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Abstract
Flagging the presence of metal devices before a head MRI scan is essential to allow appropriate safety checks. There is an 
unmet need for an automated system which can flag aneurysm clips prior to MRI appointments. We assess the accuracy 
with which a machine learning model can classify the presence or absence of an aneurysm clip on CT images. A total of 280 
CT head scans were collected, 140 with aneurysm clips visible and 140 without. The data were used to retrain a pre-trained 
image classification neural network to classify CT localizer images. Models were developed using fivefold cross-validation 
and then tested on a holdout test set. A mean sensitivity of 100% and a mean accuracy of 82% were achieved. Predictions 
were explained using SHapley Additive exPlanations (SHAP), which highlighted that appropriate regions of interest were 
informing the models. Models were also trained from scratch to classify three-dimensional CT head scans. These did not 
exceed the sensitivity of the localizer models. This work illustrates an application of computer vision image classification 
to enhance current processes and improve patient safety.

Keywords Aneurysm clips · Artificial intelligence · CT · Deep learning · MRI · Patient safety

Introduction

Screening of patients for aneurysm clips and other metallic 
devices prior to magnetic resonance imaging (MRI) is vital 
to ensure that the patient and device can be scanned safely. 
There have been numerous makes and designs of aneurysm 
clip over decades [1], many of which have been categorized 
as MRI conditional. For these particular implants, MRI is 
not absolutely contraindicated, but the devices need careful 

prior assessment to ensure that the scan takes place under 
manufacturer-specified conditions. However, not all historic 
clips are MRI safe, and even those that are safe in some condi-
tions may not be safe in all conditions [2]. At least one fatality 
has been caused by the displacement of an aneurysm clip [3]. 
Safe examination requires review of medical records and co- 
ordination of multiple experts [4]. Late detection has the 
potential to result in last-minute cancellations and wasted 
scanner time. Failure to perform the required checks can result 
in device dysfunction with potential harm to the patient.

MRI is the standard imaging modality for many condi-
tions. Appropriate screening policies and procedures are 
essential before permitting entry to the MRI scanner to pre-
vent injury [5]. Best practice is to use referrer and patient 
questionnaires to identify patients with devices or other 
issues that need further investigation. Questionnaires are not 
fail-safe as referrer responses can be unreliable and patient 
responses are often not available until the day of the scan.

In the last decade, there have been significant advances 
in AI-based medical image classification due to increased 
compute power, the open-sourcing of large labelled data-
sets, and the development of deep learning [6]. Deep learn-
ing describes the subset of machine learning which uses 
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layered neural networks to build representations of compli-
cated concepts out of simpler concepts [7]. This negates the 
need for feature extraction, as required by other methods, 
and streamlines the preprocessing pipeline [8]. The success 
of deep learning methods in image classification tasks is 
well-documented, and for the last decade they have exceeded 
the performance of many other state-of-the-art classifica-
tion algorithms [9]. There are now thousands of publications 
applying deep learning techniques to medical imaging [10].

We describe the design of a deep learning model for the 
detection of the presence of aneurysm clips in computerized 
tomography (CT) head scans. The vast majority of patients 
with aneurysm clips will have had CT head imaging previ-
ously performed as part of their treatment, presenting the 
potential to screen these previous scans as part of an auto-
matic pre-MRI safety check. This would improve MRI safety, 
reduce last-minute cancellations, and save time and resources.

Materials and Methods

Ethical approval was granted on 15 October 2019 by HRA 
and Health and Care Research Wales. Data were obtained 
from Derriford Hospital, a large teaching hospital with a 
regional neurosurgery centre serving the South West of the 
United Kingdom. The study design was retrospective and 
observational using pre-existing medical image data.

Subject Inclusion

A database of patients with aneurysm clips was used to iden-
tify cases for inclusion in the study. A list of all patients 
undergoing aneurysm clip surgery was identified from surgi-
cal records. The radiology information system (RIS) (Cris, 
Wellbeing Software) was used to identify all post-surgical 

CT head examinations for these patients. A custom SQL 
query was then used to search the RIS for matched controls. 
For each scan with an aneurysm clip present, a scan with no 
aneurysm clip present was identified. These control scans 
were matched according to:

• Scan type
• Age at time of scan, within a window of ± 6 months
• Scan date, within a window of ± 12 months
• Gender

Image Data Acquisition

Images for the investigations identified on the RIS were 
downloaded from PACS using dcmtk (OFFIS e.V.) [11]. 
These studies were anonymized using custom anonymiza-
tion software based on the Clinical Trials Processor (RSNA 
MIRC project) [12].

