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Abstract
Radiogenomics has shown potential to predict genomic phenotypes from medical images. The development of models using 
standard-of-care pre-operative MRI images, as opposed to advanced MRI images, enables a broader reach of such models. In 
this work, a radiogenomics model for IDH mutation status prediction from standard-of-care MRIs in patients with glioma was 
developed and validated using multicentric data. A cohort of 142 (wild-type: 32.4%) patients with glioma retrieved from the 
TCIA/TCGA was used to train a logistic regression model to predict the IDH mutation status. The model was evaluated using 
retrospective data collected in two distinct hospitals, comprising 36 (wild-type: 63.9%) and 53 (wild-type: 75.5%) patients. 
Model development utilized ROC analysis. Model discrimination and calibration were used for validation. The model yielded 
an AUC of 0.741 vs. 0.716 vs. 0.938, a sensitivity of 0.784 vs. 0.739 vs. 0.875, and a specificity of 0.657 vs. 0.692 vs. 1.000 
on the training, test cohort 1, and test cohort 2, respectively. The assessment of model fairness suggested an unbiased model 
for age and sex, and calibration tests showed a p < 0.05. These results indicate that the developed model allows the prediction 
of the IDH mutation status in gliomas using standard-of-care MRI images and does not appear to hold sex and age biases.
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Background

Diffuse gliomas in adult patients are the most common pri-
mary malignant tumors of the central nervous system (CNS), 
accounting for more than 70% of primary brain tumors [1]. 
Diagnosis and management recommendations for patients 

with diffuse gliomas have been updated, with diagnos-
tic classification undergoing significant changes [2]. The 
classification, which initially relied solely on morphologi-
cal and histological characteristics, was revised in 2016 as 
part of the World Health Organization (WHO) revision of 
CNS tumor classification, introducing genomic features to 
improve diagnosis [3]. Later, in 2021, this classification was 
revised again, resulting in a more prominent use of genomic 
characteristics in diagnosing patients with glioma. This 
revision ensures a complete diagnosis by grouping tumors 
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based on genetic modifications (e.g., IDH and H3 status), 
resulting in only three groups: astrocytoma, IDH-mutant; 
oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and 
glioblastoma, IDH-wild-type [4]. As such, the IDH mutation 
status has become an essential diagnostic criterion, in which 
IDH-wild-type astrocytomas (WHO grades 2 and 3) with 
EGFR amplification and/or microvascular proliferation and/
or necrosis and/or TERT promoter mutation and/or + 7/ − 10 
chromosome copy number changes, are considered to behave 
as de facto glioblastomas [4, 5].

Radiomics is a promising tool to extract quantitative fea-
tures from medical images, called radiomic features, which 
are essential to the patient’s diagnosis, treatment planning, 
and follow-up. It uses high-throughput analyses, allowing 
the extraction of many quantitative features, which showed 
preliminary but promising results in guiding patients’ diag-
nosis, predicting response to treatment and prognosis, and 
providing information on cancer genetics [6].

In particular, the study of associations between radiomic 
features and genomic characteristics or mechanisms, like 
mutations and methylations, among others, and the conse-
quent development of imaging-based prediction models has 
been termed radiogenomics [7]. These prediction models are 
extremely appealing since medical images are an essential 
part of patient diagnosis, and radiomics provide a noninvasive, 
less expensive, and less time-consuming assessment of tumors 
compared to genetic testing. Furthermore, the challenges 
related to tumoral heterogeneity can be overcome by a non-
destructive and 3D assessment of the region of interest, allow-
ing for multiple evaluations during the disease continuum.

