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Abstract
A critical clinical indicator for basal cell carcinoma (BCC) is the presence of telangiectasia (narrow, arborizing blood ves-
sels) within the skin lesions. Many skin cancer imaging processes today exploit deep learning (DL) models for diagnosis, 
segmentation of features, and feature analysis. To extend automated diagnosis, recent computational intelligence research 
has also explored the field of Topological Data Analysis (TDA), a branch of mathematics that uses topology to extract 
meaningful information from highly complex data. This study combines TDA and DL with ensemble learning to create a 
hybrid TDA-DL BCC diagnostic model. Persistence homology (a TDA technique) is implemented to extract topological 
features from automatically segmented telangiectasia as well as skin lesions, and DL features are generated by fine-tuning 
a pre-trained EfficientNet-B5 model. The final hybrid TDA-DL model achieves state-of-the-art accuracy of 97.4% and an 
AUC of 0.995 on a holdout test of 395 skin lesions for BCC diagnosis. This study demonstrates that telangiectasia features 
improve BCC diagnosis, and TDA techniques hold the potential to improve DL performance.

Keywords  Basal cell carcinoma · TDA · Persistent homology · Deep learning · Fusion · Telangiectasia · Transfer learning · 
Dermoscopy

Introduction

Over two million cases of basal cell carcinoma (BCC) are 
diagnosed yearly in the USA [1]. The initial diagnosis of 
BCC includes a visual inspection by a dermatologist or a 

mid-level practitioner (nurse practitioner or physician assis-
tant), often with a dermatoscope. If the diagnosis is unclear, 
or if confirmation is needed, an invasive procedure such as a 
biopsy is performed. Recent research has aimed to improve 
diagnostic accuracy and minimize the number of biopsies 
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through automatic image processing. In some cases, deep 
learning (DL) methods applied in dermoscopy have outper-
formed dermatologists [2–5]. Skin cancer diagnosis from 
digital images has advanced by implementing DL and, in 
some cases, fusion ensembles employing DL, metadata, and 
handcrafted features [6–13].

Telangiectasia or narrow blood vessels within the skin 
lesions are a critical clinical indicator of BCC. Studies have 
detected these blood vessels through handcrafted pixel- or 
patch-based techniques [14, 15]. Cheng et al. [14] investi-
gated a local pixel color drop technique to identify vessel 
pixels. Kharazmi et al. [15] applied independent component 
analysis, k-means clustering, and shape for detecting vessels 
and other vascular structures. Kharazmi et al. [16] detected 
vessel patches by using a stacked sparse autoencoder (SSAE) 
as their DL model. Maurya et al. [17] employed DL to seg-
ment these vessels semantically, a dermoscopic-feature-
driven approach also used by Nambisan et al. to detect dots 
and globules [18].

Cheng et al. [19] used an adaptive critic design approach 
to detect and use these vessels for BCC classification. 
Kharazmi et al. [15] used a random forest–based classifier 
to diagnose BCC with color and texture features. Kharazmi 
et al. [20] used a combination of SSAE and patient metadata 
for BCC diagnosis. Serrano et al. [21] used clustering-based 
color features and GLCM-based texture features to train 
VGG16 and MLP models for DL-based BCC classification. 
All these studies lack the utilization of deep learning–based 
vessel segmentation and classification together to achieve a 
BCC diagnosis. This study aims to close this gap by deploy-
ing a specific statistical analysis, i.e., Topological Data Anal-
ysis, in conjunction with deep learning–based segmentation 
of telangiectasia, to ultimately perform a BCC classification 
from digital images.

Topology is a branch of mathematics concerned with the 
properties of geometric objects that are preserved when the 
object is stretched, bent, or otherwise deformed. Topologi-
cal Data Analysis (TDA) is an area of mathematics and data 
analysis that uses tools from topology to study the shape 
of data. It is a relatively newer research field that is now 
increasingly used for image classification, feature extraction, 
and image analysis [22–27]. The main idea behind TDA 
is that the shape of the “point cloud” or clusters of data 
points can reveal important data properties data that may not 
be immediately apparent from other types of analysis. For 
example, TDA can be used to identify clusters or groups of 
data points, detect patterns or trends in the data, and extract 
features or characteristics that persist along multiple higher 
dimensional scales. Hu et al. [25] used TDA-based meth-
ods for skin lesion segmentation and classification. Bendich 
et al. [26] employed TDA-based persistence diagrams to find 
metadata correlations to the brain artery trees, establishing 
a correlation between age and brain artery tree topology.

This study explores TDA’s ability to extract features from 
telangiectasia and color-spaces to improve EfficientNet-B5 
pre-trained model performance.

This study makes the following unique contributions to 
the existing literature on automatic BCC diagnosis:

•	 Integrating a clinically observable physical feature: tel-
angiectasia, with a DL-TDA model to improve diagnosis 
based on digital medical images

•	 Demonstrating an alternative, less computationally inten-
sive TDA model for medical image diagnosis.

