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Abstract
Prompt and correct detection of pulmonary tuberculosis (PTB) is critical in preventing its spread. We aimed to develop a deep 
learning–based algorithm for detecting PTB on chest X-ray (CXRs) in the emergency department. This retrospective study 
included 3498 CXRs acquired from the National Taiwan University Hospital (NTUH). The images were chronologically split 
into a training dataset, NTUH-1519 (images acquired during the years 2015 to 2019; n = 2144), and a testing dataset, NTUH-20 
(images acquired during the year 2020; n = 1354). Public databases, including the NIH ChestX-ray14 dataset (model training; 
112,120 images), Montgomery County (model testing; 138 images), and Shenzhen (model testing; 662 images), were also used 
in model development. EfficientNetV2 was the basic architecture of the algorithm. Images from ChestX-ray14 were employed 
for pseudo-labelling to perform semi-supervised learning. The algorithm demonstrated excellent performance in detecting PTB 
(area under the receiver operating characteristic curve [AUC] 0.878, 95% confidence interval [CI] 0.854–0.900) in NTUH-20. 
The algorithm showed significantly better performance in posterior-anterior (PA) CXR (AUC 0.940, 95% CI 0.912–0.965, 
p-value < 0.001) compared with anterior–posterior (AUC 0.782, 95% CI 0.644–0.897) or portable anterior–posterior (AUC 
0.869, 95% CI 0.814–0.918) CXR. The algorithm accurately detected cases of bacteriologically confirmed PTB (AUC 0.854, 
95% CI 0.823–0.883). Finally, the algorithm tested favourably in Montgomery County (AUC 0.838, 95% CI 0.765–0.904) 
and Shenzhen (AUC 0.806, 95% CI 0.771–0.839). A deep learning–based algorithm could detect PTB on CXR with excellent 
performance, which may help shorten the interval between detection and airborne isolation for patients with PTB.
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Introduction

Background

There were estimated 10 million tuberculosis infections reported 
worldwide in the year 2020, with an estimated 1.3 million deaths 

due to tuberculosis [1]. Patients with active pulmonary tubercu-
losis (PTB) often make multiple emergency department (ED) 
visits before diagnosis [2]. Correct diagnosis in the ED serves 
an important role in public health by curbing the spread of PTB.

The systematic review by Harris et al. [3] indicated that 
deep learning (DL)–based algorithms had superior accuracy 
in diagnosing PTB on chest X-rays (CXRs). Harris et al. [3] 
also found that the potential risk of bias was common in the Weichung Wang and Chien-Hua Huang contributed equally to the 
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databases used to assess the derived algorithms in diagnosing 
PTB, which may lead to overestimated performance in previ-
ous studies. To avoid potential bias, Harris et al. [3] advocated 
that studies aimed to develop PTB-detecting algorithms should 
(1) describe how CXRs were selected for training and testing, 
(2) use CXRs from distinct databases for training and testing, 
and (3) assess the accuracy of the derived algorithm against a 
microbiologic reference standard.

Importance

While prompt early diagnosis of PTB accompanied by air-
borne isolation procedures [4] is paramount to preventing 
nosocomial infections in overcrowded EDs [5], it is reported 
that fewer than half of newly diagnosed PTB patients are iden-
tified during their ED stay, and less than one-fifth of these 
patients are isolated in the ED [6]. This delay in diagnosis 
and isolation of PTB patients can pose threats to critically ill 
hospitalised patients and also to healthcare providers [7].

The diagnostic delays [8] have accompanied a decline in 
the reported prevalence of PTB [9], and emergency physi-
cians may have become less familiar with the presentation of 
PTB [10]. However, PTB prevalence remains high in various 
socioeconomically disadvantaged populations [11]; these are 
often the same populations who may disproportionately rely 
on ED visits for health care [12]. Prompt diagnosis of PTB 
at EDs should remain a priority to ensure timely treatment 
and prevention of community outbreaks.

Goals of This Investigation

CXR is key to the diagnosis of PTB, but the success of CXR 
as a screening and triage tool can be limited by high inter- 
and intra-reader variability and moderate specificity [13]. 
Therefore, in the current study, we aimed to develop and test 
a DL-based computer-aided diagnosis (CAD) algorithm for 
the detection of PTB by CXR in the ED.

