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Abstract
The study aims to investigate the value of intratumoral and peritumoral radiomics and clinical-radiological features for pre-
dicting spread through air spaces (STAS) in patients with clinical stage IA non-small cell lung cancer (NSCLC). A total of 
336 NSCLC patients from our hospital were randomly divided into the training cohort (n = 236) and the internal validation 
cohort (n = 100) at a ratio of 7:3, and 69 patients from the other two external hospitals were collected as the external valida-
tion cohort. Univariate and multivariate analyses were used to select clinical-radiological features and construct a clinical 
model. The GTV, PTV5, PTV10, PTV15, PTV20, GPTV5, GPTV10, GPTV15, and GPTV20 models were constructed 
based on intratumoral and peritumoral (5 mm, 10 mm, 15 mm, 20 mm) radiomics features. Additionally, the radscore of the 
optimal radiomics model and clinical-radiological predictors were used to construct a combined model and plot a nomogram. 
Lastly, the ROC curve and AUC value were used to evaluate the diagnostic performance of the model. Tumor density type 
(OR = 6.738) and distal ribbon sign (OR = 5.141) were independent risk factors for the occurrence of STAS. The GPTV10 
model outperformed the other radiomics models, and its AUC values were 0.887, 0.876, and 0.868 in the three cohorts. 
The AUC values of the combined model constructed based on GPTV10 radscore and clinical-radiological predictors were 
0.901, 0.875, and 0.878. DeLong test results revealed that the combined model was superior to the clinical model in the three 
cohorts. The nomogram based on GPTV10 radscore and clinical-radiological features exhibited high predictive efficiency 
for STAS status in NSCLC.
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Introduction

In 2015, the World Health Organization (WHO) formally 
defined STAS (spread through air spaces), that is, tumor 
cells appear in the lung tissue surrounding the primary 
tumor in the form of micropapillary cell clusters, solid 
cancer nests, or single tumor cells, while STAS was iden-
tified as the fourth type of invasion mode of lung adeno-
carcinoma [1]. Regarding STAS-positive patients with 
clinical or pathological stage IA lung cancer, lobectomy 
can achieve a superior clinical prognosis compared to sub-
lobectomy and lower the risk of postoperative tumor recur-
rence and metastasis [2–4]. At present, the gold standard 
for the diagnosis of STAS is postoperative histopathologi-
cal examination; consequently, it is challenging to develop 
appropriate preoperative surgical strategies. Moreover, 
preoperative puncture and intraoperative frozen pathologi-
cal examination have drawbacks such as low sensitivity, 
limited tissue samples, and short diagnosis time [5, 6].

Therefore, scholars attempted to explore the STAS 
status of lung cancer patients based on preoperative CT 
images, and the results demonstrated that some radiologi-
cal features of lung cancer were correlated with STAS 
status, such as tumor size, solid component size, ratio of 
solid component size to total tumor size (consolidation-
to-tumor ratio, CTR), air bronchogram sign, vacuole sign, 
spiculation sign, and lobulation sign [7–12]. Addition-
ally, Kim et al. [11] found that STAS was absent in pure 
ground-glass nodule (pGGN). Based on different inclusion 
criteria and different multiple regression models, the pre-
diction performance of the model varied. In general, the 
area under curve (AUC) values of the model ranged from 
0.726 to 0.803.

As a characterization algorithm, radiomics offers a non-
invasive method to characterize the biological behavior 
of lesions through high-throughput extraction and analy-
sis of a large number of quantitative image features [13]. 
Indeed, earlier studies have showcased that intratumoral 
and peritumoral radiomics techniques have tremendous 
potential in predicting lymphovascular invasion, lymph 
node metastasis, and clinical prognosis of lung cancer 
[14–16]. Both Zhuo et al. [17] and Liao et al. [18] con-
structed models based on intratumoral and peritumoral 
radiomics features of clinical T1 stage lung adenocar-
cinoma including pGGN, but the peritumoral volume 
of interest (VOI) acquisition methods were different in 
the two studies, and the conclusions were also varied. In 
Zhuo’s study [17], a spherical shape was fitted based on 
the tumor center point, and the spherical peritumoral scope 
was obtained by extending uniformly to the periphery by 
5 mm, 10 mm, and 15 mm, and the results showed that the 
peritumoral radiomics models were not well fitted. Liao’s 

study obtained four types of peritumoral segmentation 
volume (PTV) by extending the range of 5 mm, 10 mm, 
15 mm and 20 mm to the periphery along the segmented 
tumor edge, and the results showed that the gross radiomic 
signature (GRS) model which combined tumor radiomic 
signature (TRS) and peritumoral region of 15 mm radi-
omic signature (PRS-15 mm) achieved the highest values 
of AUC [18]. Although, the two studies constructed com-
bined models based on the best radiomics signatures, CT 
morphological features, and clinical information, all of 
which have achieved good discriminative accuracy based 
on internal cohort with AUC values of 0.99 and 0.869 in 
the internal validation cohort, respectively. However, the 
transportability and generalizability of the models’ pre-
dictive efficacy have not been verified through external 
cohort. Furthermore, previous studies described above 
only included histologic adenocarcinoma tumors, but 
STAS was reportedly associated with poor prognosis of 
other types of lung cancer, such as lung squamous cell 
carcinoma, lung pleomorphic carcinoma, and lung neu-
roendocrine tumors [19–21].

In this study, we focused on clinical stage IA NSCLC 
and excluded pGGN which was clearly STAS-negative. We 
constructed the radiomics model based on the independent 
segmented VOI of gross tumor volume (GTV), four types 
of peritumoral volume (PTV) (5 mm, 10 mm, 15 mm, and 
20 mm around the tumor), and their corresponding four 
types of gross peritumoral and tumor volume (GPTV). We 
aimed to explore its value in predicting STAS status of clini-
cal stage IA NSCLC and to explore whether it can further 
improve the diagnostic efficiency combined with relevant 
radiological features and valuable clinical information in 
both the internal and external cohorts.

Materials and Methods

Patients

The data of NSCLC patients who underwent chest CT 
examinations and postoperative pathological assessment 
of STAS status in our hospital and the other two hospitals 
from September 2019 to September 2022 were retrospec-
tively analyzed. We collected 290 lung cancers presenting as 
pGGNs, none of which was positive for STAS. As reported 
in references [11], we excluded pGGNs.

