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Abstract
Deep-learning (DL) algorithms have the potential to change medical image classification and diagnostics in the coming 
decade. Delayed diagnosis and treatment of avascular necrosis (AVN) of the lunate may have a detrimental effect on patient 
hand function. The aim of this study was to use a segmentation-based DL model to diagnose AVN of the lunate from wrist 
postero-anterior radiographs. A total of 319 radiographs of the diseased lunate and 1228 control radiographs were gathered 
from Helsinki University Central Hospital database. Of these, 10% were separated to form a test set for model validation. MRI 
confirmed the absence of disease. In cases of AVN of the lunate, a hand surgeon at Helsinki University Hospital validated 
the accurate diagnosis using either MRI or radiography. For detection of AVN, the model had a sensitivity of 93.33% (95% 
confidence interval (CI) 77.93–99.18%), specificity of 93.28% (95% CI 87.18–97.05%), and accuracy of 93.28% (95% CI 
87.99–96.73%). The area under the receiver operating characteristic curve was 0.94 (95% CI 0.88–0.99). Compared to three 
clinical experts, the DL model had better AUC than one clinical expert and only one expert had higher accuracy than the 
DL model. The results were otherwise similar between the model and clinical experts. Our DL model performed well and 
may be a future beneficial tool for screening of AVN of the lunate.
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Introduction

Avascular necrosis (AVN) of the lunate, also known as 
Kienböck disease or lunate malacia, is a rare condition that 
mostly affects men aged between 20 and 40 years [1]. As 
the exact etiology, pathomechanisms, and natural progres-
sion of the disease remain unclear, the most appropriate treat-
ment remains under debate [2–4]. Symptoms typically vary 
between patients. Detection from plain radiographs is not pos-
sible in the early stage [5], which can lead to delayed diagno-
sis. Consequently, fewer treatment options are available, and 
surgical procedures at this point may be limited to procedures, 
which restrict range of motion and hand performance [6, 7]. 

This can be particularly challenging for manual workers, who 
are also more susceptible to the disease [8].

According to the Lichtman classification, AVN of the 
lunate is categorized from radiographs into stages I–IV [9]. 
Stage I can only be diagnosed with MRI, while later stages are 
also visible in radiographs. It would be beneficial to develop 
a diagnostic tool to aid in earlier diagnosis and hopefully cre-
ate a better understanding of the disease’s natural progression 
from a potentially asymptomatic condition to possible lunate 
collapse and symptomatic arthrosis. An accurate deep-learning 
(DL) model could be especially helpful as a screening tool to 
identify suspicious cases already in primary health care.

DL algorithms are rapidly becoming key instruments 
in medical imaging. In particular, significant advances of 
convolutional neural networks (CNN) in image classifica-
tion and object detection have enabled new tools in medical 
diagnostics [10]. In many instances, such tools have already 
achieved a human-level accuracy in detecting abnormalities 
from both radiographs and photographs [11–13].

This study aimed to determine if our DL algorithm can 
recognize AVN of the lunate from wrist radiographs and 
compare the results to those obtained from clinical experts.
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Patients and Methods

Patients with AVN of the lunate and control patients were 
identified from the Helsinki University Central Hospital 
database between 2003 and 2020 with International Clas-
sification of Diseases (10th revision, ICD-10) codes M93.1, 
M25.5, and M67.4. Figure 1 shows the data collection proce-
dure and exclusion criteria. For controls, patients with diag-
nosis of joint pain (M25.5) or ganglion (M67.4) and avail-
able magnetic resonance imaging (MRI) of the wrist were 
identified. Altogether, 127 AVN patients and 881 controls 
were evaluated. All MRIs were assessed by radiologists. A 
hand surgery resident (K.W) and a hand surgeon (T.A) also 
examined all medical reports, MRIs, and radiologist reports 
for AVN to confirm diagnosis and for controls to confirm 
normal vasculature of the lunate.