Materials and Methods

Image Datasets

This study uses BCC and benign dermoscopic skin cancer 
images derived from 3 datasets: the HAM10000 dataset 
(ISIC 2018) of Tschandl et al. [27], a publicly available 
skin lesion dermoscopy dataset containing over 10,000 skin 
images for seven diagnostic categories, the ISIC 2019 data-
set [27–29], and datasets R43 from NIH studies CA153927-
01 and CA101639-02A2 [30]. The U-Net model is trained on 
1000 BCC images, 127 of which come from the HAM10000 
dataset, 90 from ISIC 2019, and 783 from the NIH study 
dataset. We use 1000 non-BCC images from the HAM10000 
dataset for our DL BCC diagnostic model. The 1000 non-
BCC lesions, along with their distribution in the dataset, are:

•	 Benign Keratosis: 400
•	 Nevus: 400
•	 Actinic Keratosis: 67
•	 Dermatofibroma: 67
•	 Vascular Lesion: 66

These five non-BCC conditions listed, overall, have 
fewer telangiectasia than BCC, and if they have these vas-
cular structures, they are different than BCC telangiectasia. 
Two of the most common telangiectasia in these non-BCC 
conditions—hairpin vessels in benign keratosis and comma 
vessels in nevus—differ from BCC telangiectasia, which 
have a different architecture. The BCC telangiectasia, in 
contrast, are often of one of two types: long, thin, and wavy, 
so-called serpiginous telangiectasia, or trunk and branches 
connected vessels with varying diameter, so-called arboriz-
ing telangiectasia [19]. Clinically, the majority of four of 
these non-BCC structures, all except vascular lesions, lacked 
vascular structures, a more inclusive definition of vessels 
than telangiectasia, as used by [15]. All vascular lesions had 
vascular structures.

The 1000 BCC images in the dataset are the same as the 
U-Net model. All the images are 8-bit RGB of size 450 × 600 
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from the HAM10000 dataset and 1024 × 768 from the NIH 
study dataset. Example images of these skin lesions are 
shown in Fig. 1.

Pre‑Processing

Since the skin lesion images are from different data-
sets and include different resolutions, all the images are 
square cropped, centering on the lesion area, and resized 
to 448 × 448. The size 448 × 448 was chosen as it is closest 
to the smallest size of the skin lesions in the dataset. For 
the U-Net model, there is an extra step where the images 
are processed with histogram stretching, contrast limited 
adaptive histogram equalization (CLAHE), normalization, 
and brightness enhancement (to make vessels brighter and 
distinguishable) [17]. The ground truth vessel masks are 
dilated with a 3 × 3 structuring element and closed with a 

2 × 2 structuring element. We perform geometric augmenta-
tions: rotation of + 30° to − 30° in reflect mode (to preserve 
vessel continuity), horizontal and vertical flip, width shift 
with a range of (− 0.2, + 0.2), height shift with a range of 
(− 0.2, + 0.2), and shear with a range (− 0.2, + 0.2). Figure 2 
shows the steps of pre-processing.

Proposed Methodology 

Figure 3 presents our five-component hybrid TDA and DL 
model pipeline investigated in this study, including:

•	 Part 1: U-Net model that semantically segments telangi-
ectasia in both BCC and non-BCC skin lesion images

•	 Part 2: TDA framework that generates Persistence Statis-
tics from telangiectasia and color spaces of the images

Fig. 1   From left: actinic keratosis, benign keratosis, dermatofibroma, basal cell carcinoma, nevus, and vascular lesion

Fig. 2   Pre-processing flowchart
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•	 Part 3: DL classification model based on EfficientNet-B5 
for feature extraction from skin lesions

•	 Part 4: Random Forest classifiers that generate class 
probabilities from DL and TDA features

•	 Part 5: Voting between the probabilities generated in Part 
4 to yield a final BCC vs non-BCC classification

Part 1: U‑Net Model for Segmenting Telangiectasia

U-Net-based segmentation models are widely used in 
medical image segmentation [31]. The U-Net model and 
its hyperparameters are taken from [17] for this study. The 
model produces binary vessel masks for BCC and non-
BCC lesion images. A TDA framework uses these binary 
vessel masks (as explained in detail in the subsequent 
sections) to generate topological features.

Part 2: Topological Data Analysis (TDA), Persistent 
Homology and Persistence Statistics

Topological Data Analysis (TDA) applies the concepts and 
methods of topology for the analysis and visualization of 
complex data. Persistent homology (PH), a statistical tool of 
TDA, can detect topological features of the data that persist 
over larger scales and long intervals of time. PH accounts 
for the topological features, i.e., connected components in 
dimension 0, loops in dimension 1, and voids in dimension 
2 by creating persistence diagrams [22–26]. The persistent 
homology algorithm follows the steps shown in Fig. 4.

The main steps of the process are described below:

(A)	 Point clouds: Point clouds are collections of data points 
that reflect the geometry and spatial relationships of a 
real-world object or environment in a high-dimensional 

Fig. 3   Pipeline investigated 
employing a hybrid TDA-DL 
method for BCC classification

Fig. 4   Flow of the persistent 
homology algorithm to generate 
persistence diagrams



96	 Journal of Imaging Informatics in Medicine (2024) 37:92–106

1 3

space, most often a three-dimensional (3D) space. The 
x, y, and z coordinates of each point in a point cloud, 
as well as any other qualities like color or intensity, are 
used to identify each point’s location in the space. Point 
clouds serve as the pixel intensity values in this study.

