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Abstract
This work aimed to automatically segment and classify the coronary arteries with either normal or anomalous origin from the 
aorta (AAOCA) using convolutional neural networks (CNNs), seeking to enhance and fasten clinician diagnosis. We implemented 
three single-view 2D Attention U-Nets with 3D view integration and trained them to automatically segment the aortic root and 
coronary arteries of 124 computed tomography angiographies (CTAs), with normal coronaries or AAOCA. Furthermore, we 
automatically classified the segmented geometries as normal or AAOCA using a decision tree model. For CTAs in the test set 
(n = 13), we obtained median Dice score coefficients of 0.95 and 0.84 for the aortic root and the coronary arteries, respectively. 
Moreover, the classification between normal and AAOCA showed excellent performance with accuracy, precision, and recall all 
equal to 1 in the test set. We developed a deep learning-based method to automatically segment and classify normal coronary and 
AAOCA. Our results represent a step towards an automatic screening and risk profiling of patients with AAOCA, based on CTA.
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Background

Anomalous aortic origin of the coronary arteries (AAOCA) 
is a rare congenital disease in which one of the coronary 
arteries may originate from the aorta but in an abnormal 

position. The AAOCA are highly heterogeneous and gen-
erally are classified depending on the affected coronary, 
the location of the ostium, the course, and the geometrical 
characteristics of the anomalous artery [1]. Often the diag-
nosis of AAOCA is incidental during examinations for other 
medical reasons, although in a significant proportion of the 
cases, the first manifestation of the disease may be a sudden  
cardiac death (SCD) event or a myocardial infarction under Ariel Fernando Pascaner and Antonio Rosato contributed equally to 
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effort conditions [2, 3]. Because AAOCA, which is one of 
the leading causes of SCD in young athletes [4, 5], may also 
have a lethal presentation in the late adult age, it has been 
considered in differential diagnosis of myocardial infarction 
with non-obstructive coronary arteries [6] and its diagnosis 
cannot be missed because it may deeply impact the patient’s 
outcome.

Contrast-enhanced coronary CT angiography (CTA) has 
become the first-line diagnostic tool for evaluating chest pain  
or myocardial infarction in the adult population [7], because 
it accurately depicts the coronary tree and the relative sten-
otic lesions without any invasive intervention such as for 
the coronary angiography. For this reason, the number of 
coronary CTAs performed has dramatically increased, lead-
ing also to the increase in diagnosis for AAOCA. When an 
AAOCA is detected in an asymptomatic subject, the deci-
sion about which is the best treatment is greatly debated and 
mainly relies on anatomical characteristics, result of func-
tional tests, and invasive evaluation [8].

Quantitative analysis of AAOCA from CTA is used in dif-
ferent contexts, such as diagnosis and risk profiling, surgical 
planning, and numerical biomechanical simulations [9–12]. 
Recently, deep learning techniques have shown promising 
performance in the medical field, addressing classification, 
segmentation, and detection tasks [13–15]. Since segmenta-
tion is a time-consuming and subjective task, an automatic 
tool capable of extracting the coronary lumen from the CTA 
would reduce the inter- and intra-operator variability and 
would enable a faster analysis of large datasets. Moreover, 
coronary arteries segmentation is a useful step in perform-
ing coronary examination and accurately identifying vessels 
with anomalous origin and course [16].

The potential of deep learning and convolutional neu-
ral networks (CNNs) for coronary artery segmentation in 
CTA images has been demonstrated in several studies [17]. 
Different variations of CNNs have been explored, including 
3D CNNs, multi-channel U-Nets, and graph CNNs, with 
reported Dice score coefficients (DSCs) ranging from 0.6 to 
0.9 [18]. Recent review works have highlighted the growing 
popularity of CNN-based methods for coronary artery seg-
mentation and emphasized the need for further development 
to translate research into clinical practice [17, 19].

Therefore, we aimed to create an AI-based automatic tool, 
by developing a CNN, able to accurately segment the coro-
nary tree in AAOCA patients and automatically detect the 
presence of the anomaly based on the segmented geometry. 
We have already conducted some preliminary experiments 
in which we developed a CNN to automatically segment the 
aorta from CTA images, obtaining a mean DSC of 0.93 [20]. 
Following these encouraging results, in the present work, we 
addressed the feasibility of fully automatic coronary seg-
mentation and classification.

