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Abstract
We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cri-
coid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited 
from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified lon-
gitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster 
R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 
36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived 
ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver 
operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982–0.994; Faster R-CNN, 0.986, 
95% CI: 0.980–0.991; SSD, 0.968, 95% CI: 0.956–0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977–0.997; Faster 
R-CNN, 0.981, 95% CI: 0.965–0.991; SSD, 0.982, 95% CI: 0.973–0.990). Furthermore, in the frames where the model could 
correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 
95% CI: 0.739–0.765; Faster R-CNN, 0.720, 95% CI: 0.709–0.732; SSD, 0.739, 95% CI: 0.726–0.751) or TC (intersection-
over-union: YOLOv5s, 0.739, 95% CI: 0.722–0.755; Faster R-CNN, 0.709, 95% CI: 0.687–0.730; SSD, 0.713, 95% CI: 
0.695–0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with 
favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held 
portable ultrasound devices for clinical use.
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Introduction

Managing the difficult airway is challenging. The reported 
incidence of difficult airway ranges between 2 and 15% 
[1–6]. By creating direct access to the trachea via the crico-
thyroid membrane (CTM), emergent cricothyroidotomy is 
recommended by the Difficult Airway Society guidelines 
[7] as the last resort for “can’t intubate, can’t oxygenate” 
scenarios with worsening hypoxia; however, attempts to 
secure the airway with cricothyroidotomy are unsuccessful 
in a reported 64% of cases [8].

Precise and quick identification of the CTM is critical 
for successful cricothyroidotomy. This technique is tradi-
tionally taught by using surface landmarks to identify the 
CTM, which spans the inferior border of the thyroid car-
tilage (TC) and the superior border of the cricoid cartilage 
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(CC). Reliance on manual palpation may be insufficient 
for correct identification of the CTM, particularly in 
women, whose external landmarks are barely palpable. In 
one study, the CTM was misidentified at manual palpation 
in 81% of female participants [9].

In a meta-analysis, Hung et al. [10] indicated that com-
pared with manual palpation, applying an ultrasound-
guided technique was significantly associated with a 
lower failure rate in identifying the CTM. Nevertheless, 
Hung et al. [10] also found that the procedural time for the 
ultrasound-guided technique tended to be longer than that 
of the manual palpation method, which is a concern when 
faced with an immediately life-threatening condition [10].

Even after intensive training, ultrasound-assisted iden-
tification of the CTM is not failproof, and a failure rate 
as high as 26% is reported [10]. Machine learning (ML) 
has been increasingly used in the field of ultrasonography. 
Given its potential for achieving quick and accurate object 
detection, in the current study, we developed an ML-based 
algorithm to identify the anatomical landmarks of crico-
thyroidotomy (i.e., the CC and TC) among female adults.

Materials and Methods

This multi-center prospective observational study was 
approved by the Research Ethics Committee of the XXX 
Hospital (XXXH) (reference number: 202006015RIND) 
and performed in accordance with the ethical standards 
as laid down in the 1964 Declaration of Helsinki and its 
later amendments or comparable ethical standards. Written 
informed consent was obtained from all participants. The 
study results are reported according to the Checklist for 
Artificial Intelligence in Medical Imaging (CLAIM) [11].

Setting and Participants

We recruited volunteer participants from among hospi-
tal employees at XXXH (Taipei, Taiwan) and the XXXH 
Yunlin Branch (XXXH-YB) (Yunlin, Taiwan) from Sep-
tember 1, 2020 to December 31, 2020. Participants were 
passively recruited using word of mouth. Women aged 
20 years and older were eligible for inclusion. Partici-
pants were excluded if they met the following exclusion 
criteria: (1) history of previous neck surgery or radiation; 
(2) inability to extend their neck actively. All eligible par-
ticipants provided written informed consent. Because of 
the observational study design, the number of eligible 
participants during the enrolment period determined the 
final sample size.

Data Collection and Image Acquisition

All participants provided baseline characteristic data, 
including age, weight, and height. The ultrasonographic 
assessment was performed while volunteers were in a 
supine position with the neck extended. In this position, 
the participants extended their necks maximally while 
remaining comfortable. The investigator stood on the 
right-hand side of the participant and used the modified 
longitudinal technique [12, 13] to collect the ultrasono-
graphic imaging data. As shown in Video A.1, the trans-
ducer was placed longitudinally along the midline of the 
neck, above the suprasternal notch, to produce a sagit-
tal image. From there, the operator slides the transducer 
cephalad to obtain a sequence of images, including (1) a 
series of hypoechoic rings (tracheal rings) superficial to 
the hyperechoic air-tissue border; (2) a cuboid hypoechoic 
ring (CC), which was larger and more anterior than the 
tracheal rings; (3) a hyperechoic band that runs between 
the hypoechoic CC and TC; and (4) a hypoechoic tubular 
structure (TC). During the procedure, the operator stead-
ily slides the transducer cephalad from the suprasternal 
notch until it cannot be moved further, which would be 
completed within 30 s.