(B)	 Topological invariants: Topological invariants are topo-
logical space–related mathematical numbers or quali-
ties that are true even if the space is altered in some 
way. These invariants offer a mechanism to categorize 
and separate various topological spaces according to 
their inherent characteristics. Betti numbers are also 
a type of topological invariant representing the total 
number of holes in a space of various sizes. Higher 
Betti numbers count higher-dimensional holes. The 
first Betti number counts independent loops, while the 
zeroth Betti number counts connected components. 
Topological invariants are frequently generated from 
algebraic structures known as homology groups or 
cohomology groups in the setting of algebraic topol-
ogy, which examines the algebraic features of topologi-
cal spaces. Chains or cochains, formal combinations 
of simplices or cells in a topological space, are used to 
create these groups.

(C)	 Simplicial complex: In the study of combinatorial topol-
ogy and geometry, a simplex is a fundamental geometric 
object. It is an extension of the 2-dimensional simplex 
idea of a triangle to higher dimensions. The convex 
hull of (n + 1) affinely independent points in Euclidean 
space is formally referred to as an n-dimensional sim-
plex. A simplex is the “simplest” conceivable polytope 
in n-dimensional space; equivalently, it is a geometric 
object [22–26]. Here are a few instances:

•	 A vertex of a zero-dimensional simplex is represented 
by a single point

•	 A line segment joining two points is referred to as a 
one-dimensional simplex

•	 A triangle having three vertices and three edges is 
referred to as a two-dimensional simplex

•	 A tetrahedron with four vertices, six edges, and four trian-
gular faces is referred to as a three-dimensional simplex

Topological invariants can be computed from the sim-
plicial complex by counting the number of simplexes of 
different dimensions that make up the complex. Let V be 
a set of vertices. A subset S of V is called a simplex of 
dimension n if it contains n + 1 elements that are affinely 
independent, meaning that the points do not lie in a lower-
dimensional hyperplane. The elements of S are called the 
vertices of the simplex. A simplicial complex K is a col-
lection of simplexes in V that satisfies the following condi-
tions [22–26]:

•	 Any face of a simplex in K is also in K, meaning that if S 
is a simplex in K, then every subset of S that is a simplex 
is also in K.

•	 The intersection of any two simplexes in K is either 
empty or a face of both.

Figure 5 shows a simplicial complex that includes a tet-
rahedron and a triangle.

(D)	 Vietoris-Rips complex: This study utilizes the Vietoris-
Rips complex to produce simplicial complexes from 
the image datasets. It is built by joining together spatial 
pairs of points that are relatively close to one another 
and then joining together higher-dimensional simplexes 
while considering the connectivity of the lower-dimen-
sional simplexes.

Formally, for a set of points P of dimension d, where P 
is a subset of Rd, and then the Vietoris-Rips (VR) complex 
Vϵ(P) at scale ϵ (the VR complex over the point cloud P with 
parameter ϵ) is defined as [22–26]:

Hence, for a set of data points in P, a simplex σ (a subset 
of P) is included, if the points in σ are all within a distance of 
ϵ from each other. As a result, a collection of subsets of P is 
obtained, that are all simplices, or a simplicial complex of P.

(E)	 Filtration: By varying the values of ϵ to different levels, 
it can be discovered what appears to produce a sig-
nificant VR complex. If ϵ is set too small, the complex 
might just include the initial point cloud or a sparse 

V∈(P) = {𝜎 ⊆ P|d(u, v) ≤ 𝜖,∀u ≠ v ∈ 𝜎}V

Fig. 5   Simplicial complex containing a 3D simplex (tetrahedron) and 
a 2D simplex (triangle)
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number of edges connecting the points. On the other 
hand, the point cloud will merge into one enormous 
ultradimensional simplex if ϵ is set too large. In order to 
truly find patterns in a simplicial complex, the param-
eter ϵ must be repeatedly changed (and generate new 
complexes) from 0 to a maximum that yields a single 
huge simplex. Then, the persistence diagrams illustrate 
which topological features are created and destroyed 
as ϵ keeps rising. It is assumed that the features which 
persist over a long period of time are significant and 
vice versa. This process is called filtration.

(F)	 Persistence diagrams: A persistence diagram is a graph-
ical representation of this process, which consists of a 
collection of points in a two-dimensional plane. Each 
point in the diagram represents a topological feature 
and its corresponding lifespan or persistence, defined 
as the difference between the scale at which the feature 
was born and the scale at which it died out. The dia-
gram’s horizontal axis represents the birth values of the 
topological features, while the vertical axis represents 
their death values. The diagonal line in the diagram 
represents features with the same birth and death values 
and is called the diagonal or the “line of equality.”

