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Abstract
Accurate detection of fibrotic interstitial lung disease (f-ILD) is conducive to early intervention. Our aim was to develop 
a lung graph-based machine learning model to identify f-ILD. A total of 417 HRCTs from 279 patients with confirmed 
ILD (156 f-ILD and 123 non-f-ILD) were included in this study. A lung graph-based machine learning model based on 
HRCT was developed for aiding clinician to diagnose f-ILD. In this approach, local radiomics features were extracted from 
an automatically generated geometric atlas of the lung and used to build a series of specific lung graph models. Encoding 
these lung graphs, a lung descriptor was gained and became as a characterization of global radiomics feature distribution 
to diagnose f-ILD. The Weighted Ensemble model showed the best predictive performance in cross-validation. The clas-
sification accuracy of the model was significantly higher than that of the three radiologists at both the CT sequence level 
and the patient level. At the patient level, the diagnostic accuracy of the model versus radiologists A, B, and C was 0.986 
(95% CI 0.959 to 1.000), 0.918 (95% CI 0.849 to 0.973), 0.822 (95% CI 0.726 to 0.904), and 0.904 (95% CI 0.836 to 0.973), 
respectively. There was a statistically significant difference in AUC values between the model and 3 physicians (p < 0.05). 
The lung graph-based machine learning model could identify f-ILD, and the diagnostic performance exceeded radiologists 
which could aid clinicians to assess ILD objectively.
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Abbreviations
ILD	� Interstitial lung disease
f-ILD	� Fibrotic interstitial lung disease
Non-f-ILD	� Non fibrotic interstitial lung disease
IPF	� Idiopathic pulmonary fibrosis
NSIP	� Nonspecific interstitial pneumonia
CTD-ILD	� Connective tissue disease-associated intersti-

tial lung disease
COP	� Cryptogenic organizing pneumonia
HRCT​	� High resolution computed tomography
ML	� Machine learning
AUC​	� Area under the curve

PPV	� Positive predict value
NPV	� Negative predict value

Introduction

Interstitial lung diseases (ILDs) are a group of heterogene-
ous diseases caused by various causes of alveolar inflam-
mation and/or fibrosis [1, 2]. The degree and distribution 
of inflammation and fibrosis vary among different types 
of ILDs and at different development stages. Fibrotic inter-
stitial lung diseases (f-ILDs) are the end-stage of ILD [3]. 
Idiopathic pulmonary fibrosis (IPF) is the classic form 
of f-ILD with a sustained progressive phenotype which 
manifests as fibrosis at an early stage [4–9]. As the most 
common form of f-ILD, the imaging and pathological his-
tology of IPF present as usual interstitial pneumonia (UIP) 
[2, 10–12]. Whereas hypersensitivity pneumonitis (HP), 
nonspecific interstitial pneumonia (NSIP), and connective 
tissue disease–associated interstitial lung disease (CTD-
ILD) present predominantly with inflammation in the early 
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stages; fibrosis develops and gradually worsens with dis-
ease progression to f-ILD [13–16]. Fibrotic ILD is often 
accompanied by progressive lung structural destruction and 
decreased lung function [17, 18].

Despite the diversity of f-ILD classes and the difficulty 
of clinical management, these patients have similarities in 
clinical course, imaging, treatment, and prognosis, and the 
disease continues to progress [19–22]. Early and rapid iden-
tification of f-ILD is particularly important to improve the 
long-term survival and prognosis. HRCT is a key method to 
demonstrate the characteristics of ILD including non-f-ILD 
and f-ILD [19], which mainly present as a reticular pattern, 
traction bronchiectasis with or without honeycombing on 
HRCT. However, its evaluation extremely depends on the 
experience of radiologist and is time-consuming for the 
large amount of data on HRCT. The graph model is a com-
plete framework that was first proposed for brain connec-
tivity analysis, which divides the brain into a fixed number 
of anatomical regions and compares the neural activity in 
different regions. The method was subsequently improved 
by Dicente Cid et al. who proposed a more complex graph 
model for lung diseases. This 3D lung texture–based struc-
tural analysis has achieved better results in the classification 
of tuberculosis, early identification of multi-drug-resistant 
tuberculosis, and identification of pulmonary hypertension 
and pulmonary embolism [23, 24]. Thus, our objective is to 
apply this 3D lung texture–based structural analysis to assist 
in identification of f-ILD.