The inclusion criteria were as follows: (i) thin-slice chest 
CT with slice thickness ≤ 1.5 mm and no artifacts within 
1 week before surgery; (ii) complete clinical and pathologi-
cal data; (iii) clinical stage IA NSCLC (cT1N0M0, the maxi-
mum tumor diameter ≤ 3 cm); (iv) solid or mixed ground 
glass nodules (mGGNs). The exclusion criteria were as 
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follows: (i) poor image quality; (ii) incomplete clinical and 
pathological data; (iii) maximum diameter of tumor > 3 cm; 
(iv) tumors with lymph node or distant metastasis; (v) the 
pathological type was not NSCLC; (vi) preoperative neo-
adjuvant and chemotherapy; (vii) pGGNs. A total of 336 
patients were included from our hospital (hospital 1) and 
randomly divided into the training cohort (n = 236) and the 
internal verification cohort (n = 100) at a ratio of 7:3. Fur-
thermore, 69 cases from the other two hospitals were used as 
the external validation cohort, including 30 patients in hos-
pital 2 and 39 patients in hospital 3. The training cohort was 
used to train the designed group model, and the validation 
cohort was used to evaluate the accuracy of the model. The 
detailed patient inclusion procedure is shown in Fig. 1. The 
training cohort was used to develop the prediction model, the 
internal validation cohort was used to test the reproducibility 
of the model development process, and the external vali-
dation cohort was used to evaluate the transportability and 
generalizability of the model in data from different hospitals.

If multiple lesions in the same patient were surgically 
removed and met the inclusion criteria, we referred to Dercle 
et al. [22] to select a representative lesion with the largest 
tumor size for analysis. Therefore, independent and different 
patient data were randomly assigned to the training cohort 
and the internal validation cohort.

This study was approved by the ethics committee of our 
hospital (hospital 1, decision number: CZ-20220712–03), 

hospital 2 (decision number: GYLLPJ-20220714–27), and 
hospital 3 (decision number: CYLLPJ-20220719–08). Due 
to the retrospective nature of this study, informed consent 
was waived.

Equipment and Parameters

Patients in our hospital (hospital 1) underwent preopera-
tive chest CT examinations with four types of CT machines 
from three vendors, including the Toshiba Aquilion16 row, 
GE Light Speed VCT64 row, Philips Ingenuity 64 row, 
and Brilliance iCT 128 row CT machines. In the external 
cohort, patients from hospital 2 were assessed with Ameri-
can Light Speed 16, Light Speed VCT64 row, and Dutch 
Philips iCT 256-row CT machines. Hospital 3 utilized the 
SOMATOM Definition Flash and SOMATOM Drive 64-row 
CT machines from Germany. The patients were instructed to 
lie in the supine position during the scan, which covered the 
entire lung field. The parameters were set as follows: tube 
voltage was set to 120 kVp, with a tube current of 150–250 
mAs or automatic tube current regulation. The scanning slice 
thickness and slice increment were 5 mm, while the recon-
struction slice thickness and slice increment were 1 mm in 
hospital 1 and hospital 2 and 1.3 mm in hospital 3. The lung 
algorithm or standard algorithm reconstruction was selected, 
and non-contrast enhanced images were used for analysis.

Inclusion criteria:

(i) Thin-

1.5mm and no artifacts within 1 week before 

surgery 

(ii) Complete clinical and pathological data

(iii) Clinical stage IA NSCLC (cT1N0M0, the 

(iv) Solid or mixed ground glass nodules (mGGNs)

Exclusion criteria:

(i) Poor image quality (n = 9)

(ii) Incomplete clinical and pathological data (n = 98) 

(iv) Lymph node or distant metastasis (n = 6)

(v) Pathological type was not NSCLC (n = 4)

Training cohort Internal validation cohort

(n = 100)

External validation cohort

(n = 69)

Patients with NSCLC who underwent surgical Patients with NSCLC who underwent surgical treatment

STAS (+)

(n = 59)

STAS (-)

(n = 177)

STAS (+) STAS (-)

(n = 71)

STAS (+) STAS (-)

Fig. 1   The flow chart for patient selection
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Clinicopathological and Radiological Data

Patient data were collected, including sex, age, clinical 
symptoms, smoking status, family history of lung cancer, 
history of malignancy, history of multiple primary lung 
cancer, CEA levels, surgical type, and pathological type. 
The DICOM images of patients were imported into soft-
ware (RadiAnt DICOM Viewer 4.2.1, Medixant, Poland) 
and analyzed by two independent radiologists with 2 years 
and 10 years of experience who were blinded to the path-
ological information. The lung window (width 1500 HU, 
level − 500 HU), mediastinal window (width 300 HU, level 
50 HU), multiplanar reformation (MPR), and maximal inten-
sity projection (MIP) were used to analyze the lesion. For 
quantitative measures, the average measurements of two 
independent radiologists were used as the final data. For 
qualitative indicators, disagreements were discussed until a 
consensus was reached.

First, the longest diameter of the whole tumor and the 
consolidation part were measured at the lung window on 
the MPR images, and the CTR was calculated [7]. Clinical T 
staging was performed according to the maximum diameter 
of the solid components of the tumor [23].

Second, we assessed the following qualitative radio-
logical features: tumor location, density type (solid, 
mGGN), shape (round, irregular), tumor-lung interface 
(well-defined, ill-defined), margin (lobulation, spicula-
tion), internal characteristics (vacuole sign, cavity/cystic 
airspace), and external characteristics (vascular conver-
gence, air bronchogram, pleural tags, pleural indentation, 
ill-defined peripheral opacity, satellite lesions, distal rib-
bon sign, combined with emphysema).

The definitions of radiological features are described in 
Supplementary Table S1, and graphical figures of radiologi-
cal features are shown in Supplementary Fig. S1-S7. Most of 
the definitions of these features of pulmonary nodules have 
been previously reported [11, 24–27]

Image Processing and Model Construction

Standardized image resampling and grayscale discretization 
were performed on the CT images. ITK-SNAP 3.8.0 soft-
ware (www.​itksn​ap.​org) was used to outline the total volume 
of the tumor slice by slice along the tumor boundaries, and 
the GTV was determined, which was used as VOI. GTV was 
defined as the whole tumor area that was identified within 
the visible tumor boundary. During segmentation, blood 
vessels, bronchi, surrounding pleura, and atelectatic lung 
tissue were avoided as much as feasible. Differences in opin-
ion were resolved by discussion and reaching a consensus. 
Thirty lesions were randomly selected, and two radiologists 
with 2 years and 10 years of experience who were blinded to 
the pathological information independently segmented the 

tumor to evaluate inter-observer repeatability. One month 
later, the radiologist with 2 years of working experience per-
formed secondary segmentation on thirty lesions to evalu-
ate intra-observer repeatability. The remaining lesions were 
segmented by a radiologist with 2 years of working experi-
ence. About the definition of peritumoral extent, previous 
study quantified the histopathologically proven distance 
between tumor surface and farthest STAS from the tumor 
edge was 17 mm [28]. Based on the above research, in order 
to cover all potential STAS, the peripheral extension dis-
tance of lung cancer in this study was increased to 20 mm, 
and four different gradients were set in 5 mm units to make 
an exploratory study. Python 3.1.1 (https://​www.​python.​
org) was used to write the expansion algorithm program 
to capture the range of 5 mm, 10 mm, 15 mm, and 20 mm 
peritumoral areas based on the segmented GTV to get the 
VOIs of GPTV (labeled as GPTV5, GPTV10, GPTV15, and 
GPTV20, respectively), and pixel filtering was performed 
on peritumoral non-lung tissues (blood vessels, chest wall, 
ribs, neck, mediastinum, abdominal cavity) according to the 
pixel value threshold. Then, the intratumoral mask was sub-
tracted from the GPTV masks to obtain peritumoral areas 
from the tumor surface, which was the VOIs of PTV (labeled 
as PTV5, PTV10, PTV15, and PTV20, respectively).