Zero-dimensional persistent homology and 1D persistent 
homology refer to the analysis of topological features in dif-
ferent dimensions using the persistent homology framework. 
0D persistent homology analyzes connected components 
or clusters in a data set. It captures the evolution of these 
connected components as a parameter, typically related to 

distance or scale, varies. By systematically increasing or 
decreasing the parameter, 0D persistent homology tracks the 
birth and death of connected components. In 0D persistent 
homology, the filtration complex is constructed by associat-
ing each data point in the set with a 0-dimensional simplex. 
Initially, each data point is a separate connected component. 
As the parameter increases or decreases, connected compo-
nents may merge or disappear, resulting in changes in the 
topology of the data set. The persistence intervals, or bar-
code intervals, represent the lifespan of the connected com-
ponents, indicating when they are born and when they die.

One-dimensional persistent homology focuses on analyz-
ing loops or cycles in a data set. It captures the evolution of 
these loops as the filtration parameter varies. By systemati-
cally changing the parameter, 1D persistent homology tracks 
the birth and death of loops. In 1D persistent homology, the 
filtration complex is constructed by considering both the data 
points and the edges connecting them. Initially, each data point 
is a 0-dimensional simplex, and each edge is a 1-dimensional 
simplex. As the parameter increases or decreases, edges may 
form loops or cycles, merge with existing loops, or disappear. 
The persistence intervals represent the lifespan of the loops, 
indicating when they are born and when they die.

From this point onwards, the persistence diagrams cor-
responding to 0D and 1D persistent homology are referred 
to as P0 and P1.

One approach to understanding this filtration process 
involves creating a sequence of growing spheres centered 
on each point and connecting those with overlapping spheres 
with edges or triangles. Figure 6 illustrates this process.

Fig. 6   Persistent homology filtration process leading to formation of birth–death pairs in the persistence diagram
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(A)	 The process starts with a collection of data points (point 
clouds) in 2D space. At this point, the value of ϵ or the 
radius of the spheres is 0. Hence the connected compo-
nents are born at x = 0. Since there has been no death or 
“overlap,” there is no corresponding y value.

(B)	 As the concentric spheres around the datapoints increase in 
size/radii (ϵ increases), the first connected components die 
or overlap, giving us the first death. Hence, the first birth–
death pair point on the corresponding persistence diagram 
is observed with birth at x = 0 and death at y > 0, where x 
and y both correspond to the radius ϵ of the spheres.

(C)	 At this stage, with the radius or ϵ increasing, more 
deaths or overlaps happen, leading to more deaths and 
larger values of y, but there is also the emergence of a 
loop, hence a birth value for 1D homology. This loop 
finally disappears in the second substage. Hence, a 
birth and death value for x and y is created, both greater 
than zero and accounted for by the orange point in the 
corresponding persistence diagram.

Therefore, the persistence diagram provides a global sum-
mary of the topological features of a dataset, capturing both 
their presence and persistence over different scales.

For image classification, one channel is used at a time 
from a 3-channel color space, for example, red color plane 
from the RGB color space, grayscale, or binary image. PH 
is used for image analysis by treating image pixels as point 
clouds, where point clouds are a collection of data points 
in a high-dimensional space. The shape of the point cloud 
can reveal important data properties and that can be used to 
identify patterns in images, such as textures or shapes, and 
to measure the similarity between different images. Figure 7 
shows persistence diagrams P0 and P1 for a BCC and non-
BCC image for the red color channel from the RGB color 
space. It is noticeable, even by visual observation, that the 
birth–death pairs for both images seem distinguishable.

2.3.2.1 Persistence Statistics for Telangiectasia  In the con-
text of a digital image, a point cloud is a set of points in a 
high-dimensional space representing each pixel’s position 
and color information. Each point in the point cloud cor-
responds to a single pixel in the image, and its position in 
the space is determined by its x and y coordinates, while 
additional dimensions or attributes can represent its color. 
For the dataset in this study, each channel of a 3-channel 
image (example RGB) is treated as a grayscale image with 

Fig. 7   Top row, from left: BCC skin lesion; its corresponding P0 persistence diagram and P1 persistence diagram for the red plane; bottom row, 
from left: non-BCC (actinic keratosis) skin lesion; its corresponding P0 persistence diagram and P1 persistence diagram for the red plane
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pixel intensity values ranging from 0 to 255 [25]. This forms 
the initial point cloud for the subsequent persistent homol-
ogy process.

There are a total of six different sets of persistent homol-
ogy features called “persistence statistics” (PS) calculated 
in this study. 5 channels are extracted from 3 different color 
spaces, namely, R, G, and B from the RGB color space, V 
from the HSV color space, and Z from the XYZ color space. 
The 6th set of persistence statistics is calculated from the 
predicted telangiectasia masks. For all the channels, both 
P0 and P1 are generated, leading to a total of 32 PS features 
per set. Hence, the total number of features generated using 
PS is 32 × 6 = 192.