Ground Truth Confirmation

Manual review of images was performed by two board- 
certified radiologists to ensure correct labelling. In the event 
of any disagreement of the correct labels, a third board- 
certified radiologist reviewed the case to confirm the cor-
rect labelling.

Split

Two sets of images were extracted from the fully curated 
dataset: a set of localizers and a set of full CT heads. Most 
CT scan studies begin with one or more localizer scans. 
These are of poorer quality than full CT scans, but aneurysm 
clips can often still be clearly seen (Fig. 1). Localizer scans 
acquired in the same plane were identified automatically 

Fig. 1  Sagittal localizer with 
aneurysm clip present, circled
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using the DICOM tags. From the fully curated dataset, 274 
scans were identified which contained sagittal localizers: 
136 with aneurysm clips and 134 without. These localizers 
were randomly divided at a scan level: 28 scans (10%) were 
reserved as a holdout test set (10 with aneurysm clips and 
18 without). The remaining 246 (90%) were used for model 
development (126 with aneurysm clips and 120 without).

To standardize the full CT head dataset, scans recon-
structed using the same kernel were identified automatically 
using the DICOM tags. From the fully curated dataset, 214 
scans were identified which had been reconstructed using 
a bone kernel: 104 with aneurysm clips and 110 without. 
These were randomly divided at a scan level: 22 scans 
(10%) were reserved as a holdout test set (11 with aneu-
rysm clips and 11 without). The remaining 192 (90%) were 
used for model development (93 with aneurysm clips and 
99 without).

For both localizers and full CT heads, fivefold cross-
validation was used to develop and assess models, with the 
data divided into 80% training data and 20% validation data 
in each fold.

For both types of image, the five developed models were 
then finally tested on the holdout test set.

Image Preprocessing

The images were preprocessed before model input by a 
deterministic automatic pipeline developed in Python using 
tools from OpenCV [13], SciPy [14] and scikit-image [15]. 
For the two-dimensional localizer scans, black borders were 
removed. Pixel values were rescaled between zero and one. 
Images were cropped to contain the head only, and the bot-
tom of the images removed to exclude the mandible. This 
optimization was included after the explainability technique 
revealed that models were being confounded by the presence 
of fillings, resulting in false positive results. Images were 
resized to 400 × 400 pixels.

For the three-dimensional scans, the Hounsfield values 
were clipped with a level of 2000 and a window of 500 to 
optimize the visibility of metal. Voxel values were scaled 
between zero and one. Images were cropped to contain the 
head only and resized to 256 × 256 × 40 voxels.

Neural Network Architecture

Python-based deep neural networks were built with Keras 
[16] using the TensorFlow backend [17]. Graphics process-
ing unit hardware acceleration on an NVIDIA GeForce RTX 
3080 was used for neural network training. Jupyter Lab [18] 
was used for model development to enable iterative improve-
ments to be made efficiently.

For the classification of the two-dimensional local-
izer images, a convolutional neural network based on a 

pre-trained model was selected as a proven choice for 
computer vision and image classification tasks using 
transfer learning [10]. Several well-established pre-trained 
base networks were trialled, including VGG16 [19], Incep-
tion V3 [20], Xception [21], DenseNet [22] and MobileNet 
V2 [23]. Following analysis for each model, MobileNet 
V2 achieved the greatest performance and was chosen for 
the final models (Fig. 2a).

For the classification of the three-dimensional CT 
images, a three-dimensional convolutional neural network 
was trained from scratch, due to a lack of available pre-
trained three-dimensional classification networks [24]. Sev-
eral different hyperparameter configurations were trialled. 
Following curve analysis for each iteration, the one which 
achieved the smallest loss on the validation data was chosen 
for the final models (Fig. 2b).

Model Training

The models were trained for a maximum of 100 epochs 
using stochastic gradient descent with the Adam optimi-
zation algorithm (learning rate 0.001) [25]. The binary 
cross-entropy loss function was utilized. The batch size 
was 64. The images were augmented with a 50% prob-
ability of horizontal flip. Other augmentation methods 
were trialled, but did not result in any further increase 
in performance. The models achieving the lowest loss 
on the validation sets during training were saved using 
checkpoints.

A classification threshold was then chosen for the models 
which maximized sensitivity, and therefore minimized the 
prevalence of false negatives.

Explainability

SHapley Additive exPlanations (SHAP) were used to 
explain the 2D models’ predictions. SHAP uses the game 
theory concept of Shapley values to calculate the contribu-
tion of a factor to a machine learning model output [26]. In 
this case, DeepSHAP was used to calculate and visualize 
the contribution of individual pixels to the deep learning 
model’s prediction.