Despite the promising results of radiomics, a critical step 
hindering the adoption of radiomics in a clinical workflow is 
the region-of-interest segmentation. While manual segmen-
tation is considered the ground truth by many authors, this 
approach is very labor intensive and shows high intra- and 
inter-observer variability [8, 9], which has been shown to 
affect radiomic features and produce significant differences 
in the performance of classification models [10]. On the 
other hand, automatic and semi-automatic segmentation 
methods reduce the annotator interactions improving time 
efficiency, accuracy, and boundary reproducibility. Addi-
tionally, automated segmentation methods have been shown 
to be indistinguishable from manual segmentation and are 
currently considered the best option by avoiding intra- and 
inter-observer variability of radiomic features and subse-
quently in the developed models [11, 12].

While several studies have investigated the use of deep 
learning and radiomics to predict IDH mutation status, 
only a few studies considered all different histological 
types, according to the WHO CNS 2016/2021 revisions 
[13–15], and only [13] and [14] evaluated the devel-
oped model on independent external test datasets. From 
these, only [13] used standard-of-care MRI sequences 

(pre-contrast T1-weighted, fluid-attenuated inversion recov-
ery, T2-weighted, post-contrast T1-weighted) and automatic 
segmentation, but none investigated the fairness of the devel-
oped models.

In this study, an end-to-end AI solution to predict the 
IDH mutation status from standard-of-care MRI sequences 
in patients with glioma was developed using a public data-
set and was assessed using external multicentric data. This 
end-to-end AI solution comprises an initial automatic brain 
extraction, followed by the automatic segmentation of the 
edema, contrast-enhancing, and non-contrast-enhancing or 
necrotic tumor parts, avoiding the development of annota-
tor-dependent models and significantly improving the time 
efficiency of the radiomic process. The radiomic features 
are extracted from each image sequence and each of these 
regions and then used to predict the IDH mutation status. 
Additionally, we assessed the model’s performance in terms 
of fairness concerning age and sex biases and adherence to 
the development and validation of the model to the Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis or Diagnosis (TRIPOD) [16].

Methods

This retrospective study utilized publicly available data 
as the training set. The developed solution was externally 
evaluated using retrospective data collected in two other 
hospitals.

Study Participants

Training Cohort

MRI and genomic data from The Cancer Imaging Archive 
(TCIA) [17, 18] and The Cancer Genome Archive (TCGA) 
[19, 20] were searched to select patients with gliomas con-
taining pre-operative MRI images with T1-weighted (T1w), 
T2-weighted (T2w), fluid-attenuated inversion recovery 
(FLAIR), and post-contrast T1-weighted (cT1w) sequences, 
and the IDH mutation status. Acquisition parameters used in 
each MRI sequence are reported in Table 2 of [21].

Given the WHO CNS 2021 revision, both TCIA/TCGA-
GBM and LGG cohorts were considered and analyzed as a 
single cohort. The final cohort of patients comprised imag-
ing data acquired from four hospitals located in the USA. 
The number of patients and IDH mutation status distribution 
per hospital are shown in Table 1.

External Test Cohort 1

Data from 59 patients who underwent surgery at Hospital Gar-
cia de Orta, Portugal, between January 1, 2017, and December 
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31, 2020, were collected. The local IRB approved authoriza-
tion for the use of data, and informed consent was waived due 
to the retrospective design. Fourteen patients were considered 
ineligible due to missing imaging data, while nine were due to 
missing IDH mutation status. The final test cohort from center 
1 included 36 patients (20 men, 16 women, mean age of 54.8 
(standard deviation, 16.3) years).

External Test Cohort 2

Data from 103 patients who underwent surgery at the General 
Anti-Cancer and Oncological Hospital of Athens “St. Sav-
vas” were collected between March 1, 2014, and February 28, 
2020. The local IRB approved authorization for the use of data, 
and informed consent was waived due to the retrospective design. 
Thirty-two patients were considered ineligible due to missing 
imaging data, while 18 were due to missing IDH mutation status. 
The final test cohort from center 2 included 53 patients (29 men, 
24 women, mean age of 54.0 (SD, 16.8) years).

The acquisition parameters used in each MRI sequence 
for both external test cohorts are summarized in Supplemen-
tary Material Table S2.