All investigators (CHW, CYW, MCW, JT) performing 
the imaging acquisition procedure had at least 10 years of 
experience in point-of-care ultrasound use in the emer-
gency department and received training to standardize the 
image acquisition procedure before the study’s inception. 
Three investigators (CYW, MCW, JT) collected imaging 
data at XXXH and the other (CHW) at XXXH-YB. The 
ultrasound machines used for the study were Xario 100 
(Canon Medical Systems Corporation, Ōtawara, Tochigi, 
Japan) (frame rate: 30 frames per second, image size: 
960 × 720 pixels) at XXXH and LOGIQ e (GE Healthcare, 
Chicago, IL) (frame rate: 30 frames per second, 800 × 600 
pixels) at XXXH-YB. The ultrasound images were 
acquired with a 12L-RS high-frequency linear transducer.

Image Labelling and Ground Truth

Annotation was conducted frame by frame for each video 
clip. All frames were manually annotated using bounding 
boxes to mark pixels belonging to CC or TC. The bound-
ing boxes were intended to contain the target pixels with 
the minimum rectangle areas. Each video clip was ran-
domly assigned to any two of the investigators (CYW, 
MCW, JT) for annotation. For each cartilage in each frame, 
the parameters of the two annotated bounding boxes were 
averaged to create the ground-truth bounding box for 
model development.
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Development of the Algorithm

Imaging data were randomly divided into training (70%), 
validation (15%), and testing (15%) datasets; approximately 
40% of the total imaging data came from the participants at 
XXXH and 60% from those at XXXH-YB. Dataset splitting 
was performed to ensure that the proportions of participants 
from XXXH and XXXH-YB were similar across different 
datasets and that there was no overlap of participants or 
frames among the datasets.

You Only Look Once (YOLOv5s) [14] was selected as 
the model architecture for its balance of model performance 
and efficiency. During the revision process, Faster Regions 
with Convolutional Neural Network features (Faster R-CNN) 
[15] and Single Shot Detector (SSD) [16] were also recom-
mended by the reviewers to be tested in this study.

In the training dataset, the default values of the hyper-
parameters of these algorithms were used for training. The 
backbones for Faster R-CNN and SSD were ResNet50 [17] 
and VGG16 [18], respectively. The training model was ini-
tialized from a COCO dataset [19] for YOLOv5s and Ima-
geNet [20] for ResNet50 and VGG16. The batch size was 
8, 16, and 64, and the learning rate was 0.032, 0.002, and 
0.0002 for YOLOv5s, Faster R-CNN, and SSD. A stochastic 
gradient descent optimizer was used. Binary cross-entropy 
(BCE) loss and intersection-over-union (IOU) loss super-
vised the learning process for YOLOv5s; RPN loss (BCE 
loss and smooth L1 loss) plus RCNN loss (BCE loss and 
smooth L1 loss) for Faster R-CNN; BCE loss and smooth 
L1 loss for SSD. The training procedure was stopped when 
it reached 50 epochs. The best weightings in the validation 
dataset were used for later model prediction. In each frame, 
the predicted bounding box of CC or TC would be output 
only if its prediction probability was (1) highest among all 
the predicted bounding boxes and (2) above the predeter-
mined output threshold probability. An Intel Xeon 4-core 
CPU E5-1620 v2 and a Nvidia RTX 2080Ti card with 11 GB 
memory were used in this study.

Evaluation Metrics of the Algorithm

We evaluated the performance of the derived algorithms in 
two stages. In the first stage, we evaluated whether the model 
could correctly indicate the presence or absence of CC or 
TC in the frame, regardless of the location. The metrics of 
this classification performance included sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive 
value, accuracy, F1-score, and the area under the receiver 
operating characteristic (ROC) curve (AUC). The optimal 
output threshold probability was determined by Youden’s 
index when the derived algorithms were tested on the train-
ing dataset. In the second stage, we assessed how accurately 
the model could indicate the location of CC or TC. The 

metrics of this localization performance were represented 
by the IOU. For any given two areas, the IOU was computed 
as the intersection of the two areas divided by the union 
of the same areas. IOU was only computed among those 
frames classified as true-positive (TP) in the first stage and, 
therefore, was termed the TP-IOU. TP-IOU was calculated 
to evaluate not only the consistency between the predicted 
and ground-truth bounding boxes but also between the two 
manually annotated bounding boxes.