Materials and Methods

Study Design and Setting

We conducted a retrospective study to develop a CAD algorithm 
for detecting PTB on CXRs and test its performance in the local 
population and public databases. This study was approved by 
the Research Ethics Committee of the National Taiwan Uni-
versity Hospital (NTUH; reference number: 202003106RINC) 
and granted a consent waiver. The study results are reported 
according to the Checklist for Artificial Intelligence in Medical 
Imaging (CLAIM) [14].

Image Acquisition and Dataset Designation

The image acquisition process is shown in Fig. 1. At NTUH, 
patients diagnosed with PTB are registered in the NTUH PTB 
Case Management Database and followed prospectively by 

Fig. 1  Flowchart of the image inclusion process and dataset designation. CXR, chest X-ray; ED, emergency department; ICU, intensive care 
unit; NTUH, National Taiwan University Hospital; PACS, Picture Archiving and Communication System
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nurse specialists. The database classifies patients with PTB 
into two mutually exclusive categories: bacteriologically con-
firmed PTB or clinically diagnosed PTB [15]. Bacteriologically 
confirmed PTB was defined as (1) a positive acid-fast bacilli 
stain (AFS) test along with positive tuberculosis-polymerase 
chain reaction results in sputum samples or (2) positive sputum 
culture results for Mycobacterium tuberculosis. Clinically diag-
nosed PTB was diagnosed based on CXR, pathological findings, 
or other clinical findings, which nonetheless did not fulfil the 
criteria for bacteriologically confirmed PTB. Candidate lists of 
patients diagnosed with PTB were retrieved from the Case Man-
agement Database and used to query the Picture Archiving and 
Communication System (PACS) database for candidate CXRs.

Subsequently, the following inclusion criteria were 
applied to the candidate PTB-positive CXR images to obtain 
annotated images: (1) patient age ≥ 15 years; (2) examined 
between 1 January 2015 and 31 December 2020; (3) taken 
prior to and chronologically closest to the treatment start 
date for PTB; (4) within 3 months before the treatment 
start date. These criteria were respectively applied to CXRs 
filmed in different projections, including posterior-anterior 
(PA), anterior–posterior (AP), and portable AP CXRs. For 
comparison cases, to simulate an ED setting [16], candidate 
PTB-negative images were acquired by a random sample 
of CXRs taken in the ED with similar inclusion criteria. In 
addition, for model training, the proportions of different pro-
jections of the candidate PTB-negative images were matched 
to those of the annotated PTB-positive images, while there 
was no such matching for the model testing. The candidate 
PTB-negative lists were further examined to avoid the over-
lap of patients. That is, for each patient, only one image 
would be allowed for analysis in each projection type. All 
eligible de-identified CXR images were exported in Digital 
Imaging and Communications in Medicine (DICOM) format 
from the PACS database along with the corresponding texts 
of the radiologists’ reports. These reports were generated by 
various radiologists for clinical purposes.

The images acquired from NTUH were split chrono-
logically into NTUH-1519 (years 2015 to 2019; model 
training) and NTUH-20 (year 2020; model testing) data-
sets. Training and testing were also performed with exter-
nal public imaging databases for PTB, including NIH 
ChestX-ray14 for training [17] and Montgomery County 
[18] and Shenzhen [18] for external testing.

Image Annotation and Chest X‑Ray Report Extraction

For candidate PTB-positive CXR, images were annotated by 
image-level labelling according to the PTB status registered 
in the Case Management Database. Both bacteriologically 
confirmed PTB and clinically diagnosed PTB [15] were 

annotated as PTB-positive. Candidate PTB-negative CXR 
images were annotated with a PTB-negative label if the 
patients with these images had not been diagnosed with PTB 
and registered in the Case Management Database during the 
image inclusion period. Both Montgomery County [18] and 
Shenzhen [18] offered image-level labels, which were used 
accordingly. For CXR images obtained at NTUH, imaging 
results and diagnoses [19] were manually extracted from the 
radiologist reports by research assistants who were blinded 
to the PTB status of the patients. The diagnoses noted in 
these clinical reports would be compared with those made 
by the CAD algorithm.

Selection of the Algorithm

Two prominent methodologies take the lead in medical image 
analysis and recognition: Transformers and Convolutional 
Neural Networks (CNNs). Regarding CNNs, numerous mod-
els are available for exploration. For example, Huang et al. 
[20, 21] employed DenseNet 121 to forge FABNet. Further-
more, Huang et al. [22] extended the utility of FABNet within 
domain-adaptive tasks, demonstrating the adaptability of these 
models. Additionally, Zhou et al. [23] highlighted the ability of 
CNNs to acquire meaningful deep features by utilizing ResNet 
50 in constructing LPCANet. To harness the power of transfer 
learning, Huang et al. [24] leveraged pre-trained models from 
ImageNet, such as DenseNet121, ResNet50v2, Inception v3, 
and Inception-ResNet.