Materials and Methods

Study Cohort and Design

This lung graph–based machine learning study based on 
an ILD cohort was performed according to the Declaration 
of Helsinki and was approved by the ethics committee of 
our hospital (NO. 2017–25). Written consent of individuals 
was obtained. We retrospectively extracted 417 HRCTs of 
279 patients with ILD at our hospital from January 2018 
to December 2021. The determination of ILD was made 
by a multidisciplinary team (MDT) including at least one 
attending physician in Pulmonary and Critical Care Medi-
cine, especially a specialist in ILD, two specialists with more 
than 10 years of experience in chest radiology, and one lung 
pathologist with 10 years of experience in lung pathology 
according to the diagnostic guidelines [1, 6]. All patients 
suspected of ILD experienced standard diagnostic proce-
dures for ILD in our center, including detailed investigation 
of medical history, clinical symptoms and physical examina-
tion, laboratory tests for routine, connective tissue diseases, 
pulmonary function tests (PFTs), HRCT, bronchoalveolar 

lavage, and/or transbronchial lung biopsy or transbronchial 
lung cryobiopsy, sometimes video-assisted thoracoscopic 
surgery or surgical lung biopsy depending on the clinical 
requirements and multidisciplinary discussion [25]. The 
patients were treated by guidelines or consensus recom-
mended and followed up by a clinic visit per 3 to 6 months 
or at time on clinical requirement. Each patient completed 
1 to 5 HRCT scans. Cases diagnosed from January 2018 
to December 2019 were used to train and test the model. 
Cases from January 2020 to December 2021 were used 
for independent validation and also visual assessment by 
radiologists. The detailed screening flow chart is shown in 
Fig. 1. The inclusion criteria are as follows: (1) patients with 
ILD diagnosed during the study period, (2) they received 
at least one supine HRCT sequence. The exclusion criteria 
are as follows: (1) significant respiratory motion artifacts 
on HRCT, (2) comorbidity with malignancy or other lung 
diseases, such as emphysema, (3) combined heart failure.

Patients with radiological and/or pathological evidence of 
fibrosis and a restrictive physiologic impairment pattern of 
FVC < 80% prediction were defined as f-ILD. The fibrotic 
patterns on HRCT were defined as reticulations, interlobu-
lar septal thickening, lung architectural distortion, honey-
combing, and traction bronchiectasis. The fibrotic histologic 
findings included alveolar and interlobular septal thicken-
ing, fibroblast proliferation with collagen deposition, and 
architectural distortion. The flow chart of ILD diagnosis and 
study design is shown in Fig. 1.

Pulmonary Function Tests

All patients underwent PFTs (MasterScreen, Vyaire Medical 
GmbH, Hochberg, Germany). PFT measurements included 
the percentage of predicted forced vital capacity (FVC%), 
percentage of forced expiratory volume in one second 
(FEV1%), FEV1/FVC%, percentage of predicted total lung 
capacity (TLC%), and percentage of predicted DLco cor-
rected for the measured hemoglobin (DLco%).

CT Protocol

All patients were scanned in the supine position on a multi-
layer spiral CT device (Lightspeed VCT/64, GE Healthcare; 
Toshiba Aquilion ONE TSX-301C/320; Philips iCT/256; 
Siemens FLASH Dual Source CT) at the end of inspiration 
scanning from the lung apex to the lung base. Acquisition 
and reconstruction parameters for HRCT sequences included 
tube voltage of 100–120 kV, tube current of 100–300 mAs, 
slice thickness of 0.625–1 mm, reconstruction increments of 
1–1.25 mm, table speed of 39.37 mm/s, and gantry rotation 
time of 0.8 s.
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Lung Atlas Segmentation

All CT scans were first resampled into isometric voxels 
with a voxel size of 1 mm in all three dimensions. After this 
pre-processed step, a pipeline consisting of two steps was 
performed to obtain a specific human lung per CT scan, 
regarded as the lung atlas. As the first step, the lung fields 
were automatically extracted by a deep learning–based 
segmentation method (i.e., U-Net) provided by a medical 
imaging solution software (InferRead™ CT Lung, version 
R3.12.3; Infervision Medical Technology Co., Ltd., Beijing, 
China). And then, each lung mask was divided into 36 sub-
regions via several geometric rules, obtaining a lung atlas.