Statistical Analysis

For descriptive statistics, categorical variables are pre-
sented as counts with proportions, and continuous variables 
are presented as means with standard deviations (SDs). We 
first calculated the evaluation metrics for each participant 
according to the participant-specific frames. Subsequently, 
we calculated the mean value by averaging these participant-
specific evaluation metrics and obtained a 95% confidence 
interval (CI) by a bootstrap technique with 1000 repetitions. 
Sensitivity, specificity, PPV, negative predictive value, accu-
racy, F1-score, and TP-IOU were compared by Friedman 
test. If the Friedman test revealed significant between-group 
differences, post-hoc pair-wise comparison was conducted 
by Wilcoxon signed-rank test. The pair-wise comparison 
in AUC was performed by the DeLong test of correlated 
ROC curves [21]. Also, the Wilcoxon signed rank test was 
performed to compare TP-IOU of predicted and ground-
truth bounding boxes with the TP-IOU of the two annotated 
bounding boxes in each frame. The kappa coefficient was 
calculated to assess the inter-annotator agreement in clas-
sifying the presence of CC or TC. The comparisons were 
also presented in subgroup analysis stratified by XXXH and 
XXXH-YB. A two-tailed p-value < 0.05 was considered sta-
tistically significant.

Results

A total of 488 participants were enrolled in the study, includ-
ing 205 from XXXH and 283 from XXXH-YB. Their mean 
age was 36.0 years (SD: 9.0 years), and their mean body 
mass index was 22.6 (SD: 6.2) kg/m2. These participants 
contributed to a total of 292,053 frames, which were further 
separated into training (205,931 frames), validation (44,851 
frames), and testing datasets (41,271 frames). The splitting 
process of the dataset is presented in Table 1.

In the training dataset, as shown in Fig. 1 and Video 
A.2, the derived algorithms would output the bounding box 
for CC or TC when its prediction probability was highest 
among all predicted bounding boxes and above a certain 
output threshold. According to the ROC curves (Fig. 2), the 
thresholds for detecting CC and TC were determined.
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In the testing dataset, all three algorithms achieved excellent 
classification performance for both CC and TC, demonstrating 
high sensitivity and PPV (Table 2). There were no between-
group differences in discriminative performance regarding 
AUC. Furthermore, in the frames where the model correctly 
indicated the presence of CC or TC, the algorithms also accu-
rately indicated the location of CC (TP-IOU: YOLOv5s, 
0.753, 95% CI: 0.739–0.765; Faster R-CNN, 0.720, 95% CI: 

0.709–0.732; SSD, 0.739, 95% CI: 0.726–0.751) and TC 
(TP-IOU: YOLOv5s, 0.739, 95% CI: 0.722–0.755; Faster 
R-CNN, 0.709, 95% CI: 0.687–0.730; SSD, 0.713, 95% CI: 
0.695–0.730). For both CC and TC, the TP-IOU values were 
significantly higher in YOLOv5s than Faster R-CNN or SSD. 
During model testing, YOLOv5s, Faster R-CNN, and SSD 
could output mean frames per second (FPS) of 62.8 (SD: 0.6), 
5.3 (SD: 0.04), and 10.5 (SD: 0.06), respectively.

Table 1  Baseline characteristics of the included participants stratified by different datasets

Data are presented as mean (standard deviation) or count (proportion)

XXXH XXXH-YB

Training Validation Testing Training Validation Testing

Age, year 33.7 (8.0) 37.1 (8.3) 38.0 (14.2) 36.6 (8.4) 36.8 (10.4) 37.5 (8.0)
Body mass index, kg/m2 21.7 (3.5) 21.8 (3.4) 22.4 (3.2) 22.7 (3.6) 22.3 (3.5) 26.3 (17.8)
Patient number, n 143 (29.3) 31 (6.4) 31 (6.4) 198 (40.6) 44 (9.0) 41 (8.4)
Video frame number, n 37,346 (12.8) 7075 (2.4) 6961 (2.4) 168,585 (57.7) 37,776 (12.9) 34,310 (11.7)

Fig. 1  Representative frames demonstrating how YOLOv5s CC/TC 
prediction model outputs the predicted bounding boxes. The complete 
video clip can be watched in Video A.2. The image sequence from (a) 
to (d) represents the images the sonographers see when they move the 
transducer from the suprasternal notch cephalad. The pink rectangles 

indicate the predicted bounding box of the cricoid cartilage and the 
green rectangles refer to the predicted bounding box of the thyroid 
cartilage. The output probabilities of the predicted bounding boxes 
are annotated along with the predicted bounding boxes. Please refer 
to Video A.2 for the complete video clip
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Compared with the TP-IOU values of predicted and 
ground-truth bounding boxes, the TP-IOU value of the 
two annotated bounding boxes was significantly lower for 
CC, while comparable for TC (Table 3). The kappa values 
indicated high inter-annotator agreement for both CC and 

TC regarding the judgment of the presence or absence of 
the cartilages.