Figure 8 illustrates the PS features. As shown in Fig. 7, 
the persistence diagram P contains collections of pairs of 
points that represent the birth and death values of topologi-
cal features. Our persistence statistics include three quanti-
ties that summarize this information in persistent diagrams: 
total persistence, mid-life coordinates, and normalized lifes-
pan [25]. If birth is denoted by b and death is denoted by 
d, d − b is the lifespan of the topological feature. It repre-
sents the length of time that the corresponding feature per-
sisted during the filtration process. Total persistence is then 
defined as the sum of the persistence values over all points 
in the diagram. Mathematically, this can be expressed as:

where i = 0,1 corresponding to P0 and P1. Total persistence 
provides a global measure of the complexity or richness 
of a dataset’s topological structure by considering all the 

Li = Σ(b,d)∈Pi
d − b

topological features and their persistence over different 
scales. Another statistic is midlife coordinates, expressed 
mathematically as:

The third measure is normalized lifespan. It measures 
the relative persistence or robustness of topological fea-
tures in a dataset, considering their lifespans and the over-
all complexity of the persistence diagram. We calculate the 
normalized lifespan pi for each point in the diagram as its 
persistence divided by the total persistence:

The normalized lifespan pi is a measure of the rela-
tive persistence or robustness of a topological feature in 
comparison to the overall complexity of the persistence 
diagram [23]. It indicates the proportion of the total per-
sistence contributed by the corresponding feature and 
provides insight into how long-lasting and persistent the 
feature is. Mi and pi are empirical distributions [25], and 
we apply standard statistical measurements on these dis-
tributions to calculate our feature vector. Table 1 shows 
the 32 topological features we calculated for each image 
in our dataset.

Part 3: EfficientNet‑B5 for Feature Extraction from Skin Lesions

A family of convolutional neural network (CNN) models 
called EfficientNet has attained cutting-edge performance 
on various computer vision applications while retaining a 

Mi = (b + d)∕2

pi = (d − b)∕Li

Fig. 8   Generation of persistence 
statistics–based features
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manageable number of parameters [32–34]. By properly 
scaling the network in several dimensions, EfficientNet’s 
major goal is to address the trade-off between model size 
and accuracy. In the past, scaling a model meant individually 
expanding its depth, width, or resolution. EfficientNet, on 
the other hand, suggests a compound scaling technique that 
considers depth, width, and resolution all at once. The com-
pound scaling technique also ensures that the model can be 
efficiently fine-tuned on smaller datasets without overfitting. 
Lama et al. [35, 36] successfully employed EfficientNet-
based DL models for lesion segmentation and hair detection. 
Hence, for this study, an EfficientNet-based model is chosen, 
specifically EfficientNet-B5, for extracting deep-learning 
features for the classification model.

The top layers from the original EfficientNet-B5 model 
are removed as it was designed for 10-class classification 
instead of binary classification. They are replaced with a 
global average pooling layer, a dropout layer, and a final 
dense layer. The initial input image size for the model is 
448 × 448 × 3. It has 14 phases and is first trained for clas-
sification, then feature extraction using the trained model. 
It begins with a 3 × 3 filter convolution, batch normaliza-
tion, and swish activation function for the classification 
stage, cutting the image dimensions in half from 448 to 
224 and raising the number of channels from 3 to 48. As a 
result, the feature map’s measurements are 224 × 224 × 48. 
Stage 2 is composed of three layers of an MBConv1 block 
with a 3 × 3 filter, which reduces the number of channels 
while maintaining the resolution of stage 1 to produce a 
feature map with dimensions of 224 × 224 × 24. Stages 3 
(five layers), 4 (five layers), and 5 (seven layers) employ 
three MBConv6 blocks, each with a kernel size of 5 × 5, 
to gradually decrease the resolution while expanding the 
size of the feature map to 28 × 28 × 128 (the stage’s fin-
ish). Stages 6 (7 layers), 7 (9 layers), and 8 (3 layers) each 

apply three more MBConv6 blocks with kernel sizes of 
3 × 3, 5 × 5, and 3 × 3 to create a feature map with a final 
dimension of 14 × 14 × 512. A feature map with the dimen-
sions 14 × 14 × 2048 is produced at stage 9 using a 1 × 1 
convolution with 2048 filters. Stages 10 and 11 maintain 
the feature size from the preceding layer while applying 
batch normalization and Softmax activation. Stage 12 uses 
global average pooling to increase the resolution to 2048 
followed by stages 13 and 14 leading to the final classifica-
tion: a dropout and dense layer. After the 200th layer, the 
model is fine-tuned, and the best model is saved. After the 
global average pooling layer, at stage 12, feature extraction 
is carried out, producing a 2048-dimensional feature vector 
for the training, validation, and test sets.

Table 2 displays the phases, procedures, resolutions, 
channels, and layers.