Radiomics‑based Lung Graph Model Construction

Given a division of the lung with N regions r = {r1, r2, …, 
rN}, for a radiomics feature f, we define a graph model GF of 
the lung based on that feature as the set of N regional feature 
nodes F = {f1, f2, …, fN}.

For each sub-region ri from a given lung atlas, 1004 
radiomics features were extracted: 187 first-order statistical 
features, 14 three-dimensional shape features, 253 GLCM 
features, 176 GLRLM features, 165 GLSZM features, 55 
NGTDM features, and 154 GLDM features. This feature 
extraction procedure was done by using an open-source 

PyRadiomics software package (version 3.0.1; https://​ 
pyrad​iomics.​readt​hedocs.​io) in the Python environment (ver-
sion 3.7.3; https://​www.​python.​org/).

Using the obtained lung atlas and the extracted features, 
1004 radiomics-based lung graph models were established, 
and each graph model contained 36 feature nodes. (Figs. 2 
and 3: The construction flow of the lung graph).

Graph‑based Lung Descriptor Generation

Considering data derived from patients who have undergone 
lung resection or with lung shrinking, the number of the 
nodes in the lung graph was 36 at most. Hence, a fixed num-
ber of statistics were selected to describe the distribution 
of each graph in order to compare the differences between 
different patients.

Ten statistics were calculated for each lung graph GF in 
this study, including maximum value (s1(GF) = max(GF)), 
minimum value (s2(GF) = min(GF)), median value 
(s3(GF) = median(GF)), the 10th percentile value 
(s4(GF) = percentile(GF,10)), the 90th percentile value 
(s5(GF) = percentile(GF,90)), mean value (s6(GF) = mean(GF)), 
standard deviation (s7(GF) = std(GF)), interquartile range 
(s8(GF) = percentile(GF,75)-percentile(GF,15)), skewness 
(s9(GF) = skew(GF)), and kurtosis (s10(GF) = kurt(GF)). And 

Fig. 1   Flow chart and study design. IPF, idiopathic pulmonary fibrosis; NSIP, nonspecific interstitial pneumonia; CTD-ILD, connective tissue 
disease-associated interstitial lung disease; COP, cryptogenic organizing pneumonia

https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
https://www.python.org/
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then, the graph-based lung descriptor was defined as the fol-
lowing vector:

s(GF) = (s1(GF), s2(GF),…, s10(GF)) ∈ ℝ.10

As mentioned above, 1004 radiomics-based lung graphs were 
generated, so the final lung descriptor in our study was defined 
as the concatenation of the 1004 graph-based lung descriptors:

S = (s(GF1) || s(GF2) || … || s(GF1004)) ∈ ℝ.10040

Dimensionality Reduction on Lung Descriptor

The dimension of the lung descriptor is massive, leading 
easily to the overfitting problem. To avoid this problem, 
a two-step flow for dimensionality reduction was adopted 
before the training model. Firstly, the Mann–Whitney U test 
was done between fibrotic and non-fibrotic ILD patients for 

Fig. 2   The construction flow of the lung graph. Given a sequence 
of HRCT slices from a patient, the lung field is first automatically 
extracted. And then, this lung region is divided into 36 sub-regions 

using geometric rules, obtaining a lung atlas. Finally, the lung graph 
is built based on 3D radiomics features of each sub-region of the 
lung atlas

Fig. 3   Two examples of lung graph construction. A A patient (male, 
age 78  years old) with non-fibrotic interstitial lung disease (NSIP).  
B A patient (male, age 70  years old) with fibrotic interstitial lung 
disease (idiopathic pulmonary fibrosis). From left to right: cropped  
CT slices of these two patients, the automatically generated lung atlas 

slices, the corresponding lung subgraph. This subgraph was obtained 
by the radiomics feature called log_sigma-1–0-mm-3D_glszm_ 
SizeZoneNonUniformity. Each dots represents the strength of that 
feature in the subgraph. For better visualization, the values of each 
sub-region were scaled to (0,1)
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all elements in the graph-based lung descriptor. Ranking 
these elements according to the obtained p-values in ascend-
ing order, the top 1% of the sorted ones were retained and 
fed into the subsequent step. Secondly, the Pearson correla-
tion coefficient (r) was calculated between each pair of the 
inputted features. If the absolute r of a pair of features was 
greater than 0.85, the feature with the larger p-value from 
the abovementioned test in this pair was removed from the 
feature set.