In subgroup analysis, the model performance and the 
agreement evaluation were similar between XXXH and 
XXXH-YB (Tables 2 and 3).

Fig. 2  ROC curves. A, B ROC curves for the derived algorithms in 
the training datasets; C, D ROC curves for the derived algorithms 
in the testing datasets. The output thresholds of the algorithms were 
determined by Youden’s index in the testing dataset and marked as 
ticks on the ROC curves (A) and (B). The output thresholds of cricoid 

cartilage were 0.46, 0.999, and 0.43 for YOLOv5s, Faster R-CNN, 
and SSD. The output thresholds of thyroid cartilage were 0.39, 0.96, 
and 0.20 for YOLOv5s, Faster R-CNN, and SSD. ROC, receiver 
operating characteristic; AUC, area under the ROC curve
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Table 2  Performance of the CC/TC prediction model on the testing dataset

Parameters Cartilage Overall 
comparison, 
p-value

YOLOv5s YOLOv5s vs. 
faster R-CNN, 
p-value

Faster R-CNN Faster R-CNN 
vs. SSD, 
p-value

SSD YOLOV5s vs. 
SSD, p-value

Total
  Sensitivity CC  < 0.001 0.956 (0.940, 

0.970)
0.006 0.939 (0.913, 

0.961)
 < 0.001 0.880 (0.851, 

0.909)
 < 0.001

TC 0.002 0.937 (0.907, 
0.964)

0.57 0.930 (0.893, 
0.957)

0.004 0.919 (0.899, 
0.939)

0.003

  Specificity CC  < 0.001 0.965 (0.918, 
0.992)

0.074 0.955 (0.901, 
0.987)

0.001 0.932 (0.901, 
0.957)

 < 0.001

TC  < 0.001 0.947 (0.895, 
0.982)

0.8 0.944 (0.899, 
0.981)

0.004 0.943 (0.891, 
0.980)

0.063

  PPV CC  < 0.001 0.993 (0.983, 
0.998)

0.113 0.990 (0.980, 
0.997)

 < 0.001 0.983 (0.976, 
0.989)

 < 0.001

TC  < 0.001 0.990 (0.982, 
0.996)

0.572 0.991 (0.984, 
0.996)

 < 0.001 0.987 (0.979, 
0.992)

0.047

  NPV CC  < 0.001 0.728 (0.634, 
0.815)

0.049 0.679 (0.583, 
0.772)

 < 0.001 0.521 (0.436, 
0.615)

 < 0.001

TC 0.01 0.843 (0.784, 
0.894)

0.353 0.824 (0.763, 
0.879)

0.017 0.748 (0.680, 
0.814)

0.004

  Accuracy CC  < 0.001 0.960 (0.946, 
0.973)

 < 0.001 0.944 (0.918, 
0.964)

 < 0.001 0.895 (0.868, 
0.918)

 < 0.001

TC  < 0.001 0.946 (0.921, 
0.966)

0.789 0.940 (0.911, 
0.963)

 < 0.001 0.930 (0.914, 
0.946)

 < 0.001

  F1 score CC  < 0.001 0.972 (0.962, 
0.981)

 < 0.001 0.959 (0.937, 
0.975)

 < 0.001 0.923 (0.904, 
0.941)

 < 0.001

TC  < 0.001 0.956 (0.931, 
0.974)

0.788 0.950 (0.917, 
0.974)

 < 0.001 0.949 (0.936, 
0.961)

 < 0.001

  AUC CC NA 0.989 (0.982, 
0.994)

0.10 0.986 (0.980, 
0.991)

0.06 0.968 (0.956, 
0.977)

0.12

TC NA 0.989 (0.977, 
0.997)

0.10 0.981 (0.965, 
0.991)

0.13 0.982 (0.973, 
0.990)

0.12

  TP-IOU CC  < 0.001 0.753 (0.739, 
0.765)

 < 0.001 0.720 (0.709, 
0.732)

 < 0.001 0.739 (0.726, 
0.751)

0.003

TC  < 0.001 0.739 (0.722, 
0.755)

 < 0.001 0.709 (0.687, 
0.730)

0.668 0.713 (0.695, 
0.730)

