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Abstract
This paper aims to compare the performance of the classical machine learning (CML) model and the deep learning (DL) model, 
and to assess the effectiveness of utilizing fusion radiomics from both CML and DL in distinguishing encephalitis from glioma in 
atypical cases. We analysed the axial FLAIR images of preoperative MRI in 116 patients pathologically confirmed as gliomas and 
clinically diagnosed with encephalitis. The 3 CML models (logistic regression (LR), support vector machine (SVM) and multi-
layer perceptron (MLP)), 3 DL models (DenseNet 121, ResNet 50 and ResNet 18) and a deep learning radiomic (DLR) model 
were established, respectively. The area under the receiver operating curve (AUC) and sensitivity, specificity, accuracy, negative 
predictive value (NPV) and positive predictive value (PPV) were calculated for the training and validation sets. In addition, a deep 
learning radiomic nomogram (DLRN) and a web calculator were designed as a tool to aid clinical decision-making. The best DL 
model (ResNet50) consistently outperformed the best CML model (LR). The DLR model had the best predictive performance, with 
AUC, sensitivity, specificity, accuracy, NPV and PPV of 0.879, 0.929, 0.800, 0.875, 0.867 and 0.889 in the validation sets, respec-
tively. Calibration curve of DLR model shows good agreement between prediction and observation, and the decision curve analysis 
(DCA) indicated that the DLR model had higher overall net benefit than the other two models (ResNet50 and LR). Meanwhile, the 
DLRN and web calculator can provide dynamic assessments. Machine learning (ML) models have the potential to non-invasively 
differentiate between encephalitis and glioma in atypical cases. Furthermore, combining DL and CML techniques could enhance 
the performance of the ML models.
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Introduction

Glioma and encephalitis are prevalent diseases affecting 
the central nervous system. Surgery is commonly consid-
ered as the initial treatment for glioma [1], while non-
operative therapy is the primary approach for managing 
encephalitis [2]. In atypical cases where encephalitis and 
glioma exhibit very similar manifestations, the laboratory 
tests are atypical, and the clinical symptoms and signs 
of these conditions often coincide [3–8]. This diagnostic 
dilemma can result in unintentional surgery or delayed 
treatment. Early recognition and prompt initiation of a 
range of immunotherapies, especially for patients with 
identifiable antibodies against neuronal cell surface pro-
teins, are crucial for improving the outcomes of those with 
autoimmune encephalitis (AIE) [9]. Therefore, it is para-
mount to explore alternative noninvasive diagnostic tools 
to guide appropriate treatment.

The diagnosis of encephalitis relies on both clinical 
and paraclinical data, including brain magnetic resonance 
imaging (MRI). Conventional brain MRI is particularly 
valuable when the clinical context is uncertain [10]. With 
current conventional MR imaging methods, differentiat-
ing encephalitis from a classical enhancing glioma with 
perifocal edema, mass effect and necrosis is not challeng-
ing. Nevertheless, certain gliomas, particularly lower-
grade gliomas that originate from supporting cells in the 
brain and encompass astrocytomas, oligodendrogliomas 
or mixed gliomas [11], exhibit focal area enhancement 
or lesions without enhancement, lacking mass effect or 
necrosis. This resemblance to encephalitis can lead to 
misdiagnosis and subsequent treatment delays [8, 12]. 
Conversely, certain cases of encephalitis present with a 
noticeable mass effect due to the significant extent, often 
leading to misdiagnosis as a glioma [13]. There have been 
multiple published cases of adult brain tumours initially 
misidentified as encephalitis, such as those documented by 
Talathi et al. and Wang et al. [7, 14]. Numerous published 
cases of adult encephalitis initially misdiagnosed as brain 
tumours have also been reported, including those by Pana-
gopoulos et al. and Halling et al. [5, 15].