Diagnosis using relevant molecular markers was estab-
lished from tissue samples obtained from upfront maximum 
tumor resection performed following pre-operative diag-
nostics using neurological exams and brain MRI. Given the 
focus on diffuse gliomas in adult patients, only patients older 
than 18 were considered. The eligibility criteria, radiomic 
feature extraction parameters, and outcome definition were 
not changed between the training and external test cohorts.

Processing Pipeline

All DICOM images were converted from DICOM to NIfTI 
format using dicom2nifti (https:// github. com/ icome trix/ 
dicom 2nifti) using the reorient option to ensure proper ori-
entation for the proceeding steps. The T1w, T2w, cT1w, and 
FLAIR images were then skull stripped using HD-BET, 
which is a freely available deep learning model trained on 
data from 1568 MRI examinations from 25 institutions [22]. 
Consequently, the T2w, cT1w, and FLAIR images were 

registered to the T1w image of each patient. Finally, the 
four images were input to the HD-GLIO [23] model to seg-
ment each patient’s enhancing, non-enhancing/necrotic, and 
edema tumoral regions. The latter segmentation model was 
trained using 455 MRI examinations and validated using 
2273 MRI examinations from multiple institutions. Segmen-
tations were then transformed into the original space of each 
image to avoid the influence of several interpolation steps 
on the radiomic feature values.

Radiomic Feature Extraction

Image preprocessing, consisting of image resampling 
and intensity normalization, and feature extraction were 
performed using pyradiomics (version 3.0.0—available 
in a GitHub repository: https:// github. com/ AIM- Harva 
rd/ pyrad iomics/ relea ses/ tag/ v3.0) [24]. Given the aniso-
tropic nature of the images, images had their in-plane 
resolution downsampled to the lowest in-plane resolution 
from all images of each sequence, and two-dimensional 
feature extraction was performed using pyradiomic pre-
processing functionalities [25, 26]. Prior to the feature 
extraction, images also had their intensity normalized 
using the z-score method followed by a scale and shift 
to ensure that all images had a mean value of 300 and a 
standard deviation (SD) of 100, ensuring that, under a 
standard distribution of intensity values, most of them 
would be between 0 and 600 (mean ± 3 SD—99.73% 
of the intensities). The segmentations of the enhanced 
tumor, nonenhanced tumor and necrosis, and edema 
regions on each of the T1w, cT1w, FLAIR, and T2w 
images were used to perform the feature extraction. 
Shape, first-order, gray-level co-occurrence matrix 
(GLCM), gray-level run length matrix (GLRLM), gray-
level size zone matrix (GLSZM), neighboring gray-tone 
difference matrix (NGTDM), and gray-level dependence 
matrix (GLDM) features were extracted from the original 
and filtered images (Laplacian of Gaussian, LoG, with 
σ = {1.015,2,3} mm; wavelet—two levels; local binary 
patterns—2D and 3D; gradient). For the texture matrices 
computation, the intensities were discretized using the 
fixed bin width approach following the results presented 
in [27, 28]. The values were chosen for each sequence 
following the pyradiomic documentation. A summary 
of the feature extraction parameters is shown in Table 2,  
and the parameter files used for the feature extraction are avail-
able in a GitHub repository: https:// github. com/ JoaoS antin ha/ 
End2E ndAI_ IDH_ Predi ction.. A total of 18,036 radiomic fea-
tures were extracted for each patient, comprising 1503 features 
for each MRI sequence and segmented region. From these, 15 
features were of shape category, and, per image type, 18 fea-
tures were first-order, 24 were GLCM, 16 were GLRLM, 16 
were GLSZM, 5 were NGTDM, and 14 features were GLDM.