Patients with mild ulnar impaction syndrome and post-
operative AVN patient radiographs with no hardware on top 
of the lunate were included in the study. For controls, radio-
graphs taken before or within a year after clean MRI were 

included to minimize the risk of the patient potentially hav-
ing abnormalities in the lunate vasculature and thus affecting 
DL model training. For the AVN cohort, all radiographs 
were assessed and categorized into stages I–IV according 
to the Lichtman classification [9]. Unclear cases (diagnosis 
or staging) were assessed in conjunction with three hand 
surgeons and one musculoskeletal radiologist. Radiographs 
from symptomatic patients were considered as stage I when 
taken at most 1 year before confirmed AVN of the lunate 
diagnosis in the MRI. A total of 116 AVN cohort patients 
with 319 postero-anterior wrist radiographs and 683 con-
trol cohort patients with 1228 control postero-anterior wrist 
radiographs were included in the study.

A data analyst subsequently pseudonymized the radio-
graphs and converted the image format from DICOM to 
PNG. A test set (10% of radiographs) was separated to vali-
date the developed DL model. It was confirmed by the file 
name that all the radiographs from the same patient were 
either in the training or the test set. The test set included radi-
ographs from 13 AVN patients and from 78 control patients. 

Fig. 1  Data collection flow-
chart. PA, postero-anterior; 
MRI, magnetic resonance 
imaging; M93.1, M25.5, 
M67.4, diagnosis codes from 
International Classification of 
Diseases, ICD-10



708 Journal of Imaging Informatics in Medicine (2024) 37:706–714

1 3

Table 1 shows the number and distribution of different stages 
according to Lichtman classification in both the training and 
the test set groups. Altogether, 82 (28%) AVN cohort and 290 
(26%) control radiographs lacked pixel size, and these were 
extrapolated from the average number of the known ones.

After pseudonymization, the radiographs were exported 
to a cloud-based artificial intelligence development environ-
ment Aiforia Create version 5.5 (Aiforia Technologies Plc, 
Helsinki, Finland) where the neural network was developed. 
The model was first trained to recognize the carpal bones. 
After the carpal bones were detected with high sensitivity, a 
“child” layer with another independent neural network was 
trained to detect and segment the lunate as healthy or dis-
eased at the pixel level. Based on the previous classification 
with MRI, the lunates were annotated to the radiographs 
as diseased or healthy. Aiforia AI engines use convoluted 
neural networks for the AI model development.

The following parameter settings were set to train the 
algorithm: semantic segmentation (region type detection) 
with field of view 150 µm and complexity level “extra com-
plex” was used for the carpal bone layer and 50 µm field of 
view with complexity level “extra complex” was used for 
the lunate layer. Both layers had default image augmentation  
settings. The default augmentation settings were as follows: 
scale (−1 to 1.01), aspect ratio (1), maximum shear (1), 
luminance (−1 to 1.01), contrast (−1 to 1.01), maximum 
white balance (1), noise (0), JPG compression quality (40 
to 60) and rotation angle (−180 to 180), and blur maximum 
pixels (1) with flipping option set to enabled. For the addi-
tional training hyperparameters, initial learning rate was set 
to 1 with mini-batch size set to 20 along with initial learning 
rate set to 1. The performance of the resulting model was 
evaluated visually, from the verification error rates and from 
the small validation set of 3 images. Finally, the model with 
1000 iterations was used for the validation in the test set, 
and the ROC curve was created with multiple gain values. 
F1 score for the training set was 90.81%.

The test set radiographs were also examined in the cloud-
based environment by clinical experts (two hand surgeons 
with > 20  years of experience and one musculoskeletal 

radiologist), and lunate was judged as healthy or diseased. 
The images were set in random order. The experts performed 
the assessment separately and were unaware of the correct 
diagnosis, results of the DL model, or the assessments of the 
other experts. Interrater agreement was calculated with mean 
Cohen’s κ between different evaluators. The level of agree-
ment was interpreted as suggested by Mary L McHugh [14].

Confidence intervals (CI) for sensitivity, specific-
ity, and accuracy were calculated by the Clopper-Pearson 
exact method. Likelihood ratios were calculated by the Log 
method [15]. Predictive values were calculated by the stand-
ard logit method by Mercaldo and colleagues [16]. Receiver 
operating characteristic (ROC) curve analysis was used to 
assess the overall accuracy and discrimination ability of the 
DL model and clinical experts. Ninety-five percent CIs for 
areas under the curves and their statistical comparison were 
calculated with DeLong’s test. P-values < 0.05 were consid-
ered statistically significant. ROC curve for the DL model 
was calculated by varying the model’s gain parameter.