Presently, machine learning (ML) is extensively 
employed in the field of neurological diseases to enhance 
clinical decision-making. Several studies have demon-
strated that ML can distinguish the various pathological 
subtypes of gliomas [16] and assess the status of molecular 
and genetic markers associated with the brain tumour [17]. 
It has been employed to distinguish between glioblastoma 
and tumefactive demyelinating lesions [18]. These studies 
suggest that ML proves to be a potent analytical tool in 
evaluating radiological data related to glioma and enceph-
alitis. To the best of our knowledge, there have been very 

limited reports on the use of ML based on MRI to distin-
guish between encephalitis and glioma in atypical cases. 
In one study, brain inflammation was differentiated from 
grade II glioma in a cohort of just 57 patients [19]. The 
other study employed only MR-based deep learning (DL) 
to differentiate between glioma and encephalitis [20]. The 
objective of this study was to compare the performance of 
the classical machine learning (CML) model and the DL 
model, and assess the effectiveness of utilizing radiomic 
features extracted from both CML and DL in distinguish-
ing encephalitis from glioma in atypical cases.

Materials and Methods

This retrospective study was approved by the institutional 
review boards of the Beijing Tiantan Hospital, Capital Medi-
cal University (ID: KY2022-214-02), and the requirement 
for informed consent was waived.

Patient Data

In this study, 116 patients (mean age ± standard deviation, 42.3 
± 17.2 years old; 63 men and 53 women) pathologically con-
firmed as gliomas and clinically diagnosed with encephalitis in 
our medical institute between January 1, 2019 and March 31,  
2023 were recruited. The diagnosis of AIE was based on the 
2016 and 2021 diagnostic criteria [10, 21]. The current guide-
lines for diagnosing AIE are applicable to children as well [22]. 
Infectious encephalitis diagnosis, on the other hand, required 
confirmation of an infectious pathogen. Patient clinical data 
were retrieved and analyzed from electronic medical records.  
The detailed selection process is shown in Supplementary Fig.  
S1. The imaging data is restricted to patients of Asian descent 
due to geographical constraints.

MRI Acquisition and Segmentation

All patients underwent preoperative head MRI scans, which 
included in our study is a single FLAIR sequence as it pro-
vides the clearest visualization of lesions. For specific 
MR scanning parameters, please refer to Supplementary 
Table 1. The raw MRI data were obtained from our insti-
tute’s Picture Archiving and Communication System in the 
format of Digital Imaging and Communications in Medi-
cine (DICOM) and subsequently transferred to a personal 
computer.

First, the image format was converted from DICOM to 
NIFTI. Subsequently, all images underwent normalization, 
with the pixel spacing resampled to 1 × 1 × 0  mm3. The 
image analysis was performed using ITK-SNAP 3.8.0 (http:// 
www. itksn ap. org). In this software, the neuroradiologist 

http://www.itksnap.org
http://www.itksnap.org
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manually outlined the abnormal hyperintensity on the 
FLAIR sequence for each slice displaying the lesion. Fol-
lowing the delineation across consecutive slices, the data 
were saved as volumes of interest (VOIs). The VOIs were 
delineated by an experienced neuroradiologist (F.Z., with 3 
years of neuroradiology experience) and independently con-
firmed by another neuroradiologist (X.Z.C., with 15 years 
of neuroradiology experience).

Study Design

In the current study, we aimed to establish 3 ML models: 
(1) task 1 consisted of establishing 3 CML models (logis-
tic regression (LR), support vector machine (SVM) and 
multi-layer perceptron (MLP)) using the FLAIR sequence; 
(2) task 2 involved constructing 3 DL models (DenseNet 
121, ResNet 50 and ResNet 18) based on FLAIR sequence; 
and (3) task 3 focused on building 2 fusion models, which 
are feature fusion model and predictive score fusion model. 
The feature fusion model was based on selecting FLAIR-
based CML features and DL features. The features were 
then combined to create a deep learning radiomic (DLR) 
model. The predictive score fusion model, a deep learning 
radiomic nomogram (DLRN), was constructed by combin-
ing CML and DL scores using multivariate LR. An online 

web calculator embedding a dynamic nomogram with binary 
logistic regression model was also developed. The study 
workflow is illustrated in Fig. 1.

Task 1: Construction and Validation of the CML Model

A total of 1015 handcrafted CML features were extracted. 
Details of the CML features can be found in Supplementary 
Fig. S2. And the patients were randomly divided into train-
ing and internal validation sets in an 8:2 ratio.