Table 1  Training cohort distribution by hospital and corresponding 
occurrence of IDH-mutant and wild-type cases per hospital

Hospital No. of cases No. of IDH-mutant/
wild-type

Case Western 20 11/9
Case Western—St. Joes 33 29/4
Henry Ford Hospital 58 45/13
Thomas Jefferson University 31 11/20
Total 142 96/46

https://github.com/icometrix/dicom2nifti
https://github.com/icometrix/dicom2nifti
https://github.com/AIM-Harvard/pyradiomics/releases/tag/v3.0
https://github.com/AIM-Harvard/pyradiomics/releases/tag/v3.0
https://github.com/JoaoSantinha/End2EndAI_IDH_Prediction
https://github.com/JoaoSantinha/End2EndAI_IDH_Prediction
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Model Training and Evaluation

The training cohort was used to train a logistic regression 
classifier using a fivefold stratified cross-validation proce-
dure to optimize the ridge regularization strength to mini-
mize overfitting utilizing the area under the receiver operat-
ing characteristic curve (AUC) as the optimization metric. 
Within the training procedure, features with (near) zero vari-
ance (features in which values were the same in at least 95% 
of the cases) were disregarded, and probability calibration 
was performed using Platt’s method with the computation 
of the unbiased predictions from cross-validation, followed 
by the calibration. Interaction terms were not addressed in 
the prediction model. To overcome the class imbalance, the 
values of the IDH mutation status were used to automatically 
adjust weights inversely proportional to class frequencies 
in the training data (scikit-learn option class_weight = “bal-
anced”). The final weights of the model were obtained by 
refitting the logistic regression with the optimal ridge regu-
larization strength to the entire training cohort. The model 
was trained and evaluated using the scikit-learn library (ver-
sion 1.1.3) [29]. Given the inexistence of differences in set-
ting, eligibility criteria, predictors, and outcomes, the model 
was evaluated without any further updates after training. 
Fairness across gender and age was also assessed using the 
Fairlearn library (version 0.7.0)[30].

Statistical Analysis

Patient characteristics were analyzed using standard descrip-
tive statistics. Statistical analysis of continuous variables was 
performed with the two-sample Welch’s t-test, whereas differ-
ences in categorical variables were analyzed using a χ2-test. 
The Hosmer–Lemeshow test was used to assess the calibration 
of the model on the external test cohorts. The reported sta-
tistical significance levels were all two-sided, set at α < 0.05.

The predictive performance of the model was quantified 
through the AUC of the ROC, accuracy, sensitivity, and 
specificity.

Results

A total of 461 patients with glioma from The Cancer 
Imaging Archive were reviewed for selection of the train-
ing dataset, and 319 patients were excluded for several 
reasons, such as IDH mutation status unavailable, no 
pre-operative MRI sequences, or missing sequence. A 
total of 142 (32.4% were IDH wild-type) were included 
for processing, radiomic analysis, and subsequent 
model training. For the test dataset from center 1, 59 
patients with glioma were reviewed, and 23 patients were 
excluded due to IDH mutation status unavailability or 
missing MRI sequence. On the test dataset from center 2, 
from the 103 patients with glioma reviewed, 50 patients 
were excluded for the same reasons. As a result, for the 
two external test datasets, 36 (63.9% were IDH wild-
type) and 53 (75.5% were IDH wild-type) patients were 
included, respectively, from center 1 and center 2, for 
processing, radiomic analysis, and model evaluation. The 
CONSORT diagram depicting the selection process is 
shown in Fig. 1.

Patient Characteristics

An overview of the patients in the training cohorts and the 
two independent test datasets is listed in Table 3.

In the training set, the IDH mutation status was wild-
type for 46 patients (incidence of 32.6%), whereas, in 
the test datasets, 23 (63.9%) and 40 (75.5%) patients pre-
sented an IDH wild-type status in cohort 1 and cohort 
2, respectively. The differences between the training and 
test sets were significant for the IDH mutation status 
(p < 0.001). Overall, the age distribution had a median 
value of 52.0 years, with the training and test cohorts 1 
and 2 having median ages of 49.5, 54.5, and 60.0 years, 
where these differences were significant (p = 0.015). No 
significant differences were found in gender (females—
overall, 48.9%; training, 51.4%; test cohort 1, 44.4%; test 
cohort 2, 45.3%).