 < 0.001

XXX hospital
  Sensitivity CC  < 0.001 0.988 (0.978, 

0.997)
0.01 0.960 (0.909, 

0.991)
0.004 0.912 (0.859, 

0.954)
 < 0.001

TC  < 0.001 0.973 (0.956, 
0.988)

0.06 0.950 (0.914, 
0.977)

0.015 0.926 (0.896, 
0.951)

 < 0.001

  Specificity CC 0.867 0.698 (0.095, 
1.000)

NA 0.667 (0.000, 
1.000)

NA 0.792 (0.476, 
1.000)

NA

TC 0.325 0.868 (0.751, 
0.965)

NA 0.869 (0.755, 
0.960)

NA 0.878 (0.762, 
0.975)

NA

  PPV CC 0.867 0.991 (0.974, 
1.000)

NA 0.991 (0.972, 
1.000)

NA 0.994 (0.982, 
1.000)

NA

TC 0.223 0.982 (0.963, 
0.994)

NA 0.987 (0.971, 
0.997)

NA 0.985 (0.967, 
0.996)

NA

  NPV CC 0.135 0.234 (0.065, 
0.494)

NA 0.085 (0.000, 
0.208)

NA 0.069 (0.000, 
0.173)

NA

TC 0.023 0.798 (0.680, 
0.902)

0.041 0.745 (0.612, 
0.860)

0.082 0.604 (0.481, 
0.722)

0.005

  Accuracy CC  < 0.001 0.979 (0.959, 
0.995)

0.006 0.951 (0.891, 
0.988)

0.016 0.908 (0.859, 
0.948)

 < 0.001
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Table 2  (continued)

Parameters Cartilage Overall 
comparison, 
p-value

YOLOv5s YOLOv5s vs. 
faster R-CNN, 
p-value

Faster R-CNN Faster R-CNN 
vs. SSD, 
p-value

SSD YOLOV5s vs. 
SSD, p-value

TC 0.008 0.961 (0.941, 
0.979)

0.42 0.947 (0.917, 
0.970)

0.009 0.923 (0.895, 
0.947)

0.001

  F1 score CC  < 0.001 0.989 (0.976, 
0.997)

0.007 0.967 (0.925, 
0.994)

0.015 0.945 (0.911, 
0.971)

 < 0.001

TC 0.003 0.976 (0.963, 
0.986)

0.416 0.965 (0.943, 
0.981)

0.01 0.951 (0.933, 
0.966)

0.001

  AUC CC NA 0.963 (0.889, 
1.000)

0.27 0.973 (0.918, 
1.000)

0.03 0.951 (0.882, 
1.000)

0.07

TC NA 0.979 (0.947, 
0.997)

0.20 0.982 (0.965, 
0.994)

0.16 0.971 (0.951, 
0.987)

0.19

  TP-IOU CC  < 0.001 0.744 (0.720, 
0.765)

0.002 0.711 (0.688, 
0.731)

0.015 0.738 (0.717, 
0.761)

0.692

TC 0.031 0.750 (0.726, 
0.773)

0.025 0.733 (0.709, 
0.758)

0.992 0.732 (0.705, 
0.755)

0.008

XXX hospital—Yunlin branch
  Sensitivity CC  < 0.001 0.932 (0.906, 

0.953)
0.135 0.924 (0.895, 

0.948)
0.001 0.856 (0.818, 

0.891)
 < 0.001

TC 0.102 0.910 (0.857, 
0.951)

NA 0.914 (0.861, 
0.958)

NA 0.914 (0.885, 
0.940)

NA

  Specificity CC  < 0.001 0.984 (0.972, 
0.993)

0.117 0.977 (0.960, 
0.989)

 < 0.001 0.942 (0.920, 
0.961)

 < 0.001

TC  < 0.001 0.997 (0.994, 
0.999)

0.108 0.993 (0.984, 
0.998)

 < 0.001 0.984 (0.972, 
0.992)

 < 0.001

  PPV CC  < 0.001 0.993 (0.988, 
0.998)

0.166 0.990 (0.982, 
0.996)

 < 0.001 0.975 (0.968, 
0.983)

 < 0.001

TC  < 0.001 0.996 (0.993, 
0.999)

0.295 0.994 (0.990, 
0.998)

 < 0.001 0.988 (0.981, 
0.994)

 < 0.001

  NPV CC  < 0.001 0.861 (0.811, 
0.904)

0.117 0.853 (0.801, 
0.894)

 < 0.001 0.752 (0.698, 
0.796)

 < 0.001

TC 0.068 0.874 (0.813, 
0.926)

NA 0.878 (0.821, 
0.925)

NA 0.857 (0.807, 
0.901)

NA

  Accuracy CC  < 0.001 0.946 (0.923, 
0.962)

0.034 0.938 (0.916, 
0.957)