Results

Localizer Images

Of the pre-trained base models trialled for the localizer 
images, MobileNet V2 achieved the greatest mean test 
Receiver Operating Characteristic (ROC) area under the 
curve (AUC) and was chosen for the final models. Other 
base model results are reported in Table 1.
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A classification threshold of 0.16 was chosen to maxi-
mize sensitivity whilst maintaining a high accuracy and 
specificity (Fig. 3). The final models achieved a mean test 
sensitivity of 100%. Other performance metrics are reported 
in Table 2.

When tested on the holdout test set of 28 localizer images, 
the final models achieved a sensitivity of 100%. Other per-
formance metrics are reported in Table 2.

Incorrectly Classified Examples

The incorrectly classified 2D localizer images were analysed 
using the SHAP explainability method. In the early stages of 
the research, this demonstrated the need to remove the man-
dible from the images, as prior to this removal the models 
were confounded by the presence of fillings.

After the images had been cropped and models devel-
oped, the SHAP explainability method was used to analyse 
the incorrectly classified examples in the holdout test set. 
Three of the 28 images were incorrectly classified by all five 
models, and five other images were misclassified by at least 
one of the models. All of these errors were false positives. 

Fig. 2  Network architectures

Table 1  Performance of different base models for localizer images

Base model Mean 
ROC AUC 

Parameters Inference 
time (ms)

GFLOPS

VGG16 0.84 15,767,361 24.9 97.9
Inception V3 0.95 26,001,185 27.4 21.0
XCeption 0.98 25,059,881 25.5 29.4
DenseNet 0.98 22,258,241 30.7 27.4
MobileNet V2 0.99 4,883,521 26.2 2.0
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The average SHAP maps show that bright areas have con-
tributed to the models’ incorrect predictions, including other 
metal devices (Fig. 4a).1

Correctly Classified Examples

The SHAP explainability method was also used to analyse 
the localizer images that the models classified correctly. Of 
the 28 images in the holdout test set, 20 were classified cor-
rectly by all five models. The average SHAP maps for the 
true positives show that the pixels containing aneurysm clips 
contributed positively to models’ correct predictions that a 
clip is present (Fig. 4b).2 The signal is much stronger than 
the confounding signals in the false positive predictions, and 

is much stronger than any signal in the true negative predic-
tions where no clip has been detected (Fig. 4c).3

Three‑Dimensional CT Images

After models had been trained on three-dimensional CT 
images, a classification threshold of 0.30 was chosen to 
maximize sensitivity whilst maintaining a high accuracy and 
specificity (Fig. 5). The final models achieved a mean test 
sensitivity of 96%. Other performance metrics are reported 
in Table 3.

When tested on the holdout test set of 22 three- 
dimensional CT images, the final models achieved a mean 
sensitivity of 96%. Other performance metrics are reported 
in Table 3. Of the 22 images, 19 were correctly classified 
by all five models. Of the three images that were incorrectly 
classified by at least one model, two were false positives and 
one was a false negative.

Discussion

Deep learning has previously been used successfully to 
detect medical implants. Pre-trained convolutional neu-
ral networks have been used to detect pacemakers in 
chest radiographs with 99.67% accuracy [27] and spinal 

Fig. 3  Mean test performance 
metrics for MobileNet V2 mod-
els in training

Table 2  Performance metrics for MobileNet V2 models with classifi-
cation threshold of 0.16

Performance metric Training mean Holdout mean

ROC AUC 0.99 1.00
Accuracy 95% 82%
Sensitivity 100% 100%
Specificity 89% 82%

1 See Supplementary Fig. 1 for all false positive average SHAP maps.
2 See Supplementary Fig. 2 for all true positive average SHAP maps. 3 See Supplementary Fig. 3 for all true negative average SHAP maps.
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Fig. 4  Maps of average SHAP 
values. Any pixels highlighted 
in red have contributed to the 
prediction that an aneurysm clip 
is present; any pixels high-
lighted in blue have contrib-
uted to the prediction that no 
aneurysm clip is present. In the 
case of the true positive, the 
aneurysm clip has been circled 
in green for clarity
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implants in lumbar spine lateral radiographs with 98.7% 
precision and 98.2% recall [28]. A convolutional neural 
network trained from scratch has been used to identify 
dental implants in X-ray images with 94.0% segmenta-
tion accuracy and 71.7% classification accuracy [29]. In 
another application, a segmentation network has been 
developed to identify orthopedic implants in hip and knee 
radiographs with 98.9% accuracy and 100% top-three 
accuracy, exceeding the performance of five senior ortho-
pedic specialists [30].