To select the most informative radiomic features for 
subsequent model building, a series of feature selection 
strategies were implemented. First, the radiomic features 
were normalized using the z score method. Next, the Mann-
Whitney U test statistical test was performed on all radiomic 
features, with only those features having a p value < 0.05 
being retained. For features with high repeatability, Spear-
man’s rank correlation coefficient was used to calculate the 
correlation between features; if the correlation coefficient 
between two features exceeds 0.9, only one of the features 
was retained. The remaining CML features underwent addi-
tional screening using the least absolute shrinkage and selec-
tion operator (LASSO) technique. The optimal λ was deter-
mined through 10-fold cross-validation, where the value 
providing the minimum cross-validation error was selected.

Fig. 1  The workflow chart of our study. Including 3 tasks: (1) task 
1 consisted of establishing 3 CML models (logistic regression (LR); 
support vector machine (SVM); and multi-layer perceptron (MLP)) 
using the FLAIR sequence; (2) task 2 involved constructing 3 DL 

models (DenseNet 121, ResNet 50 and ResNet 18) based on FLAIR 
sequence; and (3) task 3 focused on building 2 fusion models, which 
are feature fusion model and predictive score fusion model
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Following LASSO feature screening, the selected 
features were input into CML (LR, SVM, MLP) for risk 
model construction. Default hyperparameters were uti-
lized for all models. In the case of SVM implementation, 
the penalty relaxation variable C was set to the default 
value of “1.0”, and the kernel function employed was 
“rbf”. For LR, the default values of fit_intercept and 
positive were set to “true” and “false”, respectively. In 
the case of MLP, the activation function used was “the 
rectified linear unit”, with a total of three hidden layers 
consisting of 128, 64 and 32 neurons, respectively. Other 
default parameters are available at https:// sciki tlearn. org/ 
stable/ modul es/ gener ated/ sklea rn. svm. SVC. html# sklea rn.  
svm. SVC, https:// sciki tlearn. org/ stable/ modul es/ gener ated/ 
sklea rn. linear_ model. Linea rRegr ession. html# sklea rn.  
linear_ model. Linea rRegr ession and https:// sciki tlearn.  
org/ stable/ modul es/ gener ated/ sklea rn. neural_ netwo rk. 
MLPCl assif ier. html# sklea rn. neural_ netwo rk. MLPCl assif ier.  
The area under the receiver operating characteristic 
(ROC) curve (AUC) served as the evaluation criterion 
for model performance. The final classifier was then 
applied to the internal validation sets, and various met-
rics (sensitivity, specificity, accuracy, negative predictive 
value (NPV), positive predictive value (PPV) and AUC) 
were calculated in both the training and validation sets to 
assess model performance.

Task 2: Construction and Validation of the DL Model

First, all images underwent conversion from NIFTI to portable 
network graphics (PNG) format. To capture comprehensive 
2.5D signal intensity information from the tumour, the extrac-
tion process involved inputting axial FLAIR images and VOI. 
The axial slice within the smallest rectangular box contain-
ing the mask was selected as the “maximum tumour image”. 
Additionally, five other images were extracted from slices 
adjacent to the maximum tumour image. These included 1 
upper (+ 1), 2 upper (+ 2), 1 lower (− 1), 2 lower (− 2) and 3 
lower (− 3) slices within the VOI. When the VOI is too small 
and the adjacent structure does not have 5 layers, only the 
layers within the VOI are cropped out. Consequently, a total 
of six or less axial slices per patient were chosen based on the 
VOI and treated as individual samples for model development 
and testing.

The datasets were divided into a training set and an inter-
nal validation set using the same splitting strategy adherence 
to the CML model division. The original image consisted 
of the image slice showing the maximum tumour region of 
interest (ROI) area and slices located + 1, + 2, − 1, − 2 and 
− 3 (totalling to 696 images from 116 patients); this 2.5D 
approach has demonstrated robust performance compared to 
2D or 3D image classification methods, and also achieves 
significantly lower computational cost [23].