As for Transformers, such as ViT (Vision Transformer) 
[25], Huang et al. [20] pioneered the integration of atten-
tion mechanisms with ViT through convolution. Pan et al. 
[26] further advanced the field by introducing adaptive fea-
ture fusion, which amalgamated the strengths of attention 
mechanisms from both CNNs and ViT. Moreover, Zhou 
et al. [27] capitalized on the synergy between ResNet and 
ViT, showcasing promising possibilities.

However, compared with CNNs, ViT’s greater parameter 
numbers demand more computational resources, and it lacks 
certain intrinsic features, like rotation and scale invariance, 
and weight sharing, which can affect its generalization. A 
recent innovation introduces the Swin Transformer [28], 
effectively addressing ViT’s computational intensity while 
demonstrating favourable performance [29].

Our pilot study experimented with different CNNs and 
the Swin Transformer. Using a subset of the training data-
set, NTUH-1519, our pilot study (Supplemental Table 1) 
demonstrated that the Swin Transformer did not perform as 
well as the CNN-based algorithms. While the Swin Trans-
former has shown promise in various contexts, it yielded 
less favourable results in our specific cases, underscoring 
the need for ongoing evaluation and adaptability in choosing 
the most suitable model for specific tasks. According to the 
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pilot study results (Supplemental Table 1), EfficientNetV2 
[30] was selected for further model development because of 
the highest area under the receiver operating characteristic 
curve (AUC) compared with other algorithms.

Development of the Algorithm

As shown in Fig. 2, the training dataset (NTUH-1519) was 
randomly split at the image level into five subgroups (called 
folds) with similar numbers of annotated images across differ-
ent labels for model development. Each fold was used as the 

validation subset in turn, with other folds as training subsets to 
derive five sub-classification models for the final ensemble. 
The concept underlying ensemble learning is that by amalgam-
ating the predictions from multiple models, any weaknesses and 
errors inherent to individual models can be mitigated through 
the strengths of others. This approach amplifies the overall 
model’s reliability and predictive accuracy.

All images underwent preprocessing to enhance the 
image contrast details, including contrast limited adaptive 
histogram equalisation (CLAHE) [31]. SegResNet [32] 
was used to segment out lung regions to obtain masked 

Fig. 2  The training pipeline for the CAD algorithm. A CXR images 
were acquired from the NTUH PACS database. The images were 
annotated by image-level labelling according to the PTB status of 
the patient (PTB-positive patients were identified from the NTUH 
PTB Case Management Database). The NTUH-1519 images were 
randomly split into fivefold for model training. Each fold was used 
as the validation subset in turn, with other folds as training subsets, 
to derive five subclassification models for the final ensemble. B The 
original images underwent preprocessing, including confirmation of 
Monochrome2 output, resizing to 512 × 512 pixels, transformation 
by contrast limited adaptive histogram equalisation (CLAHE), and 
image augmentation including horizontal flipping, contrast gauss-
ian noise, and rotate, shear, translate, and scale with zero padding. C 
After preprocessing, the enhanced images were further passed into 
the segmentation model with SegResNet as the model architecture. 
The segmentation model segmented out the lung regions which were 
overlaid on the original images to obtain the masked images. Later, 

the original, enhanced, and masked images were concatenated and 
used as input for the classification model. The EfficientNetV2 was 
adopted as the basic architecture of the classification model. The 
binary cross entropy loss function was used to supervise the learn-
ing process. The training algorithm used AdamW as an optimiser and 
cosine annealing as a learning rate scheduler. Moreover, we employed 
a pseudo-labelling method to increase the number of images in the 
training dataset. After training with images from NTUH-1519, the 
subclassification models were applied to the NIH ChestX-ray14 data-
set to generate PTB pseudo labels. The images with pseudo labels 
were used to retrain the subclassification models to obtain the final 
model. D The results of the five subclassification models were ensem-
bled to output the final prediction results and GradCAM. CAD, com-
puter-aided detection; CLAHE, contrast limited adaptive histogram 
equalisation; CXR, chest X-ray; PACS, Picture Archiving and Com-
munication System; PTB, pulmonary tuberculosis
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images. Then, the original, enhanced, and masked images 
were used as input for the classification model, for which 
EfficientNetV2 [30] with binary cross entropy (BCE) was 
the basic architecture. During the model training process, 
the batch size was 16, the learning rate was  5e−5, and the 
AdamW optimiser was used. A BCE loss function was used 
to supervise the learning process. The training procedure 
was stopped when it reached 20 epochs.