Table 2  List of feature 
extraction parameters used for 
each MRI sequence

Feature extraction parameters cT1w T1w T2w FLAIR

Normalization scale 100 100 100 100
Voxel array shift 300 300 300 300
Resampled pixel spacing (mm) 1.016 × 1.016 1.016 × 1.016 1.016 × 1.016 1.016 × 1.016
Resegment range (mode: sigma) [− 3, 3] [− 3, 3] [− 3, 3] [− 3, 3]
Bin width 5 2 5 5
LoG sigma (mm) [1.016, 2, 3] [1.016, 2, 3] [1.016, 2, 3] [1.016, 2, 3]
Wavelet number of levels 2 2 2 2
Local binary pattern [2D, 3D] [2D, 3D] [2D, 3D] [2D, 3D]
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Radiomics Model Performance

The regularization strength was optimized and the model 
was tuned using a fivefold cross-validation procedure. The 
cross-validation performance estimation yielded an AUC of 
0.741 (95% CI, 0.686; 0.796), a sensitivity of 0.784 (95% 
CI, 0.721; 0.847), and a specificity of 0.657 (95% CI, 0.605; 
0.709). The ROC curve of the training procedure is pre-
sented in Fig. 2.

A subset of the 15 coefficients with the highest absolute 
value from the developed model is shown in Fig. 3. The 
full list of coefficients is provided at https:// github. com/  
JoaoS antin ha/ End2E ndAI_ IDH_ Predi ction..

On the test cohort 1, the model achieved an AUC 
of 0.721 (95% CI, 0.574; 0.868) (ROC curve shown in 
Fig. 4A), a sensitivity of 0.739 (95% CI, 0.596; 0.882), 
and a specificity of 0.692 (95% CI, 0.541; 0.843). In 
Fig. 4B, the confusion matrix shows the number of correct 

Fig. 1  CONSORT diagram for A training, B test center #1, and C test center #2 patient selection

Table 3  Description of the 
cohorts used in this study

Overall Train cohort Test cohort 1 Test cohort 2 p-value

n 231 142 36 53
Age, mean (SD) 50.9 (15.4) 48.8 (14.3) 54.8 (16.3) 54.0 (16.8) 0.027
Sex, n (%) Female 113 (48.9) 73 (51.4) 16 (44.4) 24 (45.3) 0.631

Male 118 (51.1) 69 (48.6) 20 (55.6) 29 (54.7)
IDH, n (%) Mutant 122 (52.8) 96 (67.6) 13 (36.1) 13 (24.5)  < 0.001

Wild-type 109 (47.2) 46 (32.4) 23 (63.9) 40 (75.5)

https://github.com/JoaoSantinha/End2EndAI_IDH_Prediction
https://github.com/JoaoSantinha/End2EndAI_IDH_Prediction
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and incorrect predictions. The calibration test yielded a 
p-value = 0.006 (calibration curve is shown in Supplemen-
tary Material Fig. S4A), indicating the poor model calibra-
tion on the external test cohort 1.

The developed predictive model showed on the test cohort 
2 an AUC of 0.965 (95% CI, 0.837; 1.000) (ROC curve shown 

in Fig. 5A). At the operating threshold, the model showed a 
sensitivity of 0.875 (95% CI, 0.743; 1.000) and a specificity 
of 1.000 (95% CI, 0.874; 1.000). The corresponding con-
fusion matrix showing the number of correct and incorrect 
predictions is shown in Fig. 5B. The calibration test on the 
external test cohort 2 showed a p-value > 0.001 (calibration 

Fig. 2  ROC curve and cor-
responding 95% confidence 
interval of the developed model. 
AUC, area under the curve; 
ROC, receiver operating char-
acteristic

Fig. 3  The subset of the 15 coefficients with the highest absolute value from the IDH mutation status predictive model
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curve is shown in Supplementary Material Fig. S4B), indicat-
ing poor calibration on this external test dataset.