Results

Our DL model recognized AVN of the lunate in 28 out of 30 
radiographs in the test set with a sensitivity of 93.33%, spec-
ificity of 93.28%, and accuracy of 93.28% for the model. The 
area under the ROC curve was 0.94 (Fig. 2). ROC curves of 
clinical experts are presented in Fig. 3. A statistically sig-
nificant difference of the AUC was found between the DL 

Table 1  Number of patients and radiographs per stage. Staging 
according to Lichtman [9]

Training set Test set

Patients Radiographs Patients Radiographs

Stage I 19 42 1 2
Stage II 39 84 5 12
Stage IIIA 42 72 4 8
Stage IIIB 31 64 5 7
Stage IV 12 25 1 1
Total 103 287 13 30

Fig. 2  ROC curve indicating DL model performance in the test set
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model and surgeon 1 and between radiologist and surgeon 1 
(Table 2). F1 score for the test set was 84.85%.

The true pixel size was missing and was thus extrapolated 
from the average size in one out of two radiographs that 
the DL model missed. Both misdiagnosed radiographs were 
taken from the same patient, but the model correctly recog-
nized the one remaining radiograph from the same patient. 
Both were stage IIIB and correctly recognized by clinical 
experts. The DL model identified both stage I radiographs 
in the test set. The DL model recognized the carpal bones in 
all except one radiograph. This radiograph was cropped such 
that only part of the carpal bones was visible and did not 
for this reason entirely represent a typical wrist radiograph. 
This was excluded from the performance calculations, as the 
DL model did not provide any assessment of the lunate. In 
two radiographs, the carpal bone assessment was too wide, 
but the DL model recognized the lunate correctly. These 
radiographs were quite dark. There was a partial false posi-
tive/negative segmentation either in the lunate or somewhere 
else in the radiograph in 10 control and 1 cohort cases. An 
example is shown in image C in Fig. 4. The assessment was 
considered as AVN if > 30% of the lunate was detected by 
the DL model as diseased bone. Figure 5 shows an exam-
ple of the DL model’s recognition of stage I disease. The 
extrapolated pixel size in control radiographs coincided with 

lunate drawings out of shape. The number of false-positive 
radiographs was eight; four of these had extrapolated pixel 
size. Table 3 shows the test set confusion matrix, and Table 4 
shows the overall results with 95% CIs.

Interrater agreement was moderate (κ = 0.715; 95% CI 
0.581–0.849; P < 0.001). A comparison of the performance 
of the DL model and clinical experts with 95% CIs is shown 
in Table 5. The only statistically significant difference was 
between the musculoskeletal radiologist and the DL model 
in accuracy. The radiologist also acquired statistically sig-
nificantly higher accuracy than both surgeons and better 
specificity than one surgeon.

Discussion

Our DL model detected AVN of the lunate with promising accu-
racy and may be a useful diagnostic tool in the future. Based on 
the observed sensitivity and specificity, the current DL model 
missed only 6.7% of the presented radiographs with AVN and 
misinterpreted healthy ones as diseased in 6.7% cases. Further-
more, the model had a higher AUC than one clinical expert.

The musculoskeletal radiologist was better than experi-
enced hand surgeons and the DL model in accuracy but not 
in sensitivity and had a higher AUC and specificity than one 
of the hand surgeons. This is an interesting observation and 
underlines the fact that only radiologists have received educa-
tion in image interpretation. The biggest benefit of the DL 
model would probably be in aiding diagnosis in primary health 
care, where reports of radiographs often come late and from 
radiologists not specialized in musculoskeletal imaging.

To our knowledge, there are no previous studies that have 
investigated use of DL algorithms in identifying AVN of 
the lunate. However, the use of DL algorithms has been 
reported in the detection and classification of osteonecrosis 
of the femoral head from both radiographs and MRIs. These 

Fig. 3  ROC curves of clinical experts indicating discrimination performance in the test set. From the left: surgeon 1, surgeon 2, radiologist

Table 2  AUC comparison with DeLong’s test. Statistically significant 
P-values are highlighted in bold

Comparison P-value

DL model vs surgeon 1 0.00
DL model vs surgeon 2 0.08
DL model vs radiologist 0.62
Surgeon 1 vs surgeon 2 0.18
Surgeon 1 vs radiologist 0.01
Surgeon 2 vs radiologist 0.21
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Fig. 4  Examples of DL model 
analyses. Carpal bones are indi-
cated in green, healthy lunate 
as blue, and avascular necrosis 
as red. The DL model made 
the correct analyses in images 
A and B. Image C represents a 
control case. As > 30% of the 
lunate is red, the analysis was 
interpreted as false positive
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studies show that it is possible to achieve results comparable 
to experienced clinicians [17–21]. Sensitivity of the algo-
rithms was lower in the external test sets [17, 19], which 
underlines the need for external validation of the algorithms. 
Li et al. [20] achieved statistically significantly higher sen-
sitivity for their model when they combined AP and lateral 
view radiographs instead of using only one view. This would 
be interesting to test further in our data.