Moreover, we employed a pseudo-labelling method [33] 
to increase the available labelled images. Pseudo-labelling is 
a semi-supervised machine learning technique where unla-
beled data is assigned predicted labels from a trained model, 
effectively expanding the training dataset and improving 
model performance. Following the training with the images 
from NTUH-1519, the five sub-classification models were 
respectively applied to the NIH ChestX-ray14 dataset [17], 

an open dataset containing 112,120 CXRs, to produce PTB 
pseudo labels. The images with pseudo labels were then 
used to retrain each sub-classification model to obtain the 
final model. The predicted probabilities of the five sub-
classification models were averaged to make the ensembled 
prediction, used as the final output of the CAD algorithm. 
Gradient-weighted class activation mapping (GradCAM) 
[34] was created to inspect the areas of the image that were 
activated by the network.

The model was trained on operating system Ubuntu 
20.04.4 LTS loaded with the PyTorch 1.10.2 deep learn-
ing framework [35], with CUDA 11.6. The training used 
four  Intel®  Xeon® CPU E5-2650 v4 at 2.20 GHz processors, 
128 GB hard disk space, 16 GB RAM, and a Tesla P100-
PCIE-16 GB graphics processing unit (Nvidia Corporation, 
Santa Clara, CA).

Table 1  Comparisons between the training dataset (NTUH-1519) and the testing dataset (NTUH-20)

Data are presented as mean (standard deviation) or counts (proportion)
NTUH National Taiwan University Hospital, PA posteroanterior, AP anteroposterior, PTB pulmonary tuberculosis

Variables NTUH-1519 images (n = 2144) NTUH-2020 images (n = 1354) p value

Patient number, n 1812 1285 NA
Age, year 62.3 (18.9) (n = 1812) 59.5 (19.9) (n = 1285)  < 0.001
Male, n 1080 (59.6) (n = 1812) 691 (53.8) (n = 1285) 0.001
Age ≥ 65, n 921 (50.8) (n = 1812) 594 (46.2) (n = 1285) 0.01
CXR projections, n  < 0.001
  PA view 1498 (69.9) 254 (18.8)

   AP view 308 (14.4) 56 (4.1)
   Portable AP view 338 (15.7) 1044 (77.1)
Diagnosis of radiologist clinical report, n
   PTB 17 (0.8) 2 (0.1) 0.01
   Malignancy 13 (0.6) 4 (0.3) 0.20
   Pneumonia 52 (2.4) 12 (0.9)  < 0.001
   Pneumothorax 54 (2.5) 7 (0.5)  < 0.001
Qualitative descriptive findings in the radiologist clinical report, n
   Atelectasis 78 (3.6) 36 (2.7) 0.11
   Bronchiectasis 28 (1.3) 6 (0.4) 0.01
   Cardiomegaly 497 (23.2) 342 (25.3) 0.16
   Cavitation 22 (1.0) 6 (0.4) 0.06
   Consolidation 283 (13.2) 109 (8.1)  < 0.001
  Emphysema 35 (1.6) 7 (0.5) 0.003

   Haziness 196 (9.1) 80 (5.9)  < 0.001
   Infiltration 329 (15.3) 255 (18.3) 0.007
   Pulmonary oedema 7 (0.3) 2 (0.1) 0.31
   Nodule 238 (11.1) 83 (6.1)  < 0.001
   Opacification 908 (42.4) 508 (37.5) 0.005
   Pleural effusion 516 (24.1) 263 (19.4) 0.001
Annotation, n  < 0.001
   PTB-positive 1335 (62.3) 253 (18.7)
   Bacteriologically confirmed PTB 1038 (48.4) 192 (14.2)
   Clinically diagnosed PTB 297 (13.9) 61 (4.5)
   PTB-negative 809 (37.7) 1101 (81.3)
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Evaluation Metrics of the Algorithm

The diagnostic performance was assessed by the AUC, sen-
sitivity, specificity, positive predictive value, and negative 
predictive value. These evaluation metrics were reported at 
a threshold selected according to the Youden’s index [36] 
(CAD algorithm) and also at a threshold established to meet 
the World Health Organization (WHO) target product profile 
(TPP) [37] recommendation for a triage tool with at least 
90% sensitivity (CAD algorithm: WHO).