The transfer learning models used in this study were 
DenseNet 121, ResNet 50 and ResNet 18, all of which were pre-
trained on the ImageNet dataset to initialize the weight values. 
Prior to training, the input 2D rectangular ROIs were resized to 
dimensions of 224 × 224 pixels for the DL models. The size of 
the fully connected layers was adjusted from 1000 to 2 to enable 
the binary classification of patients into glioma and encephali-
tis groups. Model training involved forward computation and 
backpropagation. The network weights were updated using a 
cross-entropy loss function for the predictive task. In this study, 
the models were trained using an adaptive moment estimation 
optimizer with batch size of 32. We utilized the “torch.Optim.
Lr_scheduler.CosineAnnealingLR” library provided by PyTorch 
1.8.0 to dynamically adjust the learning rate. The initial learning 
rate was set to 0.01. As the number of training epochs increases, 
the learning rate gradually decreases. The average loss value in 
the training set is computed every five epochs. If the decrease 
in loss value is less than 5% compared to the previous cycle, 
the program determines that the training process is complete. 
ResNet 18, ResNet 50 and DenseNet 121 were trained for 50,  
55 and 30 epochs, respectively. More information about work-
ing mode is available at https:// github. com/ pytor ch/ vision/  
torch vision/ models. The performances of the DL models were 
also assessed using sensitivity, specificity, accuracy, NPV, PPV 
and AUC. An illustration showcasing the Resnet network archi-
tectures can be accessed in Supplementary Fig. S3.

Task 3: Development of the DLR models 
and the DLRN

Once construction and validation of the DL models were 
completed, the network parameters were fixed, and the fixed 
models were used as a feature extractor. The DL features were 
extracted from the penultimate layer of the fine-tuned network 
for each patient in the training and validation sets. To enhance 
the transparency of the model’s decision-making process and 
to investigate its interpretability, gradient-weighted class acti-
vation mapping (Grad-CAM) was employed to visualize the 
models. The gradient information from the last convolutional 
layer of the networks was used for weighted fusion to generate 
a class activation map that highlighted the important regions 
of the target classification image [24].

DL models extract a multitude of features, making it neces-
sary to employ dimension reduction techniques such as prin-
cipal component analysis (PCA) to effectively handle the high 
dimensionality of the extracted features. The number of fea-
tures is drastically reduced through PCA. Subsequently, these 
features were combined with CML features for further DLR 
modelling. The feature screening methods and model building 
process for the DLR model mirrored those utilized for the CML 
model. The integration of DL features and CML features aimed 
to maximize their respective characteristics and overcome insta-
bility caused by the limited sample size. The performance of the 

https://scikitlearn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikitlearn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikitlearn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikitlearn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikitlearn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikitlearn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://github.com/pytorch/vision/torchvision/models
https://github.com/pytorch/vision/torchvision/models
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best CML model, the best DL model and the DLR model was 
assessed using the AUC with 95% confidence interval (CI). To 
investigate the net benefit of the discrimination model across 
the entire range of probability thresholds, we employed deci-
sion curve analysis (DCA) [25, 26]. The agreement between 
the predicted and actual outcomes of the model was evaluated 
using calibration curve. Calibration curve that closely aligns 
with the 45° diagonal indicates a higher level of model accuracy 
[27]. DCA and calibration curves were performed to evaluate 
the clinical utility of the three models.

Additionally, a predictive score fusion model was also estab-
lished to construct the DLRN. The DLRN was constructed by 
combining the respective CML and DL scores utilizing LR. It 
can be calculated for each patient in both the training and test sets 
by combining the DL and CML scores, weighted by their respec-
tive coefficients. A web-based calculator was also developed to 
compute the correlation between the screening variables (CML 
and DL scores) and the estimated probabilities of encephalitis.

Statistical Analysis

Differences in clinical characteristics between the training 
and validation sets were evaluated using the t test and chi-
squared test. The analysis was conducted with statistical 
software SPSS 26 (SPSS Inc, Armonk, NY), and statistical 
significance was defined as a p value < 0.05.

Results

Clinical Characteristics

The patients were randomly allocated to two sets: training (n 
= 92) and validation (n = 24), with the mean ages of 42.61 
and 41.33 years, respectively. No significant difference was 
observed in age and gender between the two sets of patients. 
Detailed clinical characteristics of patients are listed in Table 1. 