Anttila et al. [22] investigated the use of a segmentation-
based DL model in detection of distal radius fractures and 
obtained an AUC of 0.97 (95% CI 0.95–0.98) for the model. 
Ashkani-Esfahani et al. [23] used transfer learning in adopt-
ing pretrained CNNs to assess presence of ankle fracture 
in the radiograph. The use of pretrained algorithms may 
improve the performance of the DL models. The weakness 
of these studies when compared with ours is the less rigor-
ous ground truth labeling of presence or absence of disease. 

We have MRIs of all control patients to exclude the possibil-
ity of AVN. CT would be needed for every patient to exclude 
fractures not visible in radiographs. Lindsey et al. [24] dem-
onstrated that assistance from DL algorithms significantly 
improved fracture detection of clinicians. They had multiple 
approaches to reduce overfitting, including bootstrapping 
stage, early stopping, and data augmentation. Nonetheless, 
they preprocessed the radiographs and rescaled them to a 
fixed resolution, which may change the performance of the 
model in an actual clinical setting.

Surprisingly, our model recognized Lichtman stage I from 
radiographs, which is not by definition visible to the human  

Fig. 5  Figure indicates how the DL model recognizes avascular necrosis of lunate stage I from the radiograph that cannot be recognized by 
human assessment

Table 3  Test set confusion matrix

Avascular necrosis of the 
lunate

Healthy control

Test positive 28 8
Test negative 2 111
Total 30 119

Table 4  Results for the test set

*Exact prevalence unknown, estimate 0.27% used in the calculations 
is based on van Leeuwen W et al. et al. [27]

Statistic Value (95% CI)

AUC 0.94 (0.88–0.99)
Sensitivity 93.33% (77.93–99.18%)
Specificity 93.28% (87.18–97.05%)
Accuracy* 93.28% (87.99–96.73%)
LR + 13.88 (7.06–27.30)
LR− 0.07 (0.02–0.27)
Positive predictive value* 3.62% (1.88–6.88%)
Negative predictive value* 99.98% (99.93–99.99%)
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eye. Previously, David W. G. Langerhuizen et al. [25] presented 
their DL algorithm that recognized five out of six occult scaph-
oid fractures that were missed by human observers. Detection 
of changes from radiographs that are not visible to the human 
eye is very intriguing. If this performance is achieved in clini-
cal practice, the DL model could be extremely useful in future 
diagnostics of AVN of the lunate. There are more treatment 
options the earlier the disease is diagnosed. Especially for gen-
eral practitioners and non-specialized radiologists, it would be 
beneficial to have this kind of tool to raise suspicion of disease 
sooner and expedite referral to a hand surgeon.

There is unfortunately minimal published data on the epi-
demiology of AVN of the lunate [26–29] and no literature 
about the prevalence in Finland. Accordingly, calculations 
of positive predictive value (PPV) and negative predictive 
value (NPV) are rough estimates. Nevertheless, AVN of the 
lunate is known to be rare, and thus PPV would probably be 
somewhat low and result in a greater number of false posi-
tives. This would, in turn, result in higher costs if refuting 
the positive findings with MRI and may potentially cause 
unnecessary concern for patients. For a rare condition such 
as AVN of the lunate, where the pre-test likelihood is very 
low and the clinical resources available for additional diag-
nostic imaging are limited, medical authorities would need 
to decide on the optimal threshold where the DL model can 
be implemented in clinical practice with optimal benefit for 
society and the patient.