The PyRadiomics open-source software (version 3.0.1, 
https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/​chang​es.​html) 
was used to extract radiomics data from images, including 
14 morphological features, 18 first-order statistical features, 
and 68 texture features (22 Gy co-occurrence matrix GLCM, 
14 Gy dependence matrix GLDM, 16 Gy size area matrix 
GLSZM, and 16 Gy run matrix GLRLM). A total of 100 
original features were obtained (Supplementary Table S2). 
In order to acquire high throughput features, the image vox-
els were transformed by non-linear intensity (square, square 
root, logarithm, and exponent). Gaussian Laplacian (LoG) 
conversion was performed with sigma values of 1 mm, 
2 mm, 3 mm, 4 mm, and 5 mm, and eight wavelet trans-
forms (LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH) 
were carried out for first-order statistical features and tex-
ture features, yielding in a total of 1218 radiomics features 
(Supplementary Table S3). The definition of each radiomics 
feature is provided in the Supplementary Table S4. Consid-
ering that the CT images of the cases included in this study 
were collected from multiple hospitals and CT protocols, 
the intensities of all radiomics features were normalized by 
the ComBat compensation method (Combat Tool is avail-
able here: https://​forlh​ac.​shiny​apps.​io/​Shiny_​ComBat) and 
z-score (z = x − μ/σ) transformation [29–31].

Intraclass correlation coefficient (ICC) was used to evalu-
ate intra-observer and inter-observer consistency between 
the segmented intratumoral and peritumoral radiomics fea-
tures; the “psych” package in R language was used to test 
the consistency of the radiomics features. Firstly, in order 

http://www.itksnap.org
https://www.python.org
https://www.python.org
https://pyradiomics.readthedocs.io/en/latest/changes.html
https://forlhac.shinyapps.io/Shiny_ComBat
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to mitigate overfitting, the maximal redundancy minimal 
relevance (mRMR) algorithm and the least absolute shrink-
age and selection operator (LASSO) logistic regression 
method were applied to features with a good consistency 
(ICC > 0.80) in the training cohort to limit the dimension 
of the features [32]. Secondly, tenfold cross-validation was 
used to select the optimal regularization parameter λ value. 
Under the optimal λ value, features whose coefficients were 
not equal to 0 were used as the features to construct the 
radiomics model. Finally, radscore was calculated based 
on the linear model by selecting the optimal radiomics fea-
tures, and the Wilcoxon test was used to compare differences 
between the STAS-positive group and the STAS-negative 
group. Overall, nine radiomics models were constructed, and 
their diagnostic efficiency was evaluated. The model with 
the highest AUC value in the external validation cohort was 
considered the best radiomics model.

In order to avoid missing meaningful variables, variables 
with p < 0.1 in univariate analysis were involved in multivar-
iate analysis of logistic regression, and backward step-wise 
selection was applied by using the likelihood ratio test with 
Akaike’s information criterion (AIC) as the stopping rule to 
select the best combination of variables to build the clinical 
prediction model in the training cohort [33].

Following this, the radscore of the best radiomics model 
and clinical predictors were utilized to construct a combined 
model and design a nomogram, and its predictive efficacy 

was evaluated centrally in internal and external validation, 
as illustrated in Fig. 2.

Pathological Diagnosis

Pathologic diagnosis of each patient included in our study 
was established by two pathologists, respectively, a junior 
pathologist and a senior pathologist with more than 10 years 
of work experience, according to the 2015 WHO definition 
of STAS [1]. The classification of lung cancer was based on 
the WHO classification of lung cancer (2015 edition) [1], 
and the clinical and pathological staging was based on the 
TNM staging standard of lung cancer (8th edition) [23]. It is 
important to note that the pathologic diagnoses were deter-
mined as part of routine clinical practice, and the specimens 
were not reviewed specifically for this study.

Statistical Analysis

SPSS 20.0 software and R statistical software (R version 
4.2.2) were used for statistical analysis. Pearson’s chi-
squared test, Yate’s correction for continuity, or Fisher’s 
exact test was used for categorical variables analysis. 
Regarding the clinical-radiological features selected by 
univariate and multivariate logistic regression analysis, 
P < 0.05 was considered statistically significant. The ROC 
curve and AUC value were used to evaluate the diagnostic 

Image segmentation Feature extraction

Clinical characteristics

Radiological features

Tumor features

Radiomics
features

Indensity

Shape

GLCM

GLDM

GLSZM

GLRLM

Logistic regression

mRMR+LASSO

Clinical model

Best Radiomics
model

Combined model

Model construction Evaluation

Calibration

Clinical application

Discrimination

GTV

PTV5

GPTV5

PTV10 PTV15 PTV20

GPTV10 GPTV15 GPTV20

Fig. 2   Overall design flow chart of this study
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performance of the model, the DeLong test was used to ana-
lyze the difference in AUC value between the models, the 
Hosmer–Lemeshow test and calibration curve were used to 
examine the goodness of fit of the model, and decision curve 
analysis (DCA) was used to analyze the clinical applicabil-
ity of the model. Inter-observer and intra-observer consist-
ency tests were performed using the “psych” package of R 
language, the “rms” package of R software was employed 
for multivariate logistic regression analysis and constructing 
the nomogram and calibration curves, the “pROC” software 
package was used for ROC curve analysis, and the “rms” 
package was applied for internal and external validation. The 
“dca.R” package was used to analyze the decision curve. The 
kappa coefficient and ICC were used to evaluate the con-
sistency of qualitative and quantitative parameters among 
observers, respectively.