 < 0.001 0.884 (0.860, 
0.908)

 < 0.001

TC 0.016 0.934 (0.890, 
0.966)

0.752 0.935 (0.889, 
0.969)

0.023 0.936 (0.913, 
0.956)

0.074

  F1 score CC  < 0.001 0.960 (0.944, 
0.972)

0.03 0.953 (0.933, 
0.968)

 < 0.001 0.907 (0.882, 
0.928)

 < 0.001

TC 0.016 0.941 (0.899, 
0.972)

0.783 0.939 (0.887, 
0.974)

0.027 0.947 (0.927, 
0.963)

0.078

  AUC CC NA 0.991 (0.986, 
0.995)

0.09 0.987 (0.981, 
0.992)

0.06 0.969 (0.959, 
0.979)

0.12

TC NA 0.995 (0.990, 
0.999)

0.04 0.980 (0.957, 
0.994)

0.11 0.990 (0.985, 
0.994)

0.08

  TP-IOU CC  < 0.001 0.760 (0.746, 
0.774)

 < 0.001 0.727 (0.715, 
0.739)

0.008 0.740 (0.725, 
0.754)

 < 0.001

TC  < 0.001 0.730 (0.707, 
0.754)

 < 0.001 0.690 (0.657, 
0.721)

0.564 0.698 (0.671, 
0.722)

 < 0.001

The metrics are expressed with point estimates and corresponding 95% confidence intervals. AUC  area under the receiver operating characteris-
tic curve, CC cricoid cartilage, NA not available, NPV negative predictive value, PPV positive predictive value, TC thyroid cartilage TP-IOU true 
positive-intersection over union
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Discussion

The ML-based algorithms correctly identified anatomical 
landmarks for cricothyroidotomy on sagittal ultrasound 
images in adult females. By analyzing 292,053 frames col-
lected from 488 participants, the derived YOLOv5s, Faster 
R-CNN, and SSD algorithms recognized the CC and TC 
with high sensitivity and accurate localization.

Comparison with Previous Studies

Regarding cricothyroidotomy, few studies [10, 22] are 
focused only on women. In one prospective study, 24 physi-
cians were able to correctly identify the CTM by manual 
palpation in only 13 (23%) of 56 women [23]. Interestingly, 
most of the physicians rated the palpation difficulty level as 
easy [23]. This suggests that many of the physicians thought 
they had correctly identified the CTM when they may have 
actually misidentified it [23].

The Difficult Airway Society guidelines have proposed 
ultrasonography to assist in identifying the CTM [7]. How-
ever, Hung et al., in a meta-analysis [10], have reported that 
although the pooled failure rate of the ultrasound-guided 
technique was significantly lower than that of manual pal-
pation (300/535, 56%), it was nonetheless as high as 26% 
(147/559). Because the analysis by Hung et al. [10] included 
a mixture of study participants with a high level of clinical 
heterogeneity, there remained a paucity of evidence sup-
porting the application of ultrasonography in identifying the 
CTM in women.

Interpretation of Current Results

To the best of our knowledge [10, 22], our study has enrolled 
the largest group of adult female participants to date in 
investigating ultrasonography for identifying anatomic 
landmarks of cricothyroidotomy in women. Two ultrasound 
techniques, transverse and longitudinal, have been advocated 
to guide cricothyroidotomy [24]. In the transverse technique, 
the sonographer moves the transducer back and forth around 
the CTM (i.e., between the TC and CC). Our ML-based 
algorithms were intended for clinicians who may not be well 
versed in sonographic techniques and, therefore, may not 
have the a priori knowledge necessary for recognizing CC 
or TC, which is a prerequisite for the transverse technique. 
On the other hand, the longitudinal technique has no such 
prerequisite and may be more suitable for those clinicians 
with less exposure to neck sonoanatomy. To facilitate the 
application of the ML-based algorithms, we further simpli-
fied the longitudinal technique by allowing the clinicians 
to use the suprasternal notch as a landmark, making it the 
starting point, and moving the transducer cephalad along the 
sagittal midline. This modified technique did not demand 
prior knowledge of either transverse or longitudinal tech-
niques and may thus be more favorable for novice sonogra-
phers. Finally, instead of the CTM per se, we chose the CC 
and TC as the target objects to train the algorithm. These 
two cartilages are also the critical landmarks used by the 
conventional transverse and longitudinal techniques [24]. 
We assumed that localizing CC and TC by the derived ML-
based algorithms would be sufficient to identify the CTM.