Task 1: CML Model Construction and Validation

A total of 7 categories, 1015 handcrafted CML features 
are extracted, including 198 first-order features, 14 shape 
features and the remained texture features. All handcrafted 
features are extracted with an in-house feature analysis 
program implemented in Pyradiomics (http:// pyrad iom-
ics. readt hedocs. io). The extracted features and their cor-
responding p value results are presented in Supplementary 
Fig. S4. After performing the Mann-Whitney U test and cal-
culating Spearman’s rank correlation coefficient, nonzero 
coefficients were chosen to construct the Rad score using 
a LASSO logistic regression model. The coefficients and 
mean standard error (MSE) from 10-fold validation are 
presented in Fig. 2. And Supplementary Fig. S5 shows the 
coefficient value in the final selected none zero features. 

Table 1  Baseline characteristics of patients in cohorts

Feature name Train-All Train-Glioma Train-Encephalitis P value Test-All Test-Glioma Test-Encephalitis P Value

Age 42.61 ± 16.74 45.04 ± 14.56 40.28 ± 18.45 0.17 41.33 ± 19.10 41.30 ± 17.46 41.36 ± 20.84 0.99
Gender 0.69 1.00
  Female 42 (45.65) 22 (48.89) 20 (42.55) 11 (45.83) 5 (50.00) 6 (42.86)
  Male 50 (54.35) 23 (51.11) 27 (57.45) 13 (54.17) 5 (50.00) 8 (57.14)

Fig. 2  Coefficients of 10-fold cross-validation in CML model (a). MSE of 10-fold cross-validation in CML model (b)

http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io


658 Journal of Imaging Informatics in Medicine (2024) 37:653–665

1 3

Table 2 displays the performance of the CML model uti-
lized for distinguishing encephalitis from gliomas, with the 
LR model performing the best compared with the SVM and 
the MLP classifier. The LR model exhibited the highest 
AUC values of 0.930 and 0.836 on the training and vali-
dation cohorts, respectively. Figure 3 illustrates the AUC 
of each CML model on both the training and validation 
cohorts. Furthermore, Supplementary Fig. S6. displays the 

confusion matrices of the prediction results and presents the 
DCA of each model.

Task 2: DL Model Construction and Validation

The ResNet50 model exhibited superior performance com-
pared to the other two DL models in the validation set 
(Table 2 and Fig. 3). In the validation set, the ResNet50 

Table 2  The performance of each model in training and validation sets

Model type Model name AUC 95% CI Accuracy Sensitivity Specificity PPV NPV Task

CML model MLP 0.933 0.8812–0.9855 0.891 0.894 0.889 0.894 0.889 Train
MLP 0.779 0.5627–0.9944 0.792 0.857 0.778 0.800 0.778 Validation
SVM 0.963 0.9240–1.0000 0.913 0.894 0.933 0.933 0.894 Train
SVM 0.793 0.6115–0.9742 0.708 0.500 1.000 1.000 0.588 Validation
LR 0.930 0.8770–0.9821 0.891 0.894 0.889 0.894 0.889 Train
LR 0.836 0.6680–1.0000 0.833 0.857 0.800 0.857 0.800 Validation

DL model Resnet18 0.924 0.8695–0.9778 0.891 0.851 0.933 0.930 0.857 Train
Resnet18 0.807 0.6149–0.9994 0.792 0.786 0.800 0.846 0.727 Validation
Densenet121 0.893 0.8277–0.9577 0.837 0.872 0.800 0.820 0.857 Train
Densenet121 0.821 0.5859–1.0000 0.917 1.000 0.800 0.875 1.000 Validation
Resnet50 0.922 0.8680–0.9755 0.880 0.894 0.867 0.875 0.886 Train
Resnet50 0.839 0.6529–1.0000 0.875 0.929 0.800 0.867 0.889 Validation

DLR model DLR 0.999 0.9968–1.0000 0.989 1.000 0.978 0.979 1.000 Train
DLR 0.879 0.7038–1.0000 0.875 0.929 0.800 0.867 0.889 Validation

Fig. 3  a ROC analysis of different CML models; b ROC analysis of different DL models; and c the AUCs of the best CML model, the best DL 
model and the DLR model on the training and validation cohort