Methods

Image Acquisition and Preprocessing

We included 124 CTA scans of patients (age: 36 ± 20 years 
old, 65% male) referred to IRCCS Policlinico San Donato 
(Milan, Italy), with either normal (n = 50) or anomalous aortic 
origin of the coronary artery (n = 74). For each CTA scan, the 
aortic root and the coronary arteries were semi-automatically  
segmented by a trained expert (AR) using ITK-Snap interac-
tive tool [21], and considered as the ground truth. The study 
was approved by the Ethical Committee (protocol number: 
54/INT/2023), and the consent was waived due to the retro-
spective nature of the study.

Image pre-processing plays a crucial role in CNNs train-
ing [22]; therefore, after manual segmentations were con-
ducted and prior to CNN training, all CTA scans underwent 
the following steps. First, volumes were resized to a fixed 
dimension of 320 × 320 × 320 voxels to account for hetero-
geneity among scans. Then, we set a Hounsfield units (HU) 
window of interest centered at 100 HU and width 700 HU, 
i.e., between − 250 HU and 450 HU. All voxels with HU 
outside of this range were saturated.

Workflow Description

We implemented three identical bidimensional Attention 
U-Nets [23] for each of the CTA orthogonal planes (axial, 
sagittal, and coronal), which were reconstructed from the 
preprocessed CTA volume. Each single-plane network per-
formed multi-class classification of the input pixels onto the 
three considered classes, namely, background, aortic root, 
and coronary arteries. The output of each CNN consisted of 
three 2D probability maps (one for each class) in which the 
intensity value of the pixels represented the probability of 
belonging to each class. Then, given the single-view prob-
ability maps obtained for the entire CTA, a simple aver-
age was performed to integrate the results among the three 
orthogonal directions.

For each class of interest (i.e., aortic root, and coronary 
artery), a 3D label map was obtained by binarizing the inte-
grated prediction maps with the threshold that maximized 
the DSC on the validation set for that specific class. The 
voxels in which the probability of more than one class sur-
passed the binarizing threshold were assigned to the class 
with highest probability. The end-result was a single 3D 
label map (i.e., the output of the multi-class classification 
task) representing the segmentation of the aortic root and the 
coronary arteries within the CTA volume. Figure 1 shows a 
schematic representation of the workflow.

The 3D view integration step was intended to regularize 
the voxel prediction by considering the spatial information 
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from the three orthogonal views. In other words, the pre-
dictions made by the three 2D U-Nets were combined to 
provide a spatially coherent final segmentation, overcoming 
the limitations of single-plane CNNs, namely the lack of 
information regarding the association among different slices.

The CNNs were implemented in Python, using Keras 
framework (v 2.8.0) based on Tensorflow (v 2.8.3) with 
GPU support (NVIDIA GeForce RTX 2080 Ti graphic card 
with CUDA compute capability of 7.5), under Windows 10 
operating system.

CNN Training

The CTA acquisitions and the corresponding segmentations 
were randomly divided into three groups: training set (n = 99 
scans), validation set (n = 12 scans), and test set (n = 13 
scans). Each CTA scan was parsed into 2D axial, sagittal, 
and coronal views, and the single-plane CNNs were trained 
for each orthogonal view using a separate segmentation 
model. To increase the variety of the dataset, we performed 
data augmentation on the training and validation by mak-
ing a random rotation (range: − 7°–7°), shift (range in width 
direction: − 22–22 pixels; range in height direction: − 22–22 
pixels for axial planes and − 72–72 pixels for sagittal and 
coronal planes) and zoom (range: 0.85–1.15) to each image.

To train the models, we used binary cross-entropy 
as a loss function, and Adam optimizer with learning 
rate = 0.0001 to optimize the network parameters. We trained 
the CNNs providing to the 2D networks mini-batches of 10 
slices each, randomly sampled from the training set. The 
training was stopped using early stopping criteria, with 
patience of 15 epochs.