Table 1   Persistence statistics 
calculated for our methodology

Feature number Feature name (i = 0,1) Description

1 to 4 Pi_mean_midlife
Pi_mean_normalized_lifespan

Means of Mi and pi

5 to 8 Pi_std_midlife
Pi_std_normalized_lifespan,

Standard deviation of Mi and pi

9 to 12 Pi_skew_midlife
Pi_skew_normalized_lifespan

Skewness of Mi and pi

13 to 16 Pi_kurtosis_midlife
Pi_kurtosis_normalized_lifespan

Kurtosis of Mi and pi

17 to 20 Pi_median_midlife
Pi_median_normalized_lifespan

Medians of Mi and pi

21 to 24 Pi_perc25_midlife
Pi_perc25_normalized_lifespan

25th percentile of Mi and pi

25 to 28 Pi_perc75_midlife
Pi_perc75_normalized_lifespan

75th percentile of Mi and pi

29 to 32 Pi_interquart_midlife
Pi_interquart_normalized_lifespan

Interquartile ranges of Mi and pi

Table 2   EfficientNet-B5-based deep learning model

Stage Operator Resolution Channels Layers

1 Conv 3 × 3 + BN + Swish 224 × 224 48 1
2 MBConv1, k3 × 3 224 × 224 24 3
3 MBConv6, k5 × 5 112 × 112 40 5
4 MBConv6, k5 × 5 56 × 56 64 5
5 MBConv6, k5 × 5 28 × 28 128 7
6 MBConv6, k3 × 3 28 × 28 176 7
7 MBConv6, k5 × 5 14 × 14 304 9
8 MBConv6, k3 × 3 14 × 14 512 3
9 Conv 1 × 1 14 × 14 2048 1
10 BN 14 × 14 2048 1
11 Activation 14 × 14 2048 1
12 Global Average Pooling 2048 1 1
13 Dropout 2048 1 1
14 Dense 1 1 1
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Parts 4 and 5: Class Probabilities and Majority Voting

The 2048-dimensional feature vector from the EfficientNet-
B5 model and the 192-dimensional TDA-PS feature vec-
tor are both used as inputs for two different random forest 
classifiers. These random forest ensemble learners generate 
probabilities for each class (BCC and non-BCC), resulting 
in 4 probability values:

•	 DL_prob_1: probability of a lesion being BCC based on 
DL features

•	 DL_prob_0: probability of a lesion being non-BCC based 
on DL features

•	 TDA_prob_1: probability of a lesion being BCC based 
on TDA features

•	 TDA_prob_0: probability of a lesion being non-BCC 
based on TDA features

For each image, the probabilities are compared and the 
class with the highest probability is chosen as the final class.

Training Details

Both deep-learning models, U-Net and EfficientNet-B5, 
were built using Keras with a Tensorflow backend in Python 

3.7 and trained using a single 32 GB Nvidia V100 graphics 
card. Hyperparameters for the U-Net model are the same as 
for Maurya et al. [17].

The hyperparameters for the EfficientNet-B5 model are 
listed in Table 3. For the random forest classifier, 1000 esti-
mators are used with the Gini index criterion. The minimum 
samples per split are 2 with bootstrapping.

Experimental Results

This section discusses the results of various stages of our 
study. All results listed were evaluated on the holdout BCC 
vs non-BCC test set of 395 skin lesion images (195 BCC 
and 200 no-BCC). The evaluation metrics used are accuracy, 
sensitivity, specificity, and precision (PPV) [37, 38].

U‑Net Telangiectasia Segmentation Results

The first set of results come from the U-Net model for seg-
menting telangiectasia. Figure 9 shows examples of non-
BCC and BCC images with their corresponding predicted 
vessel masks. The automatic telangiectasia masks generated 
were non-blank for most of the five non-BCC diagnoses. 
The proportions that were non-blank were benign keratosis 
33/400, nevus 24/400, actinic keratosis 9/67, dermatofi-
broma 3/67, and vascular lesions 3/66. It can be seen that 
the U-net model can segment vessels in both types of lesions 
even though the vessels are distinguishable. As seen in the 
next section, persistence statistics exploit this discriminative 
feature and improve classification Table 4.

BCC Classification with Persistence Statistics 
and Random Forest Classifier

Following the telangiectasia segmentation, the next set of 
results come from persistence statistics calculated from 
the predicted binary telangiectasia masks, as well as the 5 
color channels R, G, B, V, and Z. Table 5 shows the BCC 

Table 3   Hyperparameters for the EfiicientNet-B5 model

Hyperparameter Values

Fine-tuning layer 200
Epochs 120
Learning rate 0.0001
Batch size 20
Loss function Binary cross-entropy
Optimizer Adam
Early stopping criteria Validation loss
Patience 5
Dropout rate 0.2

Fig. 9   From left: non-BCC image with vessel mask prediction, BCC image with vessel mask prediction



102	 Journal of Imaging Informatics in Medicine (2024) 37:92–106

1 3

vs non-BCC classification results of a random forest clas-
sifier trained on the PS features. There is a 2.3% jump in 
accuracy, 3.8% jump in sensitivity, 0.5% jump in specific-
ity, and 5% jump in precision after adding vessel features, 
signaling the importance of telangiectasia in improving 
BCC diagnosis.

To ensure features were not redundant, a feature impor-
tance test was also performed with random forest. Subsets 
of the 192 features were chosen and all the metrics shown 
in Table 5 were recalculated. Table 6 shows that metrics 
improve considerably after continuously adding PS fea-
tures. It was observed that all 192 features are needed for 
high diagnostic accuracy.