Statistical Analysis

Continuous variables are presented with mean and stand-
ard deviation, and categorical variables are presented with 
counts and proportions. Continuous variables were com-
pared with Student’s t-test or ANOVA test, as appropriate. 
Categorical variables were compared with the chi-squared 
test. The pair-wise comparison in AUC was performed by 
the DeLong test [38]. All statistics were expressed with point 

estimates with 95% confidence intervals (CIs) by a bootstrap 
technique with 1000 repetitions. Subgroup analysis was per-
formed to explore the influence of patient characteristics and 
image projections on model performance, and sensitivity 
analysis was performed to evaluate the diagnostic perfor-
mance in detecting bacteriologically confirmed PTB. All 
statistical analyses were carried out by using R 3.4.3.

Results

Baseline Characteristics

A total of 3498 images were acquired from the NTUH 
PACS database, including 2144 images for training (NTUH-
1519) and 1354 images for testing (NTUH-20) (Fig. 1). 
There were significant differences between the NTUH-
1519 and NTUH-20 groups, particularly for CXR projec-
tions and distribution of types of PTB diagnosis (Table 1).  
The prevalence of radiologically diagnosed PTB was 0.8% 

Fig. 3  The implementation 
pipeline of the CAD algorithm. 
The input of the original CXR 
image A was transformed by 
CLAHE to obtain the enhanced 
image B. The enhanced image 
was also passed into the seg-
mentation model to segment 
the lung regions for the masked 
images C. Subsequently, the 
original, enhanced, and masked 
images were concatenated and 
fed into the classification model 
to obtain the predicted prob-
abilities for the presence of PTB 
D and for the gradient-weighted 
class activation mapping 
(Grad-CAM) (E). We chose 
SegResNet as the basic architec-
ture of the segmentation model 
and EfficientNetV2 as the basic 
architecture for the classification 
model. CAD, computer-aided 
detection; CLAHE, contrast 
limited adaptive histogram 
equalisation; CXR, chest X-ray; 
PTB, pulmonary tuberculosis
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Fig. 4  Representative images 
stratified by predicted results of 
the computer-aided diagnosis 
algorithm, including A true 
positive, B false positive, C 
true negative, and D false 
negative results for pulmonary 
tuberculosis. The left column 
presents the original images. 
The right column shows the 
results of gradient-weighted 
class activation mapping 
(GradCAM) demonstrating 
that the algorithm mainly made 
inferences by using the areas 
within the segmented lung 
regions. The reddish regions 
in the GradCAM represent 
higher predicted probabilities of 
pulmonary tuberculosis and the 
bluish regions represent lower 
probabilities
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in NTUH-1519 and 0.1% in NTUH-20 (Supplemental 
Tables 2 and 3).

Primary Analysis

A simplified flowchart for implementation of the algo-
rithm is presented in Fig. 3, and four sets of representa-
tive images stratified by the prediction results of the 
algorithm are presented in Fig. 4. The GradCAM indi-
cated that the algorithm mainly detected PTB based on 
the lung regions rather than other irrelevant areas. The 
CAD algorithm had excellent performance in diagnosing 
PTB (AUC 0.878, 95% CI 0.854–0.900; sensitivity 0.783, 
95% CI 0.733–0.831) in NTUH-20 (Table 2). The AUC of 
the CAD algorithm was significantly higher than that of 
the radiologist reports (AUC 0.504, 95% CI 0.500–0.510, 
p-value < 0.001). When the probability threshold was set at 
90% sensitivity [37], the CAD algorithm WHO reached a 
sensitivity of 0.846 (95% CI 0.802–0.890) and a specific-
ity of 0.667 (95% CI 0.638–0.694) in NTUH-20.

Subgroup and Sensitivity Analyses

In the subgroup analysis, the CAD algorithm had the best per-
formance in the PA views (AUC 0.940, 95% CI 0.912–0.965, 
p-value < 0.001) compared with AP (AUC 0.782, 95% CI 
0.644–0.897) or portable AP views (AUC 0.869, 95% CI 
0.814–0.918) (Table 2). The CAD algorithm could detect PTB 
more accurately in patients aged < 65 years (AUC 0.888, 95% 
CI 0.849–0.926, p-value = 0.04) than ≥ 65 years (AUC 0.859, 
95% CI 0.822–0.890). In contrast, no significantly different 
performance of the CAD algorithm was noted between male 
and female patients. The sensitivity analysis demonstrated that 
the CAD algorithm also had excellent performance in distin-
guishing bacteriologically confirmed PTB (AUC 0.854, 95% 
CI 0.823–0.883).