Results

Clinicopathological Characteristics  
and Radiological Features

Of the 405 patients with NSCLC, 118 were STAS-positive, 
and 287 were STAS-negative. Statistically significant dif-
ferences in sex were observed in the training cohort and 
the external validation cohort (P < 0.05). The difference 
in the surgical method was statistically significant in the 
training and internal validation cohorts (P < 0.05), whereas 
the difference in smoking status, carcinoembryonic antigen 
(CEA) levels, and pathological type was statistically sig-
nificant exclusively in the training cohort (P < 0.05). On the 
other hand, significant differences were identified in clini-
cal symptoms in the external validation cohort (P < 0.05). 
Concerning radiological features, good consistency was 
observed in terms of quantitative parameters between the 
two observers (ICC 0.934–0.935), with strong consistency 
in qualitative indicators (Kappa 0.852–1.000); the interob-
server agreement assessment results of each index are shown 
in Supplementary Table S5.

Model Development and Evaluation

The optimal combinations of variables selected by multivari-
ate logistic regression analysis consisted of sex, CEA level, 
CTR, density type, and distal ribbon sign, among which 
density type (OR = 6.738, 95% CI 3.107 ~ 15.18, P < 0.001) 
and distal ribbon sign (OR = 5.141, 95% CI 2.272 ~ 12.00, 
P < 0.001) were independent risk factors for STAS (Tables 1 
and 2), and there was no multicollinearity (Supplementary 
Table S6). The AUC values of the clinical model constructed 
based on the aforementioned variables in the three cohorts 
were 0.874, 0.822, and 0.810, respectively (Table 3).

Among the 1218 radiomics features extracted from 
each VOI, the proportion of radiomics features with inter-
observer and intra-observer ICC greater than 0.8 ranged 
from 86.0 to 99.8% (Supplementary Table S7). Among the 
features with ICC > 0.80, the mRMR algorithm was first 
used to eliminate redundant and irrelevant features, and 30 
features were retained in each group. Then, LASSO logis-
tic regression method was used to select the optimized 
feature subset to establish the final model, and tenfold 
cross-validation was used to select the values of the opti-
mal hyperparameter λ, which were identified to be 0.0006 
(GTV), 0.0033 (PTV5), 0.0226 (PTV10), 0.0139 (PTV15), 
0.0071 (PTV20), 0.0143 (GPTV5), 0.0135 (GPTV10), 
0.0054 (GPTV15), and 0.0955 (GPTV20), respectively. 
With the optimal λ values, 19, 16, 9, 15, 16, 11, 10, 12, 
and 2 features were selected to construct the 9 radiomics 
models. The features used for radiomics model construc-
tion and their ICC details are shown in Supplementary 
Table S8. The group with the highest AUC value in the 
external validation cohort was considered the best radi-
omics model. The results demonstrated that the GPTV10 
radiomics model had the best prediction performance, 
with AUC values of 0.887, 0.876, and 0.868, in the three 
cohorts (Table 3). Besides, the DeLong test demonstrated 
that the GPTV10 model significantly outperformed PTV10 
and GPTV20 in the training cohort, PTV (5, 10, 15, 20) 
in the internal validation cohort, and PTV (5, 10, 15, 20) 
and GPTV15 in the external validation cohort (P < 0.05). 
Detailed results of DeLong tests between radiomics mod-
els are shown in Supplementary Table S9-S11.

Based on GPTV10 radscore and the selected clinical-
radiological predictors, a combined model was constructed, 
and a nomogram was developed, as delineated in Fig. 3. The 
combined model formula is as follows: Nomoscore = (​Int​erc​
ept) ×  − 1.56 + sex × 0.60 + CEA × 1.46 + CTR × 0.56 + den-
sity type × 0.57 + distal ribbon sign × 1.01 + GPTV10 rad-
score × 0.85, and its AUC values in the three cohorts were 
0.901, 0.875, and 0.878 (Table 4). ROC curves of the clini-
cal model, GPTV10 radiomics model, and combined model 
in the three cohorts are presented in Fig. 4. The DeLong 
test showed that the combined model was superior to the 
clinical model in the three cohorts (Z = 2.480, 2.068, 2.388, 
P < 0.05), detailed results of DeLong tests between models in 
three cohorts are shown in Supplementary Table S12. Mean-
while, the Hosmer–Lemeshow test showed that the com-
bined model was well-fitted in all three cohorts (P = 0.473, 
0.496, 0.246), and the calibration curve portrayed that the 
predicted probability value of the combined model was in 
good agreement with the actual situation, as shown in Fig. 5. 
Lastly, the DCA illustrated that the combined model had 
superior clinical application value compared to the clinical 
model or the GPTV10 radiomics model alone, as illustrated 
in Fig. 6.
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Table 1   Clinicopathological and radiological characteristics of patients in the training and two validation cohorts

Characteristics Training cohort (n = 236) Internal validation cohort 
(n = 100)

External validation cohor (n = 69)

STAS ( −)
(n = 177)

STAS ( +)
(n = 59)

P value STAS ( −)
(n = 71)

STAS ( +)
(n = 29)

P value STAS ( −)
(n = 39)

STAS ( +)
(n = 30)

P value

Sex 0.022a 0.736a 0.003a

  Male 66 (37.3%) 32 (54.2%) 49 (69.0%) 21 (72.4%) 12 (30.8%) 20 (66.7%)
  Female 111 (62.7%) 27 (45.8%) 22 (31.0%) 8 (27.6%) 27 (69.2%) 10 (33.3%)

Age (year) 0.108a 0.255a 0.217a

   < 65 125 (70.6%) 35 (59.3%) 50 (70.4%) 17 (58.6%) 30 (76.9%) 19 (63.3%)
   ≥ 65 52 (29.4%) 24 (40.7%) 21 (29.6%) 12 (41.4%) 9 (23.1%) 11 (36.7%)

Clinical symptoms 0.153a 0.188a 0.041a

  Absent 124 (70.1%) 47 (79.7%) 49 (69.0%) 16 (55.2%) 31 (79.5%) 17 (56.7%)
  Present 53 (29.9%) 12 (20.3%) 22 (31.0%) 13 (44.8%) 8 (20.5%) 13 (43.3%)

Smoking status 0.015a 1.000b 0.079a

  Non-smoker 151 (85.3%) 42 (71.2%) 62 (87.3%) 25 (86.2%) 34 (87.2%) 21 (70.0%)
  Smoker 26 (14.7%) 17 (28.8%) 9 (12.7%) 4 (13.8%) 5 (12.8%) 9 (30.0%)

Family history of lung cancer 0.441b 1.000b N/A
  Absent 164 (92.7%) 57 (96.6%) 67 (94.4%) 28 (96.6%) 39 (100.0%) 30 (100.0%)
  Present 13 (7.3%) 2 (3.4%) 4 (5.6%) 1 (3.4%) 0 (0.0%) 0 (0.0%)

History of malignancy 0.831a 1.000b 0.528b

  Absent 151 (85.3%) 51 (86.4%) 60 (84.5%) 25 (86.2%) 35 (89.7%) 29 (96.7%)
  Present 26 (14.7%) 8 (13.6%) 11 (15.5%) 4 (13.8%) 4 (10.3%) 1 (3.3%)