BCC Classification with EfficientNet‑B5 and Feature 
Vector Generation

The next set of results is generated from fine tuning three pre-
trained DL models on the BCC vs non-BCC dataset. The best 
results were achieved with the EfiicientNet-B5 model, and hence, 
it was chosen for feature extraction after fine-tuning. Tables 5 and 
7 show that the TDA-based random forest model performs better 
than EfficientNet-B0 and InceptionNetV3 but slightly worse than 
EfficientNet-B5. Figure 10 shows the loss and accuracy plots for 
the EfficientNet-B5 model before and after fine-tuning. The 2028 
feature vector is generated at this stage.

Final BCC vs Non‑BCC Classification with Hybrid 
TDA‑DL Model

The final set of results comes from the hybrid TDA-DL 
model. In this model, voting is done on classification prob-
abilities generated from a random forest classifier trained 

on DL and TDA features. All the metrics are recalculated as 
shown in Table 8. The first row shows DL-only classification 
results, whereas the 2nd row shows TDA-only classification 
results. Next, adding the TDA-based persistence statistics 
(PS) features to the 2048 feature vector from EfficientNet-
B5 improves the deep-learning results in two folds. First, in 
the 3rd row, only the color channel–based PS features are 
used in combination with DL features, and it can be seen that 
these color PS features improve the DL results, as accuracy 
is increased by 0.6%, sensitivity by 2.1%, specificity by 2%, 
and precision by 2.1%. Second, in the fourth row, PS fea-
tures from vessels are now included, i.e., the full PS feature 
set (192 features) is combined with the DL set, the hybrid 
model’s accuracy rises by 1.5%, sensitivity jumps by 3%, 
specificity jumps by 2.8%, and precision jumps by 2.9%.

Performance Comparison with Existing Methods

Table 8 compares the performance of the TDA-DL hybrid 
model with other published studies on the automation of 
BCC diagnosis [15, 20, 21]. Kharazmi et al. [15] used 
vascular features from vessels whereas in [20], they used 
patient meta-data along with DL-based auto-encoder 
features. Serrano et al. [21] used annotated features to 
account for the presence of several clinical biomarkers. 
The hybrid model in this study achieves higher accuracy 
and precision overall and produces segmentation telangi-
ectasia as a sub-step. This is the only study (to the best of 
our knowledge) exploring TDA approaches and focusing 
on diagnostic improvements attributed to clinical features.

Discussion

The inclusion of biomarker-driven features for automation 
of cancer diagnosis is a rapidly growing field. Since tel-
angiectasia is a critical indicator of BCC, the automation 
of telangiectasia detection is an important step in BCC 
diagnosis. Studies on this task include ones based on tra-
ditional rule–based image processing techniques such as 
color drop vessel detection [14] and independent compo-
nent analysis of melanin and hemoglobin components, 
followed by thresholding and clustering [20]. Deep learn-
ing [17] performed this task at a pixel level by a U-Net 

Table 4   Random forest 
classification with PS for R, G, 
B, V, Z, and vessels

The bold values highlight the best classification results for the different metrics examined

Model Feature set size Accuracy Sensitivity Specificity Precision

R, G, B 32 × 3 = 96 0.900 0.875 0.928 0.875
R, G, B, V 32 × 4 = 128 0.916 0.889 0.934 0.889
R, G, B, V, Z 32 × 5 = 160 0.920 0.900 0.945 0.900
R, G, B, V, Z, vessels 32 × 6 = 192 0.943 0.938 0.950 0.950

Table 5   Metric improvements with subsets of PS features

The bold values highlight the best classification results for the differ-
ent metrics examined

Feature set size Accuracy Sensitivity Specificity Precision

First 50 0.867 0.855 0.866 0.867
First 90 0.885 0.867 0.889 0.883
First 130 0.902 0.890 0.913 0.900
First 170 0.911 0.905 0.925 0.910
All 192 0.943 0.938 0.950 0.950
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segmentation model which obtains a Jaccard score within 
the variation of human observers. The hybrid TDA-DL 
methodology discussed in this paper is the only study that 
explores the effects of these precisely segmented telangi-
ectasia on BCC classification.

Just as DL is able to extract abstract features from 
digital images, TDA has interested researchers because 
of its ability to extract topological or geometrical prop-
erties from data. It has been used extensively and suc-
cessfully in many applications in medical image analy-
sis [25], biology [39], and neurology [26]. TDA can be 
applied to data with limited or noisy information since it 
can work with incomplete or partial data as it captures the 
multiscale structure of the data. In [25], TDA was used 
for lesion segmentation and generation of lesion features 
whereas in [39], persistence homology was used for study-
ing osmolytes molecular aggregation and their hydrogen-
bonding network from a local topological perspective. 
Bendich et al. [26] implemented persistence homology to 
correlate brain artery trees with the age of their subjects. 
Brain artery trees are somewhat similar to telangiectasia in 
their structure. This study applies persistence homology to 
generate telangiectasia features (persistence statistics) and 
combines them with DL features learned from a pretrained 
EfficientNet-B5 model. The TDA features focus on telan-
giectasia and skin lesions whereas the DL features focus 
only on whole skin lesions and the combination of these 
two together form the hybrid TDA-DL model. There have 
not been any other studies that have explored this aspect 
of BCC diagnosis.