Classification of Anomalous Coronaries

The classification task was divided into two parts. First, a con-
nectivity criterion of the 3D segmentation was applied. A cor-
rect segmentation of normal coronaries should consist of two 
connected components, one for each trunk (left and right). In 

some anomalous cases, both coronaries share the same ostium, 
resulting in a single connected component on the segmenta-
tion. Furthermore, in another type of anomaly, the left anterior 
descending and the left circumflex arteries do not originate 
from the left main coronary, but instead both originate directly 
from the aortic root. In this case, the segmentation results in 
three connected components. Accordingly, the first step was 
to classify a CTA as anomalous if its segmentation possessed 
either one or three 3D connected components. In cases with a 
segmentation composed of exactly two 3D connected compo-
nents, an origin angulation criterium was applied, as explained 
in the following paragraph.

The ostia of the anomalous coronary arteries are close 
to each other, whereas in the case of normal coronaries 
the ostia are far apart. Using this anatomical characteris-
tic, to classify the coronaries as normal or anomalous, we 
first identified the coronary ostia as the points within the 
segmentation that were closer to the aortic wall. Then, the 
3D coordinates of the origins were projected onto the axial 
plane that was halfway between the Z values of both origins; 
and in that plane the centroid of the aorta was automatically 
obtained. Finally, we calculated the directions between: (i) 
the aortic centroid and the first coronary ostium, and (ii) the 
aortic centroid and the second coronary ostium (Fig. 2). The 
angle between these directions (origin angle, α) was used to 
discriminate between normal and abnormal coronaries using 
a decision tree model.

Data Analysis

The segmentations obtained with the developed method 
were compared against the ground truth annotations using 
the DSC, which is commonly used to evaluate the perfor-
mance of the multi-view network as an overlap measure 
between the predicted and the ground truth segmentations. 
Two different DSC were computed, i.e., one DSC for the 
aortic root segmentation and one DSC for the coronary seg-
mentation. The classification results were evaluated using 
accuracy, precision, and recall.

Results

The output of each CNN consisted of 2D probability maps 
for the aortic root and the coronary arteries, which were 
binarized with the thresholds that maximized the DSC on 
the validation set. The resulting thresholds were 0.30 and 
0.15, respectively.

Figure 3 shows two examples of the overlap between the 
ground truth and the automatically obtained segmentations 
of a normal and an AAOCA case. Both cases shown belong 
to the test set. It can be observed that there is a high super-
position between both segmentations.

Fig. 1   Schematic of the developed workflow. Three 2D U-Nets were 
implemented, corresponding to the axial, sagittal, and coronal planes. 
The networks’ outputs were integrated into a single 3D label map
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Table 1 shows the mean DSCs obtained for the aortic root 
and the coronary arteries in all sets of CTAs, namely the train-
ing, validation, and test sets. It can be observed that, on the test 
set, the DSC for the aortic root was 0.95 ± 0.04, whereas the 
DSC of the coronary arteries was 0.80 ± 0.11. Possible reasons 
for this difference are addressed in the “Discussion” section.

Table 1 shows the accuracy, precision, and recall of the 
classification task. Normal and anomalous CTAs showed a 
median of the origin angle of 135° (quartiles: 121°–154°) 
and 30° (quartiles: 20°–46°), respectively, with a threshold 
of 73°. In almost all cases, the decision tree correctly clas-
sified the coronary arteries as normal or anomalous. There 
was only one CTA incorrectly classified as abnormal. In 
no cases, there was an anomalous coronary tree wrongly 
identified as normal.

Figure 4 shows two examples of input images from the 
test set (one normal and one AAOCA) with the respective 
output images (segmentation) and classification labels.

Discussion

We developed a fully automatic method for segmenting the 
aortic root and either normal or anomalous coronary arteries 
from CTA images based on 2D attention U-Nets with multi-
view integration. Moreover, the segmented geometries were 

automatically classified as normal or anomalous using 3D 
connectivity features and a decision tree model.