Validation in the External Datasets

Finally, the CAD algorithm was also tested with good per-
formance in the Montgomery County (AUC 0.838, 95% 
CI 0.765–0.904) and Shenzhen (AUC 0.806, 95% CI 
0.771–0.839) databases.

Discussion

Main Findings

EfficientNetV2 [30] was adopted in our study, which had 
shown superior efficiency in previous studies [39, 40]. 
Our CAD algorithm’s performance was further augmented 
through an ensemble [41], which was expected to prevent the 

algorithm from overfitting on a small dataset, thus improv-
ing its potential for external generalizability.

Pulmonary Tuberculosis‑Positive Images

Many PTB-detecting algorithms are subject to a high risk of 
bias because a diagnosis made by human readers is adopted 
as the reference standard [3]. A derived algorithm which 
uses human readers as the gold standard may miss many 
PTB patients. Only 50.5% of ED patients with PTB had 
“typical” CXR findings [42] and atypical presentations on 
CXR were found in 63% of patients with delayed isolation in 
the ED [43]. Among the PTB-positive images in our study, 
only a minor proportion were diagnosed by CXR (Supple-
mental Tables 2 and 3). Radiological reports showed only 
0.8% sensitivity for PTB in NTUH-20 (Table 2), and this 
was similar to previous studies [44]. This apparently sub-
optimal performance of human readers is mostly a function 
of the broad differential diagnosis clinicians must consider 
before arriving at the definitive diagnosis [45], and because 
of this, using human readers as the reference standard cre-
ates a risk of systematic overestimation of the diagnostic 
accuracy of the CAD algorithms [3].

Besides human readers, most other studies [3] have used 
bacteriologically confirmed PTB as the target. To the best of 
our knowledge, our CAD algorithm may be the first to detect 
both bacteriologically confirmed and clinically diagnosed 
PTB. As there were some overlaps in CXR findings between 
these two types of PTB [46], the only way to differentiate one 
from the other is by collecting specimens for examination, 
such as a sputum smear. Since timely isolation and prompt 
examination is necessary for patients with both types of PTB 
diagnosis, we selected both as the target labels in our study. 
The sensitivity analysis exhibited that the CAD algorithm was 
able to distinguish bacteriologically confirmed PTB (AUC: 
0.854) with excellent performance. This should be reassuring 
because bacteriologically confirmed PTB is generally consid-
ered more infectious than clinically diagnosed PTB.

Pulmonary Tuberculosis‑Negative Images

Most studies [3] have developed and tested PTB-detecting 
algorithms using popular public databases. As with most 
public databases, Montgomery County [18] and Shenzhen 
[18] use normal CXR images as the PTB-negative images. 
In contrast, in our study, as the PTB-negative images were 
acquired through a random sampling of CXRs obtained from 
the ED, there were various pathological radiological findings 
even in the PTB-negative images (Supplemental Tables 2 and 
3). Since PTB has few pathognomonic radiological features, it 
may be inherently difficult for the algorithm, as it is for human 
readers, to distinguish between PTB and other look-alike dis-
eases including cancer or pneumonia. The difference in our 
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Table 2  Diagnostic performance of the computer-aided diagnosis algorithm and the radiologist reports

Data are presented as point estimates (95% confidence interval). CAD algorithm: the probability threshold for PTB was set at Youden’s index in 
NTUH-1519. CAD algorithm: WHO indicates the algorithm was adjusted to diagnose PTB at the threshold of 90% sensitivity in NTUH-1519
AP anteroposterior, AUC  area under the receiver operating characteristics curve, CAD computer-aided diagnosis, CXR chest X-ray, NA not appli-
cable, NPV negative predictive value, NTUH National Taiwan University Hospital, PA posteroanterior, PPV positive predictive value, PTB pul-
monary tuberculosis, WHO World Health Organization
a The comparison was made between the CAD algorithm (reference) and radiologists’ clinical reports by DeLong test
b The comparison was made between the subgroups stratified by CXR projection, age or sex by ANOVA or Student’s t-test
c The comparison was made when the CAD algorithm was applied to detect PTB (reference) versus bacteriologically confirmed PTB
d The comparison was made when the CAD algorithm was tested in the NTUH-20 testing dataset (reference) versus Montgomery County public 
dataset or Shenzhen public dataset