History of multiple primary 
lung cancer

0.423a 0.321a 0.851b

  Absent 145 (81.9%) 51 (86.4%) 55 (77.5%) 25 (86.2%) 32 (82.1%) 26 (86.7%)
  Present 32 (18.1%) 8 (13.6%) 16 (22.5%) 4 (13.8%) 7 (17.9%) 4 (13.3%)

CEA (μg/L)  < 0.001b 0.685b 0.438b

   < 5 173 (97.7%) 49 (83.1%) 67 (94.4%) 26 (89.7%) 36 (92.3%) 25 (83.3%)
   ≥ 5 4 (2.3%) 10 (16.9%) 4 (5.6%) 3 (10.3%) 3 (7.7%) 5 (16.7%)

Clinical T stage  < 0.001c  < 0.001c  < 0.001c

  cT1mi 17 (9.6%) 0 (0.0%) 5 (7.0%) 0 (0.0%) 1 (2.6%) 0 (0.0%)
  cT1a 75 (42.4%) 11 (18.6%) 28 (39.4%) 1 (3.4%) 11 (28.2%) 1 (3.3%)
  cT1b 69 (39.0%) 22 (37.3%) 32 (45.1%) 9 (31.0%) 25 (64.1%) 18 (60.0%)
  cT1c 16 (9.0%) 26 (44.1%) 6 (8.5%) 19 (65.6%) 2 (5.1%) 11 (36.7%)

CTR (%)  < 0.001a 0.008a 0.032c

   < 50 63 (35.6%) 2 (3.4%) 19 (26.8%) 1 (3.4%) 6 (15.4%) 0 (0.0%)
   ≥ 50 114 (64.4%) 57 (96.6%) 52 (73.2%) 28 (96.6%) 33 (84.6%) 30 (100.0%)

Density type  < 0.001a  < 0.001a  < 0.001b

  MGGN 154 (87.0%) 19 (32.2%) 63 (88.7%) 11 (37.9%) 21 (53.8%) 3 (10.0%)
  Solid 23 (13.0%) 40 (67.8%) 8 (11.3%) 18 (62.1%) 18 (46.2%) 27 (90.0%)

Location 0.174a 0.783a 0.737a

  RUL 58 (32.8%) 12 (20.3%) 19 (26.8%) 11 (37.9%) 11 (28.2%) 8 (26.7%)
  RML 16 (9.0%) 5 (8.6%) 7 (9.9%) 3 (10.5%) 4 (10.3%) 2 (6.7%)
  RLL 27 (15.3%) 16 (27.1%) 17 (23.9%) 5 (17.2%) 7 (17.9%) 6 (20.0%)
  LUL 53 (29.9%) 16 (27.1%) 17 (23.9%) 5 (17.2%) 10 (25.7%) 5 (16.6%)
  LLL 23 (13.0%) 10 (16.9%) 11 (15.5%) 5 (17.2%) 7 (17.9%) 9 (30.0%)

Shape 0.307a 1.000b 0.704a

  Irregular 26 (14.7%) 12 (20.3%) 12 (16.9%) 5 (17.2%) 20 (51.3%) 14 (46.7%)
  Round/oval 151 (85.3%) 47 (79.7%) 59 (83.1%) 24 (82.8%) 19 (48.7%) 16 (53.3%)

Tumor-lung interface 0.089b 0.026b 0.653a

  Well-defined 167 (94.4%) 51 (86.4%) 68 (95.8%) 23 (79.3%) 34 (87.2%) 25 (83.3%)
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Table 1   (continued)

Characteristics Training cohort (n = 236) Internal validation cohort 
(n = 100)

External validation cohor (n = 69)

STAS ( −)
(n = 177)

STAS ( +)
(n = 59)

P value STAS ( −)
(n = 71)

STAS ( +)
(n = 29)

P value STAS ( −)
(n = 39)

STAS ( +)
(n = 30)

P value

  Ill-defined 10 (5.6%) 8 (13.6%) 3 (4.2%) 6 (20.7%) 5 (12.8%) 5 (16.7%)
Lobulation 0.152a 0.095a 0.947a

  Absent 32 (18.1%) 6 (10.2%) 18 (25.4%) 3 (10.3%) 14 (35.9%) 11 (36.7%)
  Present 145 (81.9%) 53 (89.8%) 53 (74.6%) 26 (89.7%) 25 (64.1%) 19 (63.3%)

Spiculation  < 0.001a 0.001a 0.042a

  Absent 156 (88.1%) 34 (57.6%) 64 (90.1%) 18 (62.1%) 32 (82.1%) 18 (60.0%)
  Present 21 (11.9%) 25 (42.4%) 7 (9.9%) 11 (37.9%) 7 (17.9%) 12 (40.0%)

Vacuole 0.287a 0.996a 0.685a

  Absent 127 (71.8%) 38 (64.4%) 49 (69.0%) 20 (69.0%) 31 (79.5%) 25 (83.3%)
  Present 50 (28.2%) 21 (35.6%) 22 (31.0%) 9 (31.0%) 8 (20.5%) 5 (16.7%)

Cavity/cystic airspace 0.526a 0.884b 0.501c

  Absent 161 (91.0%) 52 (88.1%) 66 (93.0%) 26 (89.7%) 37 (94.9%) 30 (100.0%)
  Present 16 (9.0%) 7 (11.9%) 5 (7.0%) 3 (10.3%) 2 (5.1%) 0 (0.0%)

Bronchial change 0.041a 0.359a 0.704a

  Absent 84 (47.5%) 19 (32.2%) 29 (40.8%) 9 (31.0%) 19 (48.7%) 16 (53.3%)
  Present 93 (52.5%) 40 (67.8%) 42 (59.2%) 20 (69.0%) 20 (51.3%) 14 (46.7%)

Vascular convergence 0.041a 0.356a 0.009b

  Absent 150 (84.7%) 43 (72.9%) 53 (74.6%) 19 (65.5%) 35 (89.7%) 18 (60.0%)
  Present 27 (15.3%) 16 (27.1%) 18 (25.4%) 10 (34.5%) 4 (10.3%) 12 (40.0%)

Pleural tags 0.001a 0.135a 0.947a

  Absent 97 (54.8%) 18 (30.5%) 31 (43.7%) 8 (27.6%) 14 (35.9%) 11 (36.7%)
  Present 80 (45.2%) 41 (69.5%) 40 (56.3%) 21 (72.4%) 25 (64.1%) 19 (63.3%)