659Journal of Imaging Informatics in Medicine (2024) 37:653–665 

1 3

model demonstrated the highest classification performance, 
achieving an AUC of 0.839, accuracy of 0.875, sensitivity 
of 0.929, specificity of 0.800, PPV of 0.867 and NPV of 
0.889. Moreover, ResNet50 consistently outperformed the 
LR model, exhibiting an AUC of 0.836, accuracy of 0.833, 
sensitivity of 0.857, specificity of 0.800, PPV of 0.857 and 
NPV of 0.800. ResNet50 demonstrated the lowest loss value, 
indicating better error learning during training [28], and 
achieved faster convergence compared to the other two DL 
models (Fig. 4).

Task 3: Development of the DLR Models 
and the DLRN

Considering the superior predictive performance of the 
resnet50 model, the DL features were extracted from the 
fixed resnet50 model. Each PNG image was used to extract 
a total of 2049 DL features. From task 2, each patient con-
tributed 6 PNG images, resulting in a total of 12,294 DL 
features for each patient. Figure 5 presents the Grad-CAM 
representations, which are heat maps showing the areas of 

Fig. 4  The accuracy rate and loss values of various deep learning 
models in the training set varied as the epoch progressed. ResNet50 
demonstrated the lowest loss value, indicating better error learn-

ing during training, and achieved faster convergence compared to 
ResNet18 and DenseNet 121
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the image that the DL models focus on for their decision-
making process. The scale bar from red to blue indicates 
the increased contribution of the location to the model’s 
classification. In terms of model interpretability, ResNet50 
exhibited distinct attention regions, predominantly concen-
trating on internal regions of the tumour that align with the 
radiologist’s areas of concern. Conversely, it displayed lim-
ited activation in the boundary regions of the tumour and the 
tumour regions adjacent to normal brain tissue.

Then utilizing PCA for dimensionality reduction, we 
extracted 32 DL features from each PNG image. With each 
patient contributing 6 PNG images, a total of 192 DL fea-
tures were obtained. PCA is a statistical technique used 
to simplify and interpret a high-dimensional dataset by 
identifying the patterns and relationships among variables 
[29]. Using PCA, the number of DL features was reduced 
from 12,294 to 192. PCA is not employed for CML since 
the superiority of CML over DL lies in the presence of 
screening features with specific formula and definition, 
and applying PCA for dimensional reduction would elimi-
nate these distinctive advantages [30]. These DL features 
were then combined with 13 CML features from task 1. 
In total, 205 DL and CML features were selected, out 
of which only 22 features remained after employing a 
LASSO logistic regression model. The coefficients, MSE, 
coefficient values and Rad score from 10-fold validation 
are provided in Supplementary Fig. S7 and Supplementary 
information. Finally, a DLR model was constructed using 
LR classifier due to its excellent performance in task 1.

Table  2 presents all the models that were utilized 
for distinguishing encephalitis from gliomas, and it 
is observed that the DLR model exhibited the highest 

performance. The DLR model, which is considered the 
optimal model, demonstrated the highest AUC values on 
both the training and validation cohorts, reaching 0.999 
and 0.879 respectively. Figure 3 illustrates the AUCs of 
the best CML model (LR), the best DL model (ResNet50) 
and the DLR model on the training and validation cohort.

In addition, the calibration and DCA of the best CML, 
best DL model and DLR model are shown in Figs. 6 and 
7. Figure 6 shows good agreement between prediction 
and observation in the validation cohort. Figure 7 demon-
strates that the DLR model shows a higher net benefit at 
all threshold possibilities during training compared to the 
best CML and the best DL model. Preoperative differentia-
tion between encephalitis and gliomas using DLR model 
has been shown a better clinical benefit.