Scenario Readers N AUC p value for 
comparisons in 
AUC 

Sensitivity Specificity PPV NPV

NTUH-20 testing dataset
 Primary analysis

   Detecting PTB in 
all images

CAD algorithm 1354 0.878 (0.854–
0.900)

Reference 0.783 (0.733–
0.831)

0.775 (0.749–
0.798)

0.444 (0.395–
0.488)

0.939 (0.924–
0.953)

   Detecting PTB in 
all images

Radiologists’ 
clinical 
reports

1354 0.504 (0.500–
0.510)

 < 0.001a 0.008 (0.000–
0.020)

1.000 (1.000–
1.000)

1.0 (1.0–nan) 0.814 (0.794–
0.835)

   Detecting PTB in 
all images

CAD algorithm: 
WHO

1354 0.878 (0.854–
0.900)

NA 0.846 (0.802–
0.890)

0.667 (0.638–
0.694)

0.368 (0.33–
0.406)

0.95 (0.934–
0.965)

 Subgroup analysis
  CXR projection  < 0.001b

    Detecting PTB in 
PA CXR

CAD algorithm 254 0.940 (0.912–
0.965)

0.825 (0.762–
0.881)

0.875 (0.802–
0.941)

0.926 (0.882–
0.965)

0.726 (0.636–
0.810)

    Detecting PTB in 
AP CXR

CAD algorithm 56 0.782 (0.644–
0.897)

0.567 (0.387–
0.733)

0.808 (0.645–
0.960)

0.773 (0.588–
0.950)

0.618 (0.455–
0.765)

    Detecting PTB 
in portable AP 
CXR

CAD algorithm 1044 0.869 (0.814–
0.918)

0.772 (0.649–
0.881)

0.765 (0.738–
0.789)

0.159 (0.118–
0.203)

0.983 (0.973–
0.992)

  Age group 0.04b

    Detecting PTB 
in patients 
aged ≥ 65 years

CAD algorithm 644 0.859 (0.822–
0.890)

0.789 (0.724–
0.847)

0.715 (0.677–
0.757)

0.491 (0.431–
0.548)

0.907 (0.876–
0.934)

    Detecting PTB 
in patients 
aged < 65 years

CAD algorithm 710 0.888 (0.849–
0.926)

0.770 (0.684–
0.859)

0.77 (0.684– 
0.859)

0.77 (0.684– 
0.859)

0.77 (0.684– 
0.859)

  Sex group 0.95b

   Detecting PTB in 
male patients

CAD algorithm 737 0.876 (0.843–
0.906)

0.800 (0.738–
0.857)

0.748 (0.714–
0.784)

0.478 (0.419–
0.535)

0.928 (0.905–
0.950)

    Detecting PTB in 
female patients

CAD algorithm 616 0.875 (0.833–
0.912)

0.750 (0.657–
0.845)

0.803 (0.767–
0.835)

0.388 (0.317–
0.458)

0.951 (0.931–
0.971)

 Sensitivity analysis
   Detecting 

bacteriologically 
confirmed PTB

CAD algorithm 1354 0.854 (0.823–
0.883)

0.04c 0.781 (0.721–
0.840)

0.745 (0.718–
0.770)

0.336 (0.290–
0.379)

0.954 (0.940–
0.966)

Montgomery County public dataset
 Detecting PTB in 

all images
CAD algorithm 138 0.838 (0.765–

0.904)
0.03d 0.948 (0.886–

1.000)
0.350 (0.250–
0.457)

0.514 (0.417–
0.610)

0.903 (0.789–
1.000)

Shenzhen public dataset
 Detecting PTB in 

all images
CAD algorithm 662 0.806 (0.771–

0.839)
0.03d 0.188 (0.145–

0.229)
1.000 (1.000–
1.000)

1.000 (1.000–
1.000)

0.544 (0.506–
0.585)
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method of selecting PTB-negative images may partly explain 
why the AUC for our CAD algorithm was not as high as the 
AUCs previously reported for algorithms trained by using the 
public databases [3]. As there might be apparent differences 
between PTB-positive and normal CXRs, the performance of 
previous algorithms might be overestimated [3].

In our study, there may be a concern that these PTB-nega-
tive patients might have had PTB but been left undiagnosed. 
This kind of misclassification bias may increase the false 
positive rate and decrease the AUC of the algorithm. That 
there were no radiologists’ diagnoses of PTB among the 
PTB-negative images in NTUH-20 (Supplemental Table 3) 
may mitigate this bias to some degree.