Pleural indentation  < 0.001a 0.271a 0.983a

  Absent 115 (65.0%) 23 (39.0%) 38 (53.5%) 12 (41.4%) 17 (43.6%) 13 (43.3%)
  Present 62 (35.0%) 36 (61.0%) 33 (46.5%) 17 (58.6%) 22 (56.4%) 17 (56.7%)

Halo sign 0.015b 0.010b 1.000b

  Absent 175 (98.9%) 54 (91.5%) 70 (98.6%) 24 (82.8%) 37 (94.9%) 29 (96.7%)
  Present 2 (1.1%) 5 (8.5%) 1 (1.4%) 5 (17.2%) 2 (5.1%) 1 (3.3%)

Satellite lesions 0.878b 0.360b 0.653a

  Absent 165 (93.2%) 56 (94.9%) 63 (88.7%) 23 (79.3%) 34 (87.2%) 25 (83.3%)
  Present 12 (6.8%) 3 (5.1%) 8 (11.3%) 6 (20.7%) 5 (12.8%) 5 (16.7%)

Distal ribbon sign  < 0.001a 0.001a 0.136a

  Absent 157 (88.7%) 29 (49.2%) 55 (77.5%) 13 (44.8%) 31 (79.5%) 19 (63.3%)
  Present 20 (11.3%) 30 (50.8%) 16 (22.5%) 16 (55.2%) 8 (20.5%) 11 (36.7%)

ELLC 1.000b 0.702b 0.103b

  Absent 163 (92.1%) 54 (91.5%) 69 (97.2%) 27 (93.1%) 38 (97.4%) 25 (83.3%)
  Present 14 (7.9%) 5 (8.5%) 2 (2.8%) 2 (6.9%) 1 (2.6%) 5 (16.7%)

ERL 1.000b 0.416b 0.103b

  Absent 163 (92.1%) 54 (91.5%) 70 (98.6%) 27 (93.1%) 38 (97.4%) 25 (83.3%)
  Present 14 (7.9%) 5 (8.5%) 1 (1.4%) 2 (6.9%) 1 (2.6%) 5 (16.7%)

Surgery type 0.004a 0.023b 0.075b

  Sublobectomy 80 (45.2%) 14 (23.7%) 25 (35.2%) 3 (10.3%) 12 (30.8%) 3 (10.0%)
  Lobectomy 97 (54.8%) 45 (76.3%) 46 (64.8%) 26 (89.7%) 27 (69.2%) 27 (90.0%)

Pathological type 0.021c 0.069c 0.588c

  MIA 14 (7.9%) 0 (0.0%) 7 (9.9%) 0 (0.0%) 1 (2.6%) 0 (0.0%)
  IA 154 (87.0%) 53 (89.8%) 64 (90.1%) 28 (96.6%) 37 (94.8%) 28 (93.2%)
  IMA 5 (2.8%) 4 (6.8%) 0 (0.0%) 0 (0.0%) 1 (2.6%) 0 (0.0%)
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Discussion

STAS, as an important invasive mode of lung cancer, 
affects the postoperative recurrence-free survival (RFS) 
and overall survival (OS) of patients [2]. Accurate diagno-
sis of STAS status prior to surgery is conducive to the clin-
ical selection of the optimal surgical method, thereby pro-
longing survival and enhancing the prognosis of patients 
[3, 4]. Herein, a combined model was constructed based on 
GPTV10 radscore and clinical-radiological features to pre-
dict STAS status in patients with stage IA non-small cell 
lung cancer. The results showed that the combined model 

had high diagnostic efficacy for STAS, with AUC values 
of 0.901, 0.875, and 0.878, in the three cohorts. Moreover, 
the accuracy was 83.90%, 80.00%, and 82.61%; the sensi-
tivity was 84.75%, 82.76%, and 100%; and the specificity 
was 83.62%, 78.87%, and 69.23%. In addition, the created 
nomogram can transform complex regression equations of 
the model into a visual graph, which is intuitive and easily 
interpreted, as well as facilitate the preoperative assess-
ment of STAS status.

In this study, spiculation sign, pleural indentation sign, 
and vascular convergence sign were more common in the 
STAS-positive group, which was consistent with previous 

Table 1   (continued)

Characteristics Training cohort (n = 236) Internal validation cohort 
(n = 100)

External validation cohor (n = 69)

STAS ( −)
(n = 177)

STAS ( +)
(n = 59)

P value STAS ( −)
(n = 71)

STAS ( +)
(n = 29)

P value STAS ( −)
(n = 39)

STAS ( +)
(n = 30)

P value

  SCC 3 (1.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
  ASC 1 (0.6%) 2 (3.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (3.4%)
  NSCLC-NOS 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (3.4%) 0 (0.0%) 1 (3.4%)

The P value represents the univariate analysis. Data are presented as n (%)
STAS spread through air spaces, STAS ( −) STAS-negative, STAS ( +) STAS-positive, CEA carcinoembryonic antigen, cT1mi tumor with solid 
component size smaller than 0.5 cm and whole tumor size smaller than 3.0 cm, cT1a tumor with solid component size ranged from 0.6 to 1.0 cm 
and whole tumor size ranged from 0.6 to 3.0 cm, cT1b tumor with solid component size ranged from 1.1 to 2.0 cm and whole tumor size ranged 
from 1.1 to 3.0 cm, cT1b tumor with solid component size ranged from 2.1 to 3.0 cm and whole tumor size ranged from 2.1 to 3.0 cm, CTR​ 
consolidation-to-tumor ratio, MGGN mixed ground glass nodule, RLL right lower lobe, RML right middle lobe, RUL right upper lobe, LUL left 
upper lobe, LLL left lower lobe, ELLC emphysema in the lobe of lung cancer, ERL emphysema in the remaining lobes, MIA minimally invasive 
adenocarcinoma, IA invasive adenocarcinoma, IMA invasive mucinous adenocarcinoma, SCC squamous cell carcinoma, ASC adenosquamous 
carcinoma, NSCLC-NOS non-small cell lung cancer, not otherwise specified
a Pearson’s chi-square
b Yate’s correction for continuity
c Fisher’s exact test

Table 2   Univariable and 
multivariable logistic regression 
analysis of factors in the 
training cohor

OR odds ratio, CI confidence interval, CEA carcinoembryonic antigen, CTR​ consolidation-to-tumor ratio