Table 3  Comparison of TP-IOU between model predictions and manual annotations

CC cricoid cartilage, TC thyroid cartilage, TP-IOU true positive-intersection over union. The metrics are expressed with point estimates and cor-
responding 95% confidence intervals. The p-value indicates the comparison between each algorithm and annotator

Target cartilage TP-IOU Kappa coefficient

YOLOv5s p-value Faster R-CNN p-value SSD p-value Annotators annotators

Total
  CC 0.753 (0.739, 

0.765)
 < 0.001 0.72 (0.709, 

0.732)
0.004 0.739 (0.727, 

0.752)
 < 0.001 0.684 (0.661, 

0.705)
0.915 (0.859, 

0.962)
  TC 0.739 (0.722, 

0.755)
0.584 0.709 (0.688, 

0.728)
0.265 0.713 (0.694, 

0.73)
0.235 0.733 (0.708, 

0.758)
0.901 (0.847, 

0.949)
XXX hospital
  CC 0.744 (0.719, 

0.766)
 < 0.001 0.711 (0.688, 

0.731)
0.003 0.738 (0.715, 

0.758)
 < 0.001 0.672 (0.647, 

0.695)
0.868 (0.740, 

0.967)
  TC 0.75 (0.726, 

0.772)
0.977 0.733 (0.71, 

0.758)
0.135 0.732 (0.708, 

0.758)
0.318 0.750 (0.714, 

0.782)
0.827 (0.707, 

0.919)
XXX hospital-Yunlin branch
  CC 0.76 (0.746, 

0.773)
 < 0.001 0.727 (0.715, 

0.738)
0.098 0.74 (0.727, 

0.753)
0.008 0.693 (0.659, 

0.723)
0.950 (0.923, 

0.972)
  TC 0.73 (0.707, 

0.754)
0.720 0.69 (0.659, 0.72) 0.309 0.698 (0.671, 

0.724)
0.309 0.721 (0.685, 

0.757)
0.957 (0.916, 

0.983)
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In our study, detection-based algorithms, including 
YOLOv5s, Faster R-CNN, and SSD, were adopted as the 
model architecture. For these algorithms, the output thresh-
old probability determined the number and accuracy of the 
predicted bounding boxes. In the default settings, the trained 
algorithms would output all predicted bounding boxes if 
their predicted probabilities were above a certain threshold. 
Therefore, the trained algorithms could have output more 
than one bounding box for CC or TC in a single frame, as 
long as the predicted probabilities of the bounding boxes 
were above the threshold. Because an excess of predicted 
bounding boxes might distract the sonographer from identi-
fying the CTM in clinical practice, we decided that only the 
bounding box with the highest predicted probability among 
boxes with probabilities above the threshold would be out-
put. Subsequently, according to the ROC curve (Fig. 2), 
Youden’s index was adopted to find the optimal cut-off, 
striking a balance between the sensitivity and specificity, 
and this threshold was thereby used in the testing datasets.

We used two steps to evaluate the classification and local-
ization performance of the derived algorithms (Table 2). We 
assumed this staged assessment would make the model’s 
performance more easily understood by clinicians. In the 
first step, we used classification metrics, most importantly, 
sensitivity and PPV, to determine how correctly the model 
could identify the presence of CC or TC. Since cricothyroi-
dotomy is a time-sensitive procedure, the model should be 
very sensitive to the presence of CC or TC. In the meantime, 
it should also maintain a sufficiently high PPV to avoid an 
excessive number of false alarms and subsequent sonogra-
pher attention fatigue. As shown in Table 2, the PPV of the 
three derived algorithms were all above 0.98 for both CC 
and TC, demonstrating excellent classification performance 
of these algorithms.

However, simply indicating the presence of the cartilages 
in the frame may not be enough to help clinicians identify 
the position of the CTM. To correctly position the CTM, 
the predicted bounding boxes should have as much over-
lap with the cartilages as possible. Therefore, in the second 
stage, IOU was adopted to express the level of this overlap. 
After the first stage, the frames would be classified into four 
categories, true-positive, false-negative, false-positive, and 
true-negative, based on the presence or absence of predicted 
and ground-truth bounding boxes. For the frames that were 
incorrectly classified (false negative or false positive) at the 
first stage, the IOU was zero, which offers no more informa-
tion than the classification result. For those frames correctly 
classified as true negative, the IOU could not be calculated. 
Therefore, only the IOU of the true-positive frames (TP-
IOU) is considered in localizing the membrane, and clini-
cians can know how much overlap there was in order to 
understand how accurately the predicted bounding boxes had 
localized the cartilages.