Machine Learning Model Development and Validation

Using the dimensionality-reduced lung descriptor as input, 
14 machine learning (ML) methods were used to establish 
the model for pulmonary fibrosis prediction on the training 
set. These machine learning methods were provided by the 
AutoGluon framework (version 0.3.1; https://​auto.​gluon.​ai/​
stable/​index.​html) and named as CatBoost, ExtraTreesEntr, 
ExtraTreesGini, KNeighborsDist, KNeighborsUnif, Light-
GBM, LightGBMLarge, LightGBMXT, NeuralNetFastAI, 
NeuralNetMXNet, RandomForestEntr, RandomForestGini, 
XGBoost, and Weighted Ensemble.

Fivefold cross validation was used as the training strategy 
to select the best model and the optimal hyper-parameters  
for each model. And the area under curve (AUC) was 
selected as the criterion for model evaluation. For the model 
using the given hyper-parameters, the average of AUC val-
ues during cross validation was calculated as its predictive 
power. The ML model that obtained the best results on 
the training cohort would be chosen to apply to the test-
ing set. CT from patients diagnosed between May 2021 
and March 2022 were used for model validation. All model  
implementations were done in the Python environment (ver-
sion 3.7.3; https://​www.​python.​org/).

The diagnosis Performance of Radiologists

In the external validation set, each case was classified visu-
ally by three chest radiologists respectively with 20 years, 
5 years, and 10 years of experience. Three radiologists inde-
pendently evaluated the HRCT of patients in the external 
group without knowing the clinical information and diag-
nosis classification.

Experimental Setting and Statistical Analysis

In our study, all HRCT images were considered for this 
binary classification task. Five random splits (80% train-
ing − 20% testing) were generated, ensuring that CT scans 
for the same patient were all grouped into either the train-
ing or the testing set, to do unbiased estimates of model 
evaluation. In each split, dimensionality reduction opera-
tions and model building with fivefold cross validation were 

executed on the training set, and the best model was selected 
via cross-validation results, validating on the testing set.

Since at least one CT scan was collected for each patient, 
model performance was validated both at the scan-level 
and patient-level. In this study, the result of the model at 
the patient-level was calculated by averaging the predicting 
results of all CT scans from the same patient. Continuous 
variables were expressed as means ± standard deviations. 
Identification ability of lung graph–based approach was 
assessed by using AUC, accuracy, sensitivity, specificity, 
the positive predictive value (PPV), and the negative pre-
dictive value (NPV). The performance lung graph–based 
ML model and chest radiologists in assessment of PPF was 
compared ROC. AUCs of external validation set were com-
pared using DeLong’s test, and bootstrap (1000 times) was 
used to estimate 95% confidence intervals (CIs) of the above 
evaluation indicators.

Results

Population Characteristics

During January 2018 to December 2021, 279 patients with 
ILD diagnosed by MDT at our hospital were included (156 
f-ILD, 123 non-f-ILD). The median age of all included 
patients was 65 years (IQR, 59 to 71 years) and 160 (57.3%) 
were males. The median age was 67 years (IQR, 62 to 
73 years) for f-ILD and 61 years (IQR, 55 to 68 years) for 
non-f-ILD. All included patients underwent one HRCT at 
least. A total of 417 HRCT images of 279 patients were 
included in the analysis. Figure 4 shows HRCT and cor-
responding pulmonary pathology of non-f-ILD and f- ILD. 
According to PFTs, there were 270 mild restrictive lung 
function (70–80% predicted), 111 moderate restrictive lung 
function (60–70% predicted), 28 moderately severe restric-
tive lung function (50–60% predicted), and 8 severe restric-
tive lung function (< 50% predicted).