Factors Univariable logistic regression Multivariable 
logistic regression

OR (95% CI) P value OR (95% CI) P value

Sex 1.99 (1.10–3.64) 0.023 2.10 (0.98–4.59) 0.058
Smoking status 2.35 (1.15–4.72) 0.017
CEA 8.83 (2.82–33.31)  < 0.001 3.52 (0.83–17.32) 0.101
Clinical T stage 3.58 (2.34–5.68)  < 0.001
CTR​ 15.75 (4.69–98.11)  < 0.001 4.44 (1.16–29.24) 0.057
Density type 14.10 (7.13–29.03)  < 0.001 6.74 (3.11–15.18)  < 0.001
Tumor-lung interface 2.62 (0.95–6.99) 0.054
Spiculation 5.46 (2.76–10.99)  < 0.001
Bronchial change 1.90 (1.03–3.60) 0.042
Pleural tags 2.76 (1.49–5.28) 0.002
Pleural indentation 2.90 (1.59–5.39) 0.001
Vascular convergence 2.07 (1.01–4.16) 0.044
Halo sign 8.10 (1.69–57.70) 0.014
Distal ribbon sign 8.12 (4.11–16.46)  < 0.001 5.14 (2.27–12.00)  < 0.001
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Table 3   The predictive efficacy 
of GTV, PTV, GPTV radiomics 
model in three cohorts

AUC​ area under the curve, CI confidence interval, GTV gross tumor volume, PTV peritumoral tumor vol-
ume, GPTV gross peritumoral tumor volume

Model Cohort AUC (95% CI) Cut-off Accuracy Sensitivity Specificity

GTV Training 0.895 (0.849–0.931)  − 0.624 85.17% 76.27% 88.14%
Internal validation 0.827 (0.738–0.895) 79.00% 68.97% 83.10%
External validation 0.814 (0.702–0.897) 75.36% 96.67% 58.97%

PTV5 Training 0.874 (0.825–0.914)  − 0.888 82.63% 76.27% 84.75%
Internal validation 0.767 (0.672–0.846) 71.00% 72.41% 70.42%
External validation 0.658 (0.534–0.768) 72.46% 53.33% 87.18%

PTV10 Training 0.813 (0.757–0.861)  − 0.701 81.36% 69.49% 85.31%
Internal validation 0.774 (0.680–0.852) 75.00% 68.97% 77.46%
External validation 0.621 (0.497–0.735) 66.67% 46.67% 82.05%

PTV15 Training 0.851 (0.799–0.894)  − 1.080 76.69% 79.66% 75.71%
Internal validation 0.698 (0.598–0.786) 72.00% 62.07% 76.06%
External validation 0.553 (0.428–0.673) 63.64% 46.67% 79.49%

PTV20 Training 0.841 (0.788–0.885)  − 0.655 81.36% 71.19% 84.75%
Internal validation 0.672 (0.571–0.763) 78.00% 44.83% 91.55%
External validation 0.543 (0.418–0.663) 52.17% 86.67% 25.64%

GPTV5 Training 0.880 (0.832–0.919)  − 1.581 77.54% 91.53% 72.88%
Internal validation 0.852 (0.767–0.915) 76.00% 82.76% 73.24%
External validation 0.852 (0.746–0.926) 79.71% 86.67% 74.36%

GPTV10 Training 0.887 (0.839–0.924)  − 1.015 81.36% 79.66% 81.92%
Internal validation 0.876 (0.795–0.933) 71.00% 96.55% 60.56%
External validation 0.868 (0.764–0.937) 81.16% 86.67% 76.92%

GPTV15 Training 0.901 (0.855–0.936)  − 1.348 79.66% 88.14% 76.84%
Internal validation 0.847 (0.762–0.912) 68.00% 96.55% 56.34%
External validation 0.764 (0.647–0.858) 75.36% 80.00% 71.79%

GPTV20 Training 0.832 (0.778–0.877)  − 1.551 68.64% 89.83% 61.58%
Internal validation 0.860 (0.776–0.921) 81.00% 89.66% 77.46%
External validation 0.864 (0.760–0.935) 79.71% 90.00% 71.79%
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Fig. 3   Nomogram for preoperative prediction of STAS status based on intratumoral and peritumoral radiomics and clinical-radiological features 
in clinical stage IA NSCLC
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literature reports [34, 35] and might be related to its patho-
logical mechanism. Spiculation is associated with tumor cell 
infiltration into adjacent blood and lymphatic vessels, sug-
gesting lung cancer is more aggressive [36], while pleural 
indentation arises from intratumor reactive fibrous hyperpla-
sia, pulling the adjacent pleura and causing the deviation of 
the pleura from its original position [37]. Vascular conver-
gence sign is also caused by the reactive fibrous hyperplasia 
of the tumor, which pulls the adjacent pulmonary vessels, 
causing them to converge toward the tumor [38]. Notably, 
a higher degree of tumor infiltration is associated with a 
higher level of internal reactive fibroplasia and a higher 
probability of pleural indentation and vascular convergence, 
indicating a greater risk of STAS. The results of this study 
revealed that tumor density was an independent risk factor 
for STAS. Among them, the incidence of STAS in patients 
with solid nodules on CT images was 63.4% (85/134), while 
that in patients with mGGNs was 12.1% (33/271), which was 
consistent with the results of previous studies [11, 39, 40]. 
Solid components typically represent the more aggressive 
section of the tumor. It is worthwhile emphasizing that prior 
studies have pointed out that CTR was positively correlated 
with STAS while negatively correlated with ground-glass 
opacity (GGO) positivity. Higher CTR values were associ-
ated with more aggressive tumors; the more likely STAS 
positivity is, the worse the prognosis of patients [40]. In 
this study, the STAS-positive rate was 36.6% (115/314) in 
patients with CTR ≥ 50%. Conversely, the STAS-positive 
rate was merely 3.3% (3/91) in patients with CTR < 50%, 
signaling a higher risk of STAS in cases with higher solid 
components on CT images, which was in agreement with 
the observation of previous research. This study also found 
that the distal ribbon sign was an independent risk factor 
for STAS. This might be attributed to tumor cells escaping 
from the primary lesion, redistributing through the airway, 
and proliferating along the surrounding alveolar wall, result-
ing in parenchymal obstruction of the surrounding lung or 

obstruction of the terminal bronchioles, thereby reducing 
the gas content in the alveoli. This phenomenon is similar 
to the ground glass ribbons discovered by Qi et al. [35]. In 
general, a higher degree of tumor invasion is associated with 
a higher incidence of STAS, which is reflected by a higher 
proportion of tumor solid components on CT images and 
more malignant radiological features. Lobectomy is recom-
mended for this type of early lung cancer.