Segmentation of the aortic root showed high perfor-
mance, with a mean DSC of 0.95 in the test set. The coro-
nary tree segmentation showed a mean DSC of 0.80 on the 
test set. This lower performance can possibly be explained 
by a particular anomaly that was included in the dataset, i.e., 
the retroaortic origin [1], which is a rare type of AAOCA. 
In this case, the anatomy of the coronary arteries differs 
substantially from other types of AAOCA. Our dataset pos-
sessed 2/99, 2/12, and 3/13 cases of retroaortic anomalies 
in the training, validation, and test sets, respectively. Given 
the low proportion of these cases in the training set, the 
CNN did not learn to generalize this type of abnormality. 
The DSCs of retroaortic cases were in the range of 0.5–0.7, 
significantly lowering the mean value of the entire sets 
(including the training and validation sets). Accordingly, 
the median DSCs of the training, validation and test sets 
were 0.87, 0.83, and 0.84, respectively, which is higher than 
the mean value in all cases. Moreover, the mean DSC on the 
training set, considering only the 10 non-retroaortic cases, 
was 0.83. Future works should include larger datasets with 
significant amounts of CTAs of all the types of AAOCA to 
be able to generalize this highly heterogeneous anatomy.

The classification task provided excellent results, show-
ing perfect predictions in the validation and test sets. The 

Fig. 2   Example of the calculation of the origin angle. On the left is 
shown the segmentation of a normal case from the test set, in which 
the ostia of the coronaries were automatically retrieved. The green 
plane is the axial slice that is halfway between the Z coordinates of 
the origins. The points where the ostia were found were projected 

onto this plane and the centroid of the aorta was automatically com-
puted (right side of the figure). The origin angle (α) was computed 
between the vectors joining the centroid (blue point) with the ostia 
(red points)
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single case that was misclassified corresponded to a nor-
mal coronary tree that was considered as anomalous. We 
highlight that in none of the analyzed CTAs an anomalous 
case was missed and classified as normal. From the clinical 
point of view, this a major finding, since missing patho-
logical cases would imply an under-diagnosis, leading to 
potentially severe complications. Instead, the wrongly clas-
sified as anomalous case would be immediately identified 
as normal by physicians, given the geometry of the segmen-
tation. The misclassification was caused by a small group 
of voxels near the aortic root that was considered as part 
of the right coronary artery in the automatic segmentation.  
Since these voxels were not 3D connected to the rest of the 

right coronary artery, the segmentation resulted in three con- 
nected components, which were thus automatically classified  
as anomalous (without considering the angle of origin). To 
avoid this issue, the classification method could be improved 
by adding a size criterion on the connected components; the 
volume of the region wrongly identified as artery was 15 ml, 
representing 0.68% of the total volume of the segmented 
coronary tree. A threshold could be applied to eliminate 
small regions like these from the automatic segmentation 
before performing the classification task.

Deep learning is now the most used tool to segment cardiac 
images, although a small number of works investigated its use 
for the segmentation of coronary arteries [13]. Some authors 

Fig. 3   Examples of segmented aortic root and coronary arteries from 
the test set. On red is shown the segmentation of the aortic root, 
and on green and purple, the ground truth and the segmented coro-
nary arteries, respectively. It can be observed a good correspondence 
between the coronary arteries segmented with our proposed method 

and the ground truth (superposition of green and purple). On the left, 
a normal case is shown, where both coronaries originate from the 
corresponding physiological site; and on the right, an AAOCA case 
is shown, where it can be seen the proximity between the ostia of the 
coronaries

Table 1   Results of 
segmentation (DSCs for the 
aortic root and for the coronary 
arteries) and classification 
(accuracy, precision, and recall) 
for training, validation, and test 
sets

Training set (n = 99) Validation set (n = 12) Test set (n = 13)

Segmentation DSC aortic root 0.98 ± 0.03 0.97 ± 0.02 0.95 ± 0.04
DSC coronary arteries 0.84 ± 0.06 0.81 ± 0.09 0.80 ± 0.11