The performance metrics obtained during training and 
on each of the test cohorts, as well as on both test cohorts 
unified, are shown in Table 4. Confusion matrices for 
each test cohort and WHO low- and high-grade gliomas 

according to WHO CNS classification prior to the 2021 
revision are shown in Supplementary Material Fig. S5.

The developed predictive model with corresponding 
weights and instructions on how to use it is available in 
the following GitHub repository: https:// github. com/ JoaoS 
antin ha/ End2E ndAI_ IDH_ Predi ction..

Fig. 4  A ROC curve and B 
confusion matrix of the devel-
oped model on the test cohort 
1. AUC, area under the curve; 
ROC, receiver operating charac-
teristic; Mut, IDH-mutant; Wt, 
IDH wild-type

https://github.com/JoaoSantinha/End2EndAI_IDH_Prediction
https://github.com/JoaoSantinha/End2EndAI_IDH_Prediction
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Age and Sex Biases Assessment

The assessment of potential age and sex biases was con-
ducted, allowing a better characterization of the model 
performance across age groups and sex. As shown in 
Table 3, the proportion of females and males between the 

training and the test cohorts changed, with 51.4% of the 
training cases being females, and on the test cohorts of 
centers 1 and 2, 44.4% and 45.3%, respectively.

Despite such differences, on the test cohort from center 
1, the model sensitivity was similar for both females and 
males, with the model showing a slightly higher accuracy, 

Fig. 5  A ROC curve and B 
confusion matrix of the devel-
oped model on the test cohort 
2. AUC, area under the curve; 
ROC, receiver operating charac-
teristic; Mut, IDH-mutant; Wt, 
IDH wild-type
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positive predictive value, and false negative rate and a 
lower false positive rate in females, as shown in Fig. 6.

On the test cohort from center 2, where the percent-
age of females was similar to the one from the test cohort 
from center 1, the model performance was equal for both 
females and males, achieving a 100% positive predictive 
value and a 0% false positive rate, as shown in Fig. 7.

Regarding the age distribution of the training and test cohorts 
which showed statistically significant differences (see Table 4), 
from Fig. 8, it is possible to observe that the age distribution of 
the test cohorts from centers 1 and 2 is skewed towards higher 
age groups compared to the one of the training cohort.

The distribution of errors per age group for the test 
cohorts from centers 1 and 2 is shown in Figs. 9 and 10, 
respectively. In both test cohorts, no clear evidence of 
errors affecting particular age groups is observed, but the 
small sample size of each cohort does not allow the deter-
mination of model biases across age groups.

TRIPOD Statement

The TRIPOD adherence was determined, and a score of 94% 
was obtained. The detailed adherence form for this devel-
opment and validation study is available in Supplementary 
Material Table S2.

Discussion

Following the recent WHO CNS reclassifications of glioma 
(2016 and 2021 updates), the IDH gene mutation status has 
become a significant stratification and prognostic factor for 
patients with gliomas, regardless of the histologic grade 
[2–4]. Even though the standard glioma treatment is maxi-
mum tumor resection, the determination of IDH mutation 
status can help post-surgery treatment planning and provide 
such information in areas of the world where genomic analy-
sis may not always be available.

In this multicenter study, we developed and evaluated a 
radiomics model to predict IDH mutation status using radi-
omic features extracted from standard-of-care pre-operative 
MRIs. The radiomic features are extracted from automati-
cally defined regions of interest comprising the contrast-
enhancing, necrotic/non-contrast-enhancing, and edema 
regions using a pre-existing deep learning segmentation 
model. The radiomics model was developed using the TCIA/
TCGA glioma dataset, which comprises the previous defini-
tion of glioblastomas (TCGA-GBM) and low-grade gliomas 
(TCGA-LGG). The model assessment was performed on two 
independent European centers, presenting a significantly 
higher prevalence of patients with IDH wild-type than in 
the training cohort. In addition, the adherence to TRIPOD 