In the present study, on the premise of accurate tumor 
segmentation, four peritumoral regions with different gra-
dient ranges were automatically expanded to construct nine 
radiomics models in order to explore the most efficient 
radiomics model to predict STAS status, and a multi-center 
study was conducted to evaluate the generalizability of the 
model. The results showed that the GPTV10 radiomics 
model had the highest predictive efficiency. Kadota et al. 
[28] found that, in 97% (151/155) of the STAS-positive 
cases, the distance between STAS and the edge of the pri-
mary tumor lesion ranged from 0.3 to 10.5 mm, and the 
peritumoral extension range of 10 mm may accurately cover 
various high-order features related to the heterogeneity of 
lung cancer. Based on the VOI of GPTV10, 10 best radiom-
ics features were selected, including the two first-order fea-
tures, which was correlated with the CT value of the tumor. 
The higher the CT value, the denser the tumor cells, and 
the higher the degree of tumor invasion. The eight texture 
features are Small Area Low Gray Level Emphasis, Gray 
Level Variance, Zone Entropy, Cluster Shade, Cluster Prom-
inence, Imc2, Large Dependence Low Gray Level Emphasis, 
and Large dependence High Gray Level Emphasis. Small 
Area Low Gray Level Emphasis, Gray Level Variance, and 
Zone Entropy are parameters of GLSZM and principally 
provide information on the uniform area size of each gray 
level on the 3D image. Cluster Shade, Cluster Prominence, 
and Imc2 are parameters of GLCM that chiefly evaluate 
the spatial relationship between pixels and describe the fre-
quency of appearance of specific pixel combinations in the 

Table 4   The predictive efficacy of clinical model, GPTV10 radiomics model, and combined model in three cohorts

AUC​ area under the curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value, GPTV gross peritumoral 
tumor volume

Model Cohort Cut-off AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Clinical Training 0.264 0.874 (0.825–0.914) 80.51% 83.05% 79.66% 57.65% 93.37%
Internal validation 0.822 (0.733–0.891) 78.00% 72.41% 80.28% 60.00% 87.69%
External validation 0.810 (0.697–0.894) 75.36% 76.67% 74.36% 70.00% 80.56%

GPTV10 Training cohort  − 1.015 0.887 (0.839–0.924) 81.36% 79.66% 81.92% 59.49% 92.36%
Internal validation 0.876 (0.795–0.933) 71.00% 96.55% 60.56% 50.00% 97.73%
External validation 0.868 (0.764–0.937) 81.16% 86.67% 76.92% 74.29% 88.23%

Combined Training cohort  − 1.226 0.901 (0.856–0.936) 83.90% 84.75% 83.62% 63.29% 94.27%
Internal validation 0.875 (0.793–0.932) 80.00% 82.76% 78.87% 61.54% 91.80%
External validation 0.878 (0.777–0.944) 82.61% 100% 69.23% 71.43% 100%
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image. Large Dependence Low Gray Level Emphasis and 
Large Dependence High Gray Level Emphasis are param-
eters of GLDM that mainly reflect the grayscale relation-
ship between the central pixel and its neighborhood. More 
specifically, the larger the values of LDLGLE, GLCM, and 
GLDM, the more uneven the image texture distribution and 
the more irregular the gray change, indicating a higher spa-
tial heterogeneity of tumor [16, 41] and reflecting its strong 
aggressiveness and a greater possibility of STAS. This study 

also noted that the GPTV radiomics model was superior to 
the GTV and PTV models; the GTV radiomics model was 
superior to the PTV model, inferring that the occurrence of 
STAS was predominantly related to the aggressiveness of 
the tumor itself and that the peritumoral region also partly 
reflected the aggressive behavior of the tumor. As a quantita-
tive method, radiomics techniques can be used to quantify 
internal tumor heterogeneity and differences in the peritu-
moral microenvironment [42].

Fig. 4   ROC curve analysis of the clinical model, GPTV10 radiomics model, and combined model in three cohorts. a The training cohort; b the 
internal validation cohort; c the external validation cohort
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Fig. 5   The calibration curves 
of combined model in the three 
cohorts. a The training cohort; 
b the internal validation cohort; 
c the external validation cohort
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In this study, a combined model was constructed based 
on GPTV10 radscore and clinical-radiological features 
to predict STAS status. The DeLong test results demon-
strated that the predictive value of the combined model 
in the three cohorts was superior to that of the clinical 
model. Hosmer–Lemeshow test and calibration curve 
showed that the combined model fitted well in all three 
cohorts. DCA validated that the combined model had 
better clinical application value than the clinical model, 
which can be ascribed to the excellent predictive effi-
ciency of the GPTV10 radiomics model. The evaluation 
of traditional CT features of tumors mostly depends on 
the experience of radiologists, which is subjective to a 
certain extent, and different conclusions can be obtained 
from different clinical levels [43]. Radiomics can extract 
massive high-dimensional features from segmented 
images, including gray level changes and voxel spatial 
relationships, and then achieve accurate diagnosis and 
prognosis assessment of diseases through feature selec-
tion and model establishment [44]. It can not only avoid 
the subjectivity of the observer’s interpretation of the 
CT morphological features, but also deeply excavate 
and integrate a large number of digital information in 
the image which cannot be recognized and distinguished 
by human eyes [44]. At present, only one study has 
been conducted on the prediction of lung cancer STAS 
based on deep learning, Tao et al. [45] constructed a 

three-dimensional (3D) convolutional neural network 
(CNN) model based on 203 cases of any stage of NSCLC 
patients with preoperative enhanced thin-slice CT; the 
results showed that the 3D CNN model yielded superior 
performance with AUC values of 0.93 and 0.80 in the 
training and validation cohorts. With high repeatability 
and reliability, radiomics and deep learning techniques 
may become a non-invasive precision diagnostic tool 
reflecting tumor biological behavior for clinical appli-
cation in the future [44, 45].

This study has several limitations. Firstly, the sample size 
of this study was relatively small, but through strict case 
selection, and excluding pGGN that was clearly STAS nega-
tive, the cases were more representative; we will continue to 
collect more cases and construct prediction models based on 
deep learning technology to explore whether the prediction 
performance can be further improved. Secondly, the study 
was retrospective, resulting in inevitable selection bias; we 
will prospectively and continuously collect large samples 
of external center cases and take pathological results as the 
gold standard to further verify the repeatability of the nomo-
gram constructed in this study. Third, due to the lack of 
detailed follow-up data, whether the nomogram developed 
in this study can further accurately predict the prognosis of 
patients, so as to make prognostic risk stratification, we will 
conduct this study in the future when more follow-up data 
are collected.

Fig. 6   The decision curve shows that the combined model has better clinical application value than the clinical model and GPTV10 radiomics 
model in the three cohorts. a The training cohort; b the internal validation cohort; c the external validation cohort
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Conclusions

In conclusion, the GPTV10 radiomics model performs better 
than the GTV, all PTV, and the other three GPTV radiomics 
models in predicting the STAS status of clinical stage IA 
NSCLC preoperatively. Additionally, the nomogram based  
on GPTV10 radiomics features and relevant clinical- 
radiological predictors can further improve predictive effi-
ciency, which will assist in timely providing guidance and 
aiding in the development of personalized treatment strate-
gies for early lung cancer.
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