External Testing, Subgroup, and Sensitivity Analysis

Our CAD algorithm was tested in a temporally split local data-
set, i.e. NTUH-20. As recommended by the TRIPOD state-
ment [47], this type of splitting can be regarded as a type of 
external testing, as evidenced by the significant differences 
between NTUH-1519 and NTUH-20 (Table 1). Especially for 
CXR projections, portable AP CXR was the predominant type 
of projection in NTUH-20, whereas in NTUH-1519, PA CXR 
was the dominant projection type (Table 1). For NTUH-1519, 
matching the proportions of projections was assumed to facili-
tate the CAD algorithm in learning features of PTB without 
being biased by the projections. In contrast, a random sample 
without matching in the NTUH-20 may be more likely to test 
the CAD algorithm by simulated ED data.

Our CAD algorithm had an AUC of 0.878 when tested in 
NTUH-20 (Table 2). This is comparable to other algorithms 
[48]. Our CAD algorithm: WHO displayed a sensitivity of 
0.846 and a specificity of 0.667. This is slightly lower than 
the WHO-recommended minimum requirement of > 90% 
sensitivity and > 70% specificity for a PTB triage tool [37]. 
However, these WHO requirements are indicated for patients 
with any symptoms or risk factors for active PTB. This group 
probably has a different prevalence of PTB than the variety 
of patients included in NTUH-20, who would likely have pre-
sented to ED with all kinds of symptoms. That the AUCs of 
our CAD algorithm were similar in NTUH-20 (0.878), Mont-
gomery County (0.838), and Shenzhen (0.806) highlights the 
favourable potential of our CAD algorithm for external gener-
alizability. Interestingly, the sensitivity and specificity of our 
CAD algorithm were balanced in NTUH-20 while inclined 
to high sensitivity in Montgomery County and high specific-
ity in Shenzhen. As there may be substantial differences in 
the PTB burden in different clinical scenarios, adjusting the 
threshold of the CAD algorithm to reflect PTB prevalence in 
the local population is recommended [49].

Most studies [3] have adopted PA CXR to derive an algo-
rithm because PA CXR is considered the gold standard in plain 
chest radiography. AP or even portable AP CXR is considered 

suboptimal for diagnosis. As demonstrated in our subgroup anal-
ysis, the performance of the CAD algorithm was significantly 
higher (AUC 0.940) in the PA CXR projections. The subgroup 
analysis results may explain the lower AUC of our CAD algo-
rithm compared with other studies using PA CXR [3]. Also, this 
result may suggest that the PA CXR-derived algorithm should 
not be directly applied to AP or portable AP CXR images for 
PTB detection. Finally, as suggested by previous studies [48, 
49], our subgroup analysis indicated that the performance of the 
CAD algorithms would vary by age but not by sex.

Study Setting and Application in  
the Emergency Department

Other algorithms [49] have been developed for PTB triage or 
screening in a referral centre or an area of high prevalence. 
These algorithms enrolled patients with specific symptoms, 
such as fever and cough, suggestive of PTB, to test the algo-
rithms [49]. However, it is reported [50] that among ED patients 
with active PTB, approximately half present with nonspecific 
symptoms such as abdominal pain [50]. Since our study did not 
use any clinical information to select the images and used ran-
dom samples of ED patients as PTB-negative images, our CAD 
algorithm may be more readily applicable to ED settings. By 
alerting clinicians who may not have included PTB in their dif-
ferential diagnosis, the CAD algorithm may reduce the number 
of missed PTB cases in the ED or shorten the interval between 
an affected patient’s arrival and airborne isolation.

Study Limitations

This was a case–control study. The selection method for PTB-
negative images may have influenced the algorithm’s perfor-
mance. Nonetheless, in light of the report that among another 
cohort of 31,267 consecutive ED visits, only 30 patients (0.1%) 
were diagnosed with PTB [16]; a case–control study design may 
be a more efficient way to develop the CAD algorithm. Further 
prospective studies are warranted to enrol consecutive patients 
visiting the ED to test the performance in a scalable manner.

Conclusions

Based on EfficientNetV2, a CAD algorithm can detect PTB 
on CXR in a simulated ED setting with an AUC of 0.878. 
The algorithm detected PTB better in the PA than AP or 
portable AP views. The algorithm can also distinguish bacte-
riologically confirmed PTB with an AUC of 0.854. Finally, 
the CAD algorithm also demonstrated good performance in 
the external datasets, including Montgomery County (AUC 
0.838) and Shenzhen (AUC 0.806) databases.
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