Future Applications

While ultrasound has generally been accepted as more 
accurate than manual palpation in identifying TC or CC in 
clinical trials, it can also require significantly more time 
than manual palpation for initial identification of the CTM 
and insertion of the airway device [25–27]. This ultrasound-
related time lag may be caused by clinicians’ unfamiliarity 
with the airway sonoanatomy [28]. As such, the likelihood 
is high that clinicians may forget how to identify TC or CC 
by ultrasound when they are faced with an emergent need 
like cricothyroidotomy. Our ML-based algorithms may solve 
this dilemma by offering a real-time guide for those less-
experienced sonographers. Also, as shown in Table 2, the 
accuracy of the ML-based algorithms was not influenced 
by different ultrasound machines of different hospitals with 
different image resolutions or image quality, indicating its 
potential to be generalizable. Integration of the ML-based 
algorithms with the hand-held portable ultrasound should 
be further explored for its potential in real-time guidance 
for cricothyroidotomy. Given the higher TP-IOU and FPS, 
YOLOv5s may be considered the optimal algorithm to be 
deployed in portable ultrasound machines.

Study Limitations

First, we only enrolled female participants without obvi-
ous neck deformity. Therefore, whether the ML-based 
algorithms could be applied to males or patients with neck 
deformities should be further explored. Second, as with the 
original longitudinal technique, patients with a short neck 
may not be easily approached with our modified longitudinal 
technique, rendering the ML-based algorithms inapplicable. 
Third, the mean body mass index was 22.6 kg/m2 in our 
study. External generalization of the current algorithms to 
participants with elevated body mass index or morbid obe-
sity may not be applicable. Fourth, the ML-based algorithms 
were not tested in an external dataset. However, no publicly 
available datasets of ultrasonographic images of CC/TC 
could be used for testing. In the current study, the images 
were collected by four physicians from two hospitals using 
two different ultrasound machines. The model performance 
was not significantly different between these two hospitals, 
which may suggest that the external generalization of the 
derived algorithms may be favorable. Finally, the evalua-
tion metrics were solely based on image analysis. It is still 
unknown whether the favorable metrics of the ML-based 
algorithms could be beneficial clinically. To test the derived 
algorithms clinically, the algorithms should be transferred to 
hand-held portable ultrasound devices since it is less likely 
that the ML-based algorithms would be used in conventional 
cart-based ultrasound machines. Notwithstanding, either 
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would involve much technical work before the trained algo-
rithms could be widely tested in the clinical setting.

Conclusions

The ML-based algorithms, including YOLOv5s, Faster 
R-CNN, and SSD, identified anatomical landmarks for cri-
cothyroidotomy in adult females with high sensitivity and 
accurate localization via ultrasonographic images. Differ-
ent ultrasound machines did not influence the performance 
of the derived algorithms. Given the higher TP-IOU and 
FPS, YOLOv5s may be considered the optimal algorithm 
for clinical use in portable ultrasound machines.

Appendices

     Video A.1. A video clip to demonstrate the modified 
longitudinal technique for acquiring the sonographic imag-
ing data used in the study.

Video A.2. A video clip to demonstrate the predictions 
output by the YOLOv5s CC/TC prediction model. Pink rec-
tangles indicate the predicted bounding box of the cricoid 
cartilage and green rectangles refer to the predicted bound-
ing box of the thyroid cartilage. The output probabilities of 
the predicted bounding boxes are annotated along with the 
predicted bounding boxes.

Supplemental Fig. 1. The architecture of the YOLOv5s 
network. Each ultrasonographic video clip is first sliced into 
an image sequence, and each image is resized to 640 × 640 
pixels before input. A convolutional neural network (Back-
bone) is used to extract features of the input image in differ-
ent granularities. Extracted feature maps are further mixed 
and up-sampled in the Head. Finally, in Detect, the detection 
results (bounding box position and probability of each class) 
are output in three different scales.

Supplemental Fig. 2. The architecture of the Faster 
R-CNN unified network. Each ultrasonographic video clip 
is first sliced into an image sequence, and each image is 
resized to 640 × 640 pixels before input. A feature extractor, 
ResNet-50, was taken as a backbone to extract input image 
features and share them with the region proposal network 
(RPN). RPN-predicted anchor boxes allow the unified net-
work to attend the region of interest (ROI) on the feature 
map and thus crop the ROI and feed it into the classifier (red 
rectangle) to complete the prediction.

Supplemental Fig. 3. The architecture of the SSD 
network. Each ultrasonographic video clip is first sliced 
into an image sequence, and each image is resized to 
300 × 300 to fit the SSD300 lightweight version. A base 

network, VGG-16, was the backbone to extract input 
image features. For each location on the feature map, 
the following feature layers directly predict a bounding 
box shape offset, scores for every category, in different 
resolutions layer by layer. A non-maximum suppression 
algorithm is applied before output.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10278- 023- 00929-3.
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