Table 4  Model performance 
metrics obtained during training 
and evaluation on the test 
cohorts. CV, cross-validation; 
CI, confidence interval; AUC, 
area under the curve

CV (95% CI) Test center 1 (95% CI) Test center 2 (95% CI) Test center 
1 + test center 
2

AUC 0.741 (0.686; 0.796) 0.716 (0.569; 0.863) 0.938 (0.809; 1.000) 0.836
F1 0.625 (0.573; 0.677) 0.773 (0.636; 0.910) 0.933 (0.803; 1.000) 0.874
Accuracy 0.698 (0.649; 0.747) 0.722 (0.576; 0.868) 0.906 (0.775; 1.000) 0.831
Sensitivity 0.784 (0.721; 0.847) 0.739 (0.596; 0.882) 0.875 (0.743; 1.000) 0.825
Specificity 0.657 (0.605; 0.709) 0.692 (0.541; 0.843) 1.000 (0.874; 1.000) 0.846

Fig. 6  Model performance 
metrics on the test cohort from 
the center 1 group by sex. PPV, 
positive predictive value



40 Journal of Imaging Informatics in Medicine (2024) 37:31–44

1 3

of the model development and validation was determined, 
having obtained a high score.

Observing Fig. 3, it is possible to understand that features 
from the edema (L3) and non-enhancing/necrotic regions 
(L2) with no feature from the enhancing region (L1) were 
present and that cT1w was the sequence with features hav-
ing higher coefficients followed by FLAIR, T1w, and T2w. 
Interestingly, all features were obtained from filtered images, 
and no shape features were present.

The performance of the developed model on the test 
center 1 cohort showed an AUC, accuracy, sensitivity, and 
specificity within the training cross-validation 95% CIs, 
despite lower AUC and sensitivity and higher specificity 
and accuracy. Regarding the F1-score, the model yielded 
a higher score than the training cross-validation 95% CI, 
which can be justified by the considerably lower number of 
false negatives despite the slightly lower sensitivity. Interest-
ingly, the model performance on the test center 2 cohort was 
considerably higher than the results obtained on the cross-
validation during training across all performance metrics. A 
possible reason for such results may lay in a similar quality 
and contrast of the images obtained in the test cohort from 
center 2 with some of the images from hospitals constituting 
the training cohort, which may have resulted in more accu-
rate predictions, as the distribution of intensities between 
images of the test cohort from center 2 was close to some 
of the samples in the training cohort (from the compari-
son between Supplementary Material Table S2 and Table 2 
of [21]). Despite the poor calibration on both test cohorts, 
which shows that the model would need to be calibrated 

to each external institution to use it as a risk model, the 
discriminative model performance on test cohorts 1 and 2 
yielded results similar or better than the cross-validation per-
formance. Furthermore, in the development of the model 
using a cohort of patients from a different continent, the 
analysis of the model’s fairness in terms of age and sex did 
not show, as desired, a clear bias in any of these variables.

Despite the large number of studies investigating the use 
of radiomics to predict IDH mutation status in grade II and 
III gliomas [31–34], a much smaller number of studies have 
developed and assessed IDH mutation status prediction mod-
els with cohorts of patients based on the most recent WHO 
CNS glioma reclassifications from 2016 and 2021 [13–15, 
25, 26]. In [25] and [26], the authors used the TCIA/TCGA 
glioma dataset and iteratively left one institution as the exter-
nal test set and the remaining as the training dataset. In the 
first study, performances of the proposed model achieved 
sensitivities/specificities on the test datasets of 0.67/0.75, 
0.00/0.82, 0.86/0.72, and 0.53/0.71 on each iteration, respec-
tively. The sample sizes of these datasets were relatively 
small, comprising 7 (3 wild-type cases), 12 (3 wild-type 
cases), 36 (7 wild-type cases), and 22 cases (15 wild-type 
cases). Similarly, in the second study but with smaller sample 
sizes (number of patients (number of wild-type cases)—35 
(7); 11 (5); 5 (1); 12 (1)), the proposed IDH mutation sta-
tus prediction model achieved sensitivities/specificities on 
the test datasets of 0.571/0.821, 0.800/0.667, 1.000/1.000, 
and 1.000/0.818. Despite yielding better performances in 
some scenarios than the current proposed model on the test 
cohorts, our study assessed the developed model using two 