Identification of f‑ILD on the Testing Set

After reducing the dimension, the final lung descriptor var-
ied for each grouping split and contained an average number 
of 10 elements. Table 1 shows the predictive ability of the 
used 14 ML models on the training sets from five data splits. 
Among these models, the Weighted Ensemble obtained the 
best classification performance on the training set from each 
grouping split. Hence, the trained Weighted Ensemble mod-
els were applied to the corresponding testing sets from the 
five data splits for validating model robustness.

To verify the robustness of the model, the trained 
Weighted Ensemble model was applied to the corre-
sponding testing set from the five randomly divided 

https://auto.gluon.ai/stable/index.html
https://auto.gluon.ai/stable/index.html
https://www.python.org/
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Fig. 4   A A patient with a definite diagnosis of nonspecific intersti-
tial pneumonia. CT showed non-fibrotic presentation of large bilat-
eral pulmonary ground glass opacity with bilateral lower lung basal 
reticular pattern. Medium magnification of the lung showed lung 
tissue focal alveolar septum widening with lymphocyte and plasma 
cell infiltration, focal multinucleated giant cells, and alveolar epithe-
lial hyperplasia, and no granulomas were seen. B A patient with a 

definite diagnosis of idiopathic pulmonary fibrosis. CT demonstrated 
fibrotic presentation of subpleural reticular pattern and ground glass 
opacity with honeycombing changes at the base of both lungs. Low 
magnification of the lung showed some of the alveolar septa widened 
with a little lymphocyte and plasma cell infiltration and alveolar epi-
thelial hyperplasia; macrophages were seen in the alveolar lumen

Table 1   Predictive ability of 
lung graph-based machine 
learning models to discriminate 
f-ILD on the training set

The bold value indicates the best performance result on the training set. Split 1 to approximately 5 equals 
to five random splits of the data set (both training and testing set). AUC of the five random splits
AUC​ area under the curve, ML machine learning

Lung graph-based ML Model AUC​

Split 1 Split 2 Split 3 Split 4 Split 5 Mean

Weighted Ensemble 0.993 0.990 0.991 0.991 0.983 0.990
CatBoost 0.989 0.985 0.988 0.989 0.977 0.986
ExtraTreesEntr 0.984 0.981 0.982 0.985 0.972 0.981
ExtraTreesGini 0.985 0.980 0.983 0.986 0.972 0.981
KNeighborsDist 0.955 0.922 0.921 0.916 0.914 0.926
KNeighborsUnif 0.959 0.923 0.923 0.920 0.910 0.927
LightGBM 0.989 0.986 0.983 0.984 0.973 0.983
LightGBMLarge 0.987 0.978 0.986 0.979 0.974 0.981
LightGBMXT 0.990 0.983 0.985 0.988 0.976 0.984
NeuralNetFastAI 0.991 0.990 0.990 0.990 0.982 0.989
NeuralNetMXNet 0.975 0.947 0.961 0.986 0.951 0.964
RandomForestEntr 0.981 0.978 0.985 0.984 0.971 0.980
RandomForestGini 0.982 0.976 0.987 0.986 0.972 0.981
XGBoost 0.986 0.982 0.989 0.983 0.975 0.983
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data. Table 2 presents the mean and standard deviation 
of the performance evaluation metrics for the five ran-
domly grouped models. At the CT sequence level, the 
lung graph–based machine learning model obtained 
good classification performance with an AUC value 
of 0.971 ± 0.032. The accuracy, sensitivity, and speci-
ficity of the model were 0.930 ± 0.057, 0.942 ± 0.040, 
and 0.921 ± 0.094, respectively. Similarly, the lung 
graph–based machine learning model showed good 
performance at the patient level with AUC values and 

accuracy of 0.973 ± 0.019 and 0.918 ± 0.059. The ROC 
curves for the five random groupings at the sequence level 
and patient level are shown in Fig. 5.

External Validation of the Model and Comparison 
with Radiologists

Model performance was further evaluated in the independ-
ent validation set. At the CT sequence level, the diagnos-
tic accuracy of the model radiologist A, radiologist B, and 

Table 2   Performance of the lung graph–based machine learning models in the identification of f-ILD on the testing set

All results are shown as mean values and standard deviations over the five random splits. Evaluation results (except AUC) of the proposed 
method were calculated by using the standard classification decision threshold of 0.5
AUC​ area under the curve, PPV positive predict value, NPV negative predict value

Evaluation