Meanwhile, we developed a predictive score fusion model 
for constructing the DLRN. Figure 8 depicts how the CML 
and DL scores are combined through multivariate LR, serv-
ing as the foundation for the DLRN architecture. Variable 
values (ResNet50 signature and LR signature) for individual 
were determined based on the top Points scale, and subse-
quently, the points for each variable were summed. Finally, a 
customized probability was obtained using the bottom Total 
Points scale. An interactive web calculator, incorporating 
the dynamic nomogram, was also developed and can be 
accessed at https:// nomog ramzf. shiny apps. io/ dynno mapp/. 
An interactive web calculator can provide an accurate pre-
diction probability of encephalitis with 95% confidence 
interval, enhance the visual representation of the nomo-
gram and improve its clinical usability. By completing the 
required online form, users will be provided with a personal-
ized predicting probability of encephalitis. Additionally, to 

Fig. 5  The attention regions of different DL models in gliomas and 
encephalitis on FLAIR image, which are heat maps showing the areas 
of the image that the DL models focus on for their decision-making 

process. The scale bar from red to blue indicates the increased contri-
bution of the location to the model’s classification

https://nomogramzf.shinyapps.io/dynnomapp/
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compare the best CML model, the best DL model and the 
DLRN model, Delong test was used. The results of Delong 
test are shown in the Supplementary Table 2.

Discussion

In our study, ML models were developed based on the 
FLAIR sequence and their performance was compared. 
Regarding the CML models based on the FLAIR sequence, 

the LR model exhibited the highest performance while the 
MLP model showed the lowest performance. As for the DL 
models based on the FLAIR sequence, the Resnet 50 clas-
sifier demonstrated the highest performance whereas the 
Resnet 18 classifier exhibited the lowest performance. The 
performance disparity among different DL models can be 
attributed to their diverse internal architectures [31]. DL 
models outperform CML models, possibly due to the fact 
that DL enables end-to-end classification and prediction by 
automatically learning complex features directly from the 

Fig. 6  The calibration curves of the best CML, best DL model and DLR model in the training and validation cohort to assess the agreement 
between the predicted and actual outcomes of the model

Fig. 7  The DCA of the best CML, best DL model and DLR model in the training and validation cohort, demonstrating the net benefit of the dis-
crimination models across the entire range of probability thresholds
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raw pixels of input images, thus eliminating the need for 
manually designed hard-coded feature extraction [32, 33]. 
Importantly, the DLR model demonstrated superior per-
formance compared to the other 2 models. We hypothesize 
that combining CML parameters with DL parameters can 
enhance the extraction of valuable information from con-
ventional MRI brain images and improve prediction results, 
consistent with previous study [34]. In conclusion, our 
findings suggest that ML models have the potential to non-
invasively differentiate between encephalitis and glioma in 
atypical cases. Furthermore, combining DL and CML tech-
niques could enhance the performance of the ML models.

Our study is based on single FLAIR sequences for 
two reasons. On the one hand, the cortical hypersignal of 
encephalitis is most evident on MRI FLAIR sequence [35]. 
Additionally, FLAIR hyperintensities persist for several 
weeks longer than on other sequences [36]. On the other 
hand, each of the other sequences has its own specific 
defects. In patients with encephalitis, only few cases showed 
contrast enhancement on contrast-enhanced T1-weighted 
images (T1WIs) [37]. As for T1WI and T2-weighted images 
(T2WIs), the lesion exhibits only mild hypo-intensity and 
hyper-intensity, which makes delineating the lesions chal-
lenging. Furthermore, we did not include clinical factors in 

our study due to the limited number we obtained and their 
lack of statistical significance, which is consistent with pre-
vious studies [19].

Both encephalitis and glioma can present as lesions 
with mass effect and demonstrate hypo-intensity on T1WI,  
hyperintensity on T2WI and no enhancement on post-contrast  
T1WI, leading to similar findings on conventional MR 
sequences in atypical cases. Magnetic resonance spectros-
copy usually detected increased choline concentration and a  
moderate decrease in NAA concentration in the substance of 
the encephalitis. These measurements also suggested com-
patibility with a low-grade lesion, such as astrocytoma [5]. 
Despite the use of various functional MR techniques for dif-
ferential diagnosis, there is currently no established expert 
consensus [7, 38–40]. While one study has reported that con-
ventional MRI features can assist in distinguishing inflam-
matory lesions from glioma [41], the subjective nature of 
feature evaluation and the absence of quantitative indicators 
hinder its clinical utility. A previous study revealed that the 
two radiologists, despite having 10 and 8 years of experience 
in diagnosis of central nervous system diseases, achieved 
an accuracy of only 0.544 and 0.526 respectively for the 
definite diagnosis [19]. Currently, there is still a diagnos-
tic dilemma in distinguishing encephalitis from glioma in 

Fig. 8  Nomogram for predicting the probability of encephalitis. The 
values of predictors (ResNet50 signature and LR signature) which 
were mapped to the points axis can be transformed into risk points. 