Fig. 7  Model performance metrics on the test cohort from the center 2 group by sex. PPV, positive predictive value
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independent test datasets with larger sample sizes and an end-
to-end AI–based approach, where human intervention is not 
required. In the study by Choi and colleagues [13], the deep 
learning model yielded accuracies on the two test cohorts of 
0.841 and 0.735, while the radiomics model showed accu-
racies of 0.794 and 0.754. The absence of sensitivity and 
specificity values for each model on test cohorts requires the 
analysis of the patient characteristics for a fairer comparison. 
The IDH mutation status distributions of their first test data-
set match closer to our second test dataset, while their second 
test dataset to our first test dataset. Based on this assump-
tion, the model proposed in this study shows high accuracy 
for our test dataset 2 and lower for our test dataset 1 when 
compared with their two approaches, with the limitation that 
our test datasets have smaller sample sizes. The model devel-
oped by Manikis and colleagues [14] used radiomic features 
extracted from DSC-MRI, achieving an accuracy of 0.71, an 
F1-score of 0.47, an AUC of 0.67, a sensitivity of 0.60, and 
a specificity of 0.74 on the external validation comprising 

two independent cohorts. Finally, the model developed by 
Sudre et al. [15] also using radiomic features extracted from 
DSC-MRI yielded a sensitivity of 0.77 and a specificity of 
0.65 but was assessed only through stratified twofold cross-
validation with 250 repetitions. Despite this model evaluation 
difference, the use of standard-of-care MRI images, and the 
end-to-end AI–based analysis, the weighted averages of test 
sensitivities and specificities of the model proposed (pre-
sented in Table 4) were 0.825 and 0.846, showing a better 
performance. Additionally, these studies shared the absence 
of fairness evaluation, which was performed in our study to 
assess potential age and sex biases of the proposed model.

Despite evaluating the model using two independent 
cohorts of patients, these datasets were of small sample size, 
representing a limitation of the current study. Furthermore, 
despite the racial information being available for the training 
dataset, such information was not recorded and available for 
the test cohorts, preventing the assessment of potential racial 
biases of the developed model. Another limitation tied to 

Fig. 8  Age distributions of the training cohort (A) and test cohorts 1 (B) and 2 (C), respectively
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the availability of only two independent patient cohorts was 
the restriction it posed on training and evaluating multiple 
classifiers on external test cohorts before proceeding to the 
validation. This, in turn, hindered the subsequent process 

of selecting the most optimal classifier and conducting the 
model validation on unseen independent cohorts.

In future work, more advanced tumor habitat definitions 
could capture better tumoral heterogeneity, potentially resulting 

Fig. 9  Model error distribution 
by age group (blue) and cohort 
age distribution for test center 1

Fig. 10  Model error distribution 
by age group (blue) and cohort 
age distribution for test center 2
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in better model performance and robustness. The inclusion of 
more independent cohorts could allow the assessment of other 
classifiers (e.g., random forest, gradient boosting, among oth-
ers) at the testing phase and still perform the validation on 
unseen independent cohorts. Additionally, radiomic feature 
maps would potentially be helpful to guide stereotactic brain 
biopsies towards more aggressive tumoral regions, which could 
lead to a more accurate diagnosis and treatment selection.

Conclusion

A radiomics model to predict IDH mutation status in patients 
with glioma was developed and assessed using multicentric 
data. The model showed good generalizability and robustness 
when applied to the external test cohorts with no evidence of 
sex and age biases.
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