Classification Accuracy 0.99 1 1
Precision 0.98 1 1
Recall 1 1 1
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have focused on the extraction of the centerline [24, 25] or of 
the centerline and the radius [26]. Although in many cases the 
geometry of the vessel may be assumed cylindrical, rending 
sufficient the information of centerline and radius, patients with 
AAOCA often present an intramural tract, which has a highly 
elliptic cross section [9], thus needing a volumetric segmenta-
tion. Other authors have used CNNs to achieve an end-to-end 
3D segmentation of the coronary arteries [27–29], obtaining 
DSC that ranged between 0.6 and 0.8. Some authors have 
included anatomical restrictions to regularize during training 
[30, 31]. However, in the context of pathological anatomies 
like the ones considered in our work, these types of constraints 
are not suitable to be applied [13] (particularly in a rare disease 
like AAOCA, in which there exists a large variety of possible 
anatomical configurations). Recent works have implemented 
different variations of U-Nets to segment the coronary arteries, 
being one of the most utilized architectures for this purpose. 
Using a modified 2D U-Net architecture, Cheung et al. obtained 
a DSC of 0.888 in the segmentation of the coronaries of inter-
mediate risk patients with anatomically normal arteries [18]. 
To our knowledge, ours is the first work to assess the feasibility 

of 3D segmentation using U-Nets in patients with AAOCA. 
Furthermore, compared to the available literature, we obtained 
high DSC values for the coronary arteries alone, as well as for 
the aorta (above 0.80 and 0.95, respectively).

The performance of 2D compared to 3D CNNs has been dis-
cussed [18]. 2D approaches are easier to implement and usually 
converge faster than 3D CNNs, which, in turn, allow a volumet-
ric interpretation of the input data instead of analyzing single 
planes. Nevertheless, the combination of both features (easy and 
fast implementation from 2D and volumetric information from 
3D) is possible thanks to the so-called 2D + approaches. One 
example of a 2D + workflow is the one adopted in this work; 
namely, the multi-view integration, which uses a single 2D CNN 
for each orthogonal plane, thus enabling a 3D coherent end-
result since information among slices is taken into consideration.

Although the current dataset has some limitations in terms 
of available CTAs, the segmentation model showed promis-
ing results. In future developments, having more CTA scans, it 
will be possible to perform a more accurate and comprehensive 
comparison between our pipeline and state of the art methods 
for segmenting coronary arteries in AAOCA.

Fig. 4   Examples of axial input images (left) with the corresponding 
segmentation outputs (center) and classification labels (right). Colors 
gray, red, and green on the segmentation images correspond, respec-
tively, to background, aorta, and coronary arteries. It is noteworthy 
that the segmentation images are not to scale with respect to the 

CTA images to allow better visualization of the area of interest; all 
unshown pixels were assigned to the background. The examples cor-
respond to a normal (top row) and an AAOCA (bottom row) patient 
from the test set. In both cases, the assigned label matched the true 
class of the patient
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A limitation of our work was the inclusion of several 
different types of AAOCA anatomies into the dataset. Bet-
ter results might be obtained if a single type of anomaly 
was considered or if a separate deep learning system was 
developed for each sub-classification of AAOCA disease. 
However, any of these options would require a larger data-
set, containing a wide range of AAOCA variants. Given the 
rareness of AAOCA disease and the substantial number of 
undiagnosed cases, data collection is a slow process. Future 
works should include larger datasets.

In this work, we trained a deep learning model with a 
single configuration of training, validation, and test sets. It 
could be helpful to perform cross validation (e.g., five-fold 
cross-validation) to have an average performance evalua-
tion on training, validation, and test set. The reported results 
might then be more stable, also reducing the impact of out-
liers in performance evaluation. By training and testing on 
different subsets of data, a more complete understanding 
of the performance of the model on different CTAs will be 
obtained, both for the segmentation and the classification 
tasks. This can be very important when working with lim-
ited datasets, as choosing a single configuration for training, 
validation and testing sets can lead to bias.

Conclusion

We developed a deep learning-based workflow to automati-
cally segment the aortic root and both normal and AOOCA 
coronary arteries using single 2D U-Nets with multi-view inte-
gration. Furthermore, the segmented geometries were automat-
ically classified as normal or anomalous using 3D connectivity 
and a decision tree model. We obtained high correspondence 
of our segmentation with respect to the ground truth and excel-
lent results in the classification task. Further work is needed to 
develop tools that could be used in clinical routine.
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