Our study had some limitations, in particular the small 
sample size that is due to the rarity of the disease. However, 
the study population consisted of all patients with AVN of 
the lunate treated in Helsinki University Hospital between 
2003 and 2020, with radiographs available for research 
purposes. Accordingly, there was a low risk of sampling 
bias. Another limitation is the lack of external validation 
for which data were unavailable. External validation of the 
model must be performed before any possibility of clinical 
implementation. This study should be considered as proof of 
concept. Unfortunately, there is no state-of-the-art method to 
diagnose AVN of the lunate except for clinical assessment 
from radiographs or MRI. Therefore, comparison of the 
model has only been made against a clinician’s assessment. 
We did not include patients with severe ulnar impaction 
syndrome and large lunate cysts as controls, which might 
have confused the model. These conditions may increase the 

number of false positives in real-life practice. We included 
radiographs taken after different operations or with hard-
ware in place except when directly on top of the lunate. In 
eight cases (21 radiographs), the stage remained as I after 
the operation and in one case it improved from stage II to I. 
In one case (6 radiographs), the operation was done as a cor-
rection osteotomy after distal radius fracture and not because 
of AVN of the lunate. MRI was not repeated after the opera-
tions, and hence there is no way of knowing whether the 
AVN could have healed. This may have resulted in a few 
false positives in stage I images. The absence of some pixel 
sizes in the radiograph metadata seemed to affect the preci-
sion of the DL model in some cases. After initial results, 
most of the missed AVN radiographs seemed to have the 
extrapolated pixel size. A few exact pixel sizes were found 
afterwards; the DL model recognized AVN better when 
these were corrected. Therefore, the overall results may have 
been affected if all pixel sizes were available.

The challenge of overfitting emerges when a neural 
network boasts an excessive number of layers or when 
the training dataset is inadequately small. This results 
in an AI model that becomes excessively precise within 
the confines of the training data, rendering it unsuitable 
for the generalization of results in subsequent analyses. 
In our case, the disease in question is a rarity, making it 
impractical to amass a substantial volume of data. Nev-
ertheless, we sourced data from several hospitals within 
the Helsinki University Hospital region, utilizing a variety 
of radiograph machines, and the primary input data was 
in that sense notably heterogeneous. This diversity may 
facilitate a broader application of our findings. However, 
we acknowledge that additional research in clinical set-
tings is essential to enable the clinical use of the model. 
Furthermore, we were diligent in ensuring that our images 
did not feature overrepresented elements unrelated to the 
subject under examination, such as casts or hospital labels 
in the context of disease cases. We did not have a separate 
validation set to test DL model’s performance which is 
an obvious limitation in our study and may have resulted 
in an overfitted DL model. The use of separate validation 
set would not have been feasible regarding our binary out-
come in Aiforia platform. However, in Aiforia platform, 
the algorithm learning process prematurely stops if the 
learning curve enters the plateau phase, and AI engines 

Table 5  Results of the DL 
model compared with clinical 
experts. DL deep learning

*Estimated prevalence 0.27% [27] was used in the calculations

Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)*

Surgeon 1 90.00% (73.47–97.89%) 88.33% (81.20–93.47%) 88.34% (82.09–93.00%)
Surgeon 2 80.00% (61.43–92.29%) 96.67% (91.69–99.08%) 96.62% (92.33–98.88%)
Radiologist 86.67% (69.28–96.24%) 100.00% (96.97–100.00%) 99.96%
DL model 93.33% (77.93–99.18%) 93.28% (87.18–97.05%) 93.28% (87.99–96.73%)
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are unable to learn anything significantly new. Hence, 
early stopping is a build-in feature to prevent overfitting. 
In addition, parameter “iterations without progress” was 
kept as default (100 iterations), thus avoiding any extra 
iterative steps in the training process that may lead towards 
overfitting. Total area error was not zero in our training set 
which also argues against overfitted algorithm.

In conclusion, our DL model may be of clinical use 
in the future to assist in screening for this rare disease. 
There are two relevant problems regarding diagnostics 
of AVN of the lunate. Many general practitioners do not 
know that this disease exists and hence would not suspect 
it, and stage I is not visible in radiographs to the human 
eye. Our model can hopefully overcome both problems in 
the future. As usual, additional training and testing data 
are of great value when developing DL models for a rare 
condition. In particular, more data are needed to determine 
if the model can truly differentiate Lichtman stage I AVN 
from radiographs. External validation of the model and 
a prospective pilot study are needed to determine if the 
model works in different settings and can be generalized 
into clinical scenarios.
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