The successful implementation of deep learning for 
implant detection is continued in this application, the first to 
use deep learning to detect aneurysm clips. The trained mod-
els exhibit excellent performance for both localizer images 
and full CT head scans. Both types of model generalize well 
to the unseen data in the holdout sets and score particularly 
highly in terms of sensitivity. The sensitivity for the localizer 
models is 100% in both the training and the holdout data: 
there are no dangerous false negatives. The computational 

resources required to run the models are particularly low in 
the case of the localizer images.

The use of an explainability method is particularly valu-
able in this application because it demonstrates that the cor-
rect parts of the localizer image are informing the models. 
In general, the positive (red) signal in the images is strongly 
localized and more observable than the negative (blue) sig-
nal, which is weaker and more distributed. This suggests 
that the models are being positively informed by the pres-
ence of aneurysm clips, and are being informed on a more 
widespread and low level by the absence of aneurysm clips.

As this application is a potential safety tool, the models have 
been developed and classification thresholds chosen to maxi-
mize sensitivity and minimize false negatives. As a result, they 
are sometimes confounded by other bright areas in the images, 
making some false positives likely. This could create additional 
work for a human operator, but it is a preferable error to dan-
gerous false negatives. The heatmaps also demonstrate that 
other metal devices such as skull flap fixing plates and skin 
clips can be responsible for false positives (see Supplementary 
Fig. 1). These are still valuable to detect for MRI safety. Future 
work could assess these models on a CT head dataset incorpo-
rating a wider range of metallic implants, to analyse whether 
models trained to detect aneurysm clips specifically generalize 
to metal implant detection more broadly.

It was anticipated that models developed for full CT heads 
might perform better than models developed for localizer 
scans, as the aneurysm clip would be presented in three dimen-
sions and in greater detail. However, the sensitivity of the 

Fig. 5  Mean test performance 
metrics for 3D models in train-
ing

Table 3  Performance metrics for 3D models with classification 
threshold of 0.30

Performance metric Training mean Holdout mean

ROC AUC 0.99 0.96
Accuracy 90% 95%
Sensitivity 100% 96%
Specificity 79% 95%
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three-dimensional models was slightly poorer. This may have 
been due to the presence of too much other confounding detail, 
or may have been due to the models having been trained from 
scratch rather than taking advantage of pre-learned patterns. 
Pre-trained networks were used for the localizer scans due to 
their ready availability for transfer learning in two-dimensional 
image data. At this time, there is a notable lack of equivalent 
pre-trained networks available for transfer learning in three-
dimensional image data. If pre-trained three-dimensional 
networks become available in the future, then they might be 
successfully leveraged in this application.

Future work could consider using an ensemble model. 
Ensemble methods are considered the state of the art for 
many machine learning applications, as they harness the 
power of weaker learners [31]. An ensemble model for this 
application could incorporate different learning algorithms, 
as well as bagging or boosting approaches.

Limitations

The size of the data is a limitation of this research, caused 
by the rarity of CT scans depicting aneurysm clips. If it were 
possible to obtain more data this might enable the develop-
ment of even more accurate models in training, and enable 
more representative assessment of models in the holdout set. 
We have mitigated this limitation to an extent by augment-
ing the training data with horizontal flip, thus artificially 
increasing the size of the dataset.

Another limitation of this research is the lack of external 
validation. External validation sets are difficult to obtain as 
appropriate publicly available databases do not exist. Our 
research team is in the process of planning and gaining gov-
ernance clearance for such accessible studies. We have miti-
gated this limitation as far as possible in this study by reserv-
ing an unseen holdout test set. However, these data originate 
from the same source as the training data, and the metrics 
reported may not be representative of the models’ perfor-
mance on data from a different distribution. For example, the 
balance of the data used in this study is not representative 
of the typical MRI patient population, in which only a small 
minority would have aneurysm clips present. An external 
validation set would allow for more accurate assessment of 
the models’ capability to generalize to other populations.

Conclusion

A pre-trained MobileNet V2 neural network achieved high 
accuracy and 100% sensitivity for the detection of aneurysm 
clips in CT localizer scans, and the explainability method 
demonstrated that the network was focusing on appropri-
ate regions of interest in the images. A trained-from-scratch 
neural network also achieved high accuracy and sensitivity 

for the detection of aneurysm clips in full CT head scans. 
This application could be a useful addition to current pro-
cesses, enabling automatic safety screening for devices in 
advance of MRI appointments.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10278- 023- 00932-8.
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