Ensemble learning through random forest is applied to 
the hybrid feature set in this study. The initial random forest 
classification model based solely on persistence statistics 
derived from the red, green, blue, V channel of HSV color 
space, and Z channel of XYZ color space cannot outperform 
deep-learning models. However, after adding persistence 
statistics (PS) features derived from telangiectasia masks, it 

was observed that the random forest classifier outperforms 
Inception-V3 and EfficientNet-B0 models, indicating the 
importance of this clinical feature in diagnosis. This obser-
vation is also significant as deep learning models learn the 
abstract data with the help of ground truth labels provided to 
them, whereas TDA-based methods perform feature extrac-
tion without ground truth labels, i.e., unsupervised learning. 
The PS-based TDA model accuracy result is slightly lower 
than that of the EfficientNet-B5.

TDA features can predict the BCC class more accurately 
for some test cases missed by deep learning. In the final 
hybrid DL-TDA model, majority voting is applied to the DL 
and TDA probabilities. The accuracy improves by almost 2% 
on the holdout test set. Another important aspect worth men-
tioning is that the computational cost of calculating the per-
sistence statistics features is significantly lower than for the 
deep learning features, i.e., they can be calculated without a 
high-performance GPU. Handcrafted features have also been 
used for improving diagnosis with fusion [6–13, 19], but usu-
ally, feature calculation is feature- and problem-dependent. 
With TDA analysis, we can bypass those limitations.

Even with the recent improvements in the automation of 
skin cancer diagnosis, we acknowledge that raising the sen-
sitivity and specificity of these models is an ongoing chal-
lenge. As such, the final sensitivity of this study was slightly 
lesser than the one in [21]. All the comparable studies dis-
cussed, which utilize deep learning models, including this 
study, do not incorporate tests for statistical significance. 
Choosing the most suitable hypothesis testing method in the 
context of deep learning poses a challenge and requires sig-
nificant time and resources. Deep learning has mainly pri-
oritized predictive accuracy and model generalization over 
group mean comparisons. Nevertheless, there is ongoing 
research into identifying suitable statistical significance tests 
for model selection in machine learning. Furthermore, both 
our study’s datasets and those in comparable research lack 
diversity in skin color, which restricts their applicability.

Table 6   Performance 
comparison of different deep 
learning models

The bold values highlight the best classification results for the different metrics examined

Model Feature set size Accuracy Sensitivity Specificity Precision

InceptionV3-FT 2048 0.920 0.910 0.942 0.934
EfficientNet-B0-FT 1280 0.936 0.925 0.947 0.920
EfficientNet-B5-FT 2048 0.959 0.942 0.950 0.950

Table 7   Performance 
comparison of DL model, PS 
model, and hybrid TDA-DL 
model

The bold values highlight the best classification results for the different metrics examined

Model Feature set size Accuracy Sensitivity Specificity Precision

DL-EfficientNet-B5 2048 0.959 0.942 0.950 0.950
TDA (PS based) 192 0.943 0.938 0.950 0.950
DL-TDA Hybrid without vessels 2208 0.965 0.963 0.970 0.971
DL-TDA Hybrid with vessels 2240 0.974 0.972 0.978 0.979
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Another limitation for this study is that the ground truth 
vessel mask marking was supervised by a single dermatolo-
gist (WVS). Only one team observer (one of AM, DS, SS, 
or WVS) annotated each mask. While there is considerable 
overlap in the datasets used in similar studies, the absence 
of a common dataset with established reference data compli-
cates the process of creating a reliable benchmark for com-
parison. Therefore, through this research, the telangiectasia 
masks and corresponding images are openly shared [40].

Conclusion

This study proposes a deep learning and TDA hybrid 
approach for classifying BCC vs non-BCC dermoscopic 
lesion images. It exploits color space information to cal-
culate persistence homology topological features for skin 
lesion images and includes topological features from a 
clinical biomarker for BCC, telangiectasia. For the deep 
learning model, a state-of-the-art pretrained model, Effi-
cientNet-B5, was chosen. Combining the DL and TDA 
features, the hybrid DL-TDA model outperforms Efficient-
Net-B5 as well as other convolution neural network–based 

pretrained models. State-of-the-art accuracy and precision 
were achieved over a larger dataset publicly available at 
[40] than in previous studies. With the inclusion of the tel-
angiectasia features and the subsequent improvements in 
the final classification result, a clinically explainable aspect 
of the diagnosis was demonstrated that can be extended to 
other biomarkers.

In the future, this research can be extended by incorpo-
rating a broader range of clinical features into this hybrid 
model. Additionally, statistical techniques, such as ANOVA 
with suitable post hoc tests, can be applied to address sig-
nificant differences.
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