Then, the sum of risk points of predictors in the total points axis can 
be mapped to the risk axis to obtain the probability of encephalitis
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atypical cases using MR imaging. Two typical examples are 
provided in Supplementary Fig. S8.

Our study expands the work of several recent studies that 
have focused on differentiation between encephalitis and glioma 
in atypical cases. In previous research, radiomic analyses were 
conducted using T1WI and T2WI on a cohort of 57 patients 
due to the low incidence of atypical cases [19]. In our study, we 
extended the analysis to include a new sequence and a larger 
cohort of 116 patients. Additionally, we performed comprehen-
sive radiomic analyses not only on the DL model but also on the 
CML and fusion models, setting ourselves apart from a prior 
study that solely utilized DL models (Alexnet, ResNet 50 and 
Inception-V3) [20]. We conducted a comparison between our 
model and the Alexnet model as well as the Inception-V3 model 
to enhance persuasiveness in our task 2. The results clearly 
indicate that our model outperforms the Alexnet model and 
the Inception-V3 model in terms of performance. And the cor-
responding results are presented in Supplementary Fig. S9. The 
fusion model provides a valuable reference for future studies. 
The feature fusion approach allows us to leverage the strengths 
of both CML and DL techniques. The fusion of scores provides 
an additional level of confidence in the results. By incorporat-
ing multiple models and fusion techniques, our study aims to 
improve the accuracy and reliability of distinguishing between 
encephalitis and glioma in atypical cases. This research has the 
potential to greatly benefit future studies in this field.

The current study has several limitations. Firstly, our study 
relied on retrospectively collected data, and a prospective study 
is necessary to validate our findings. Second, the sample size 
from a single-centre study was relatively small. Consequently, 
multicenter datasets and a larger patient cohort are required to 
validate the current findings. Third, we solely focused on dis-
tinguishing between encephalitis and glioma in atypical cases, 
without further subtyping, such as AIE or infectious encepha-
litis. Investigating these aspects will be a vital direction for our 
future research. In addition, our results do not represent the 
average of multiple iterations conducted with different random 
states or seeds. In our forthcoming research, we will compute 
the average of the outcomes under diverse conditions of ran-
dom seeds to augment the reliability of the findings. Finally, 
the web calculator does not accept images and only accepts 
input of specific values, which limits its utility at present [42, 
43]. Our next step is to build software or toolkit that generates 
prediction probabilities by uploading raw medical images and 
raw clinical data with one click.

In conclusion, our findings demonstrate the potential util-
ity of ML based on FLAIR for distinguishing atypical cases 
of encephalitis and glioma which suggests its potential appli-
cation in assisting clinical decision-making is noteworthy.

Abbreviation AIE: Autoimmune encephalitis; AUC : Area under the 
receiver operating curve; CI: Confidence interval; CML: Classical 
machine learning; DCA: Decision curve analysis; DICOM: Digi-
tal imaging and communications in medicine; DL: Deep learning; 

DLR:  Deep learning radiomics; DLRN:  Deep learning radiomic 
nomogram; Grad-CAM : Gradient-weighted class activation map-
ping; LASSO:  Least absolute shrinkage and selection operator; 
LR: Logistic regression; ML: Machine learning; MLP: Multi-layer 
perceptron; MRI: Magnetic resonance imaging; MSE: Mean stand-
ard error; NPV: Negative predictive value; PCA: Principal compo-
nent analysis; PNG: Portable network graphics; PPV: Positive predic-
tive value; ROC: Receiver operating characteristic; ROI: Region of 
interest; SVM: Support vector machine; T1WI: T1-weighted images; 
T2WI: T2-weighted images; VOI: Volumes of interest
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