.70 & wavelet-LLH_firstorder_Maximum ∈ (122.71,525.63]

Rule3 AdaBoost original_shape_MajorAxisLength <  = 9.93 & original_firstorder_10Percentile <  =  −607.30 & original_glcm_
JointEntropy <  = 8.70 & wavelet-LLH_firstorder_Maximum ∈ (122.71,523.14]

Rule4 Gradient boosting lbp-3D-k_glcm_Imc2 <  = 0.20 & original_shape_MajorAxisLength <  = 9.93 & original_firstorder_90Percentile <  
=  −336.0

Rule5 Gradient 
boosting/
random forest

spiculated margin

Rule6 AdaBoost original_glcm_JointEntropy > 8.48 & original_firstorder_10Percentile >  −848.55 & lbp-3D-k_glcm_Imc2 <  = 0.10 
& wavelet-LLH_firstorder_Maximum > 403.11

Rule7 AdaBoost original_firstorder_90Percentile >  −200.55 & lbp-3D-m1_glrlm_LongRunEmphasis > 18.23 & original_firstorder_
10Percentile <  =  −499.90 & original_glcm_JointEntropy <  = 9.74 & wavelet-LLH_firstorder_Maximum > 331.59

Rule8 Gradient boosting gbc_wavelet-LLH_firstorder_Maximum <  = 511.67 & wavelet-LLH_glszm_LargeAreaHighGrayLevelEmphasis <  
= 176,581.82 & lbp-3D-k_glcm_Imc2 > 0.04 & original_firstorder_90Percentile <  =  −405.40 & original_shape_
MajorAxisLength > 9.93

Rule9 Gradient boosting gbc_lbp-3D-m1_glrlm_LongRunEmphasis <  = 48.18 & original_shape_MajorAxisLength > 8.84 & original_fir
storder_90Percentile >  −336.0 & original_glcm_JointEntropy <  = 9.29 & wavelet-LLH_firstorder_
Maximum > 478.69

Rule10 Gradient boosting gbc_original_shape_MajorAxisLength > 8.33 & lbp-3D-m1_glrlm_LongRunEmphasis <  = 32.81 & wavelet-LLH_
firstorder_Maximum > 511.67

Rule11 AdaBoost original_shape_MajorAxisLength > 8.96 & original_glcm_JointEntropy > 8.48 & original_firstorder_10Percentile 
>  −839.90 & original_firstorder_90Percentile <  =  −39.80

Rule12 AdaBoost original_shape_MajorAxisLength > 9.93 & lbp-3D-m1_glrlm_LongRunEmphasis ∈ (22.03, 35.69] & wavelet-LLH_
glszm_LargeAreaHighGrayLevelEmphasis <  = 8320.79 & original_firstorder_90Percentile >  −458.35

Rule13 AdaBoost original_shape_MajorAxisLength > 9.85 & lbp-3D-m1_glrlm_LongRunEmphasis ∈ (22.03,35.69] & original_firstor
der_90Percentile >  −419.95 & original_firstorder_10Percentile >  −849.00

Rule14 AdaBoost wavelet-LLH_glszm_LargeAreaHighGrayLevelEmphasis > 5460.49 & original_glcm_JointEntropy > 8.48 & 
wavelet-LLH_firstorder_Maximum <  = 669.96 & original_firstorder_10Percentile >  −839.90

Rule15 Random forest rf_original_glcm_JointEntropy > 8.48 & pleural indentation = 1
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is 0.9292, precision is 0.9341, recall is 0.9770, and F1 
score is 0.9551. In the validation cohort, the AUC stands 
at 0.8953 (95% CI, 0.88297–0.9609), accuracy at 0.8706, 
precision at 0.9016, recall at 0.9167, and F1 score at 
0.9091. The distinct rule-based feature subsets of the three 
methods exhibited individual AUC performances on the 
training, testing, and validation sets as follows: For gradi-
ent boosting, the values were 0.9391, 0.9093, and 0.8440 
respectively. For random-forest, the values were 0.8681, 
0.8722, and 0.8640 respectively. Lastly, for AdaBoost, 
the values were 0.9449, 0.9363, and 0.8750, respectively 
(Fig. 7 and Table 3).

Moreover, in order to further assess the efficacy of the 
rules, we conducted comparisons between our model and 
other pertinent research models. We evaluated our model 
against one built using the selected 10 features on the same 
dataset [33]. Additionally, comparisons were made with the 
outcomes of three closely related studies [15, 34, 35]. The 
outcomes of these comparisons are summarized in Table 4.
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Fig. 5   The distribution of continuous data features and decision values in rules. The blue dashed line represents the judgment value of the cor-
responding feature in the rule

Fig. 6   SHAP analysis of 15 rules
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Discussion

Extracting and fusing diverse decision rules help to capture 
more important patterns hidden in the radiomics, increasing 

both accuracy and interpretability for assessing the risk of 
lung adenocarcinoma subtypes. The exploration of diverse 
diagnostic rules has emerged as an urgent necessity in clini-
cal decision support. Rule-based diagnostic assistance offers 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7   Performance of models based on diverse decision rules and 
respective models of three types of rules in the same dataset. a–c rep-
resents the performance of the mixed rule model in the training set, 
testing set, and validation set, respectively. d–f represents the perfor-

mance of models based on gradient boosting rules in three datasets. 
g–i represents the performance of models based on random forest 
rules in three datasets. j–l represents the performance of the Ada-
Boost rule–based model in three datasets
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a visualizable and explainable diagnostic decision-making 
process, significantly enhancing decision-making and treat-
ment guidance for both healthcare professionals and patients.

By analyzing 3D radiographic features and clinical 
characteristics, this study identified a crucial set of 10 fea-
tures. Utilizing various algorithms for rule extraction and 
analysis, valuable rules were discovered, revealing relation-
ships between data features and outcomes. Subsequently, 
a rule-based IAC risk assessment model was developed, 
offering visual and descriptive diagnostic insights. In com-
parison to models trained independently using the three rule- 
generation methods, the hybridized rule-based model exhib-
its superior accuracy. Compared to models constructed using 
the 10 selected features and those based on traditional fea-
tures, it demonstrated notably enhanced accuracy and clini-
cal significance.

In this study, RuleFit was utilized to learn a sparse linear 
model with the original radiomics features and diverse deci-
sion rules that capture key interactions between the original 
radiomics features. Three ensemble learning methods were 
applied to generate diverse decision rules from radiomics. 
Gradient boosting and AdaBoost generated weighted and 
sequentially correlated rules, while random-forest generated 
equal and independent rules. These diverse decision rules 
were fused, ranked, and selected through RuleFit and SHAP, 
which help us to construct a rule-based diagnostic model 
with both accuracy and interpretability. This research fills 
the gap of constructing simple and interpretable models and 
integrates nonlinear feature interactions in radiomics.

Among the final selection of 10 features, “origi-
nal_shape_MajorAxisLength” represents the major axis 
length of the lesion, reflecting information about its size 
and elongation. “original_firstorder_90Percentile” and 

“original_firstorder_10Percentile” respectively indicate 
high and low CT value information within the lesion. “lbp-
3D-k_glcm_Imc2” reflects relationships among adjacent 
pixel intensities, indicating texture heterogeneity within 
the lesion. “wavelet-LLH_firstorder_Maximum” reveals 
specific localized texture features. “wavelet-LLH_glszm_
LargeAreaHighGrayLevelEmphasis” describes the presence 
of large areas with high CT values in the LLH subband after 
wavelet transformation, highlighting significant variations 
in CT value distribution. “original_glcm_JointEntropy” 
reflects the complexity of texture variations within the 
lesion. “lbp-3D-m1_glrlm_LongRunEmphasis” quantifies 
long-range trends of similar CT values within the lesion, 
emphasizing elongated structures or patterns present within 
it. Hence, the distribution of texture within the lesion area, 
notably the depiction of significant regions, stands as crucial 
discriminative information. Further complemented by key 
lesion features (spiculated margin and pleural indentation), 
this could offer more precise grounds for clinical decision 
support.

The top 5 high-contribution rules are highly representative:

Rule 1: original_shape_MajorAxisLength <  = 12.46 
& original_firstorder_10Percentile <  =  −768.75 &​
wav​ele​t-L​LH_​gls​zm_​Lar​geA​rea​Hig​hGr​ayL​evelEm-
phasis <  = 45,043.45&wavelet-LLH_firstorder_Maxi-
mum <  = 487.20. This rule was generated using the Ada-
Boost method. It first categorizes based on the lesion’s 
major axis length (as seen in Fig. 5, cases greater than 12.46 
are mostly IAC); then considers the 10% CT value within 
the lesion (−768.75, relatively less common in IAC cases); 
next, analyzes regions with significant CT value variations 
(notably, 45,043.45 allows clear classification); and finally 

Table 3   Performance of the 
models in datasets

Models Precision Recall F1 Acc

Diverse decision rules model in training set 0.9464 0.9815 0.9636 0.9433
Diverse decision rules model in testing set 0.9341 0.9771 0.9551 0.9291
Diverse decision rules model in validation set 0.918 0.9333 0.9256 0.8941

Table 4   AUC performance of 
each model

Models Training set Testing set Validation set

Diverse decision rules model 0.9621 0.9529 0.8953
Gradient boosting rules model 0.9391 0.9093 0.8440
Random forest rules model 0.8681 0.8722 0.8640
AdaBoost rules model 0.9449 0.9363 0.8750
10 features model with same dataset 0.8770 0.8930 0.8510
Paper15 0.8310 0.7920 0.8330
Paper32 0.885 0.808 -
Paper33 0.877 0.893 0.851
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explores texture features in specific areas (cases with values 
greater than 487.20 are predominantly IAC).
Rule 2: ada_original_glcm_JointEntropy <  = 8.48 & origi-
nal_shape_MajorAxisLength <  = 10.01 & original_firstor
der_10Percentile <  =  −658.70 & wavelet-LLH_firstorder_
Maximum ∈ (122.71,525.63]. Also generated by the Ada-
Boost method, this rule first calculates the entropy reflect-
ing the complexity of texture within the lesion area (with 
most values greater than 8.48 indicating IAC). Next, similar 
to Rule 1, it analyzes the lesion’s major axis length and 
the 10% CT value within the region. Finally, it examines 
regions with significant CT value variations (with the dis-
tinction being that this feature’s value is constrained within 
a specified range in the rule).
Rule 3: original_shape_MajorAxisLength <  = 9.93 & 
original_firstorder_10Percentile <  = −607.30 & origi-
nal_glcm_JointEntropy <  = 8.70 & wavelet-LLH_first-
order_Maximum ∈ (122.71, 523.14]. This rule was also 
generated by the AdaBoost method. It closely resem-
bles Rule 2, with the key difference being the order of 
evaluation for “original_glcm_JointEntropy” and “origi-
nal_shape_MajorAxisLength” in the rule (of course, the 
threshold values have also changed). This suggests that 
these two features possess similar discriminative capabili-
ties. The four features in the rule may be crucial evalua-
tion indicators for lesion recognition.
Rule 4: lbp-3D-k_glcm_Imc2 <  = 0.20&original_shape_
MajorAxisLength <  = 9.93& original_firstorder_90Perce
ntile <  =  −336.0. This rule was generated by the gradient 
boosting method. It involves an analysis of the texture het-
erogeneity within the lesion, the lesion’s major axis length, 
and the 90th percentile CT value within the region.
Rule 5: “spiculated margin.” This rule is highly unique; 
both the gradient boosting and random forest methods 
determined it to be valuable. Its sole original feature 
retained until the end and is a highly valuable lesion 
indicator.

Within the top five rules contributing most significantly 
to the model, “original_shape_MajorAxisLength” undoubt-
edly emerges as the pivotal discriminant. It holds two cru-
cial thresholds, 12.46 and 9.93. From Fig. 5, it is evident 
that cases exceeding 12.46 are predominantly associated 
with IAC, while the range around 9.93 presents challenges 
in clear classification. Across all rules, this feature’s thresh-
olds can be broadly categorized into three ranges (12.46, 
near 9.93, and near 8.5). The first and last ranges exhibit 
similar classification performance, while 9.93 resides in 
the region of most intricate classification. While we can-
not solely rely on a single numerical value to determine 
the benign or malignant nature of a lesion, this particu-
lar discernment value seems to hold special significance, 
warranting further clinical validation. Another frequently 

employed feature is “wavelet-LLH_firstorder_Maximum.” 
Interestingly, this feature consistently serves as the final 
decisive element in the rules. As a descriptor of specific 
localized texture characteristics, it complements the rules 
effectively yet appears to lack robust classification capa-
bility. Among various features representing lesion texture, 
“original_glcm_JointEntropy” is the most frequently uti-
lized in the rules. This feature reflects entropy, indicating 
the randomness and disorder in pixel distribution, effec-
tively capturing diverse lesion manifestations on CT scans 
(such as ground-glass opacities, vascular cluster signs).

“Spiculated margin” and “pleural indentation,” as the 
preserved lesion indicator features, appear less active in the 
rule set. “Spiculated margin,” despite being a significant 
sign of lesion activity, has made noteworthy contributions 
to the model. However, apart from its presence in Rule 5 in 
its original form, it is absent in other rules. Notably, “pleu-
ral indentation” is only used once, in Rule 15. This could 
be attributed to the strong discriminatory power inherent in 
“spiculated margin.” Moreover, the comprehensive evalua-
tion provided by various features reflecting lesion texture, 
shape, and intensity distribution already effectively captures 
the manifestation of lesion characteristics.

Upon comparing all the rules, it is evident that a majority 
of them typically follow a decision sequence of first assess-
ing morphological characteristics (such as “original_shape_
MajorAxisLength”), then scrutinizing key CT values (like 
“original_firstorder_10Percentile”), and finally analyzing 
texture (such as “original_glcm_JointEntropy”). This deci-
sion logic closely parallels the routine image interpretation 
approach adopted by radiologists.

This study also had some limitations. Despite our efforts 
to include multiple data sources, the sample size remains 
relatively small. Additionally, all samples were collected 
based on real clinical cases, without considering the bal-
ance between IAC and MIA/AIS groups and consistency in 
CT equipment parameters. These factors might introduce 
certain interference in the rules due to data constraints. In 
future research, we intend to expand the sample size and dis-
tribution to validate the model’s performance. Furthermore, 
the 3D radiomics features used in the study were calculated 
using a single software package, potentially leading to bias. 
This underscores the need for comprehensive collection and 
computation of high-dimensional image features in subse-
quent studies to discover more effective feature rules.

Conclusions

This study integrated 3D radiomic features and clinical data 
and constructed a rule-based diagnostic model for assess-
ing the risk of lung adenocarcinoma subtypes. Diverse rules 
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were extracted through three ensemble-learning algorithms 
and then ranked and selected via RuleFit and SHAP. Ulti-
mately, an IAC risk assessment model based on 15 rules 
was constructed. This model demonstrated significantly 
improved performance compared to similar feature-based 
models. Through analysis, several key features and important 
decision rules with decision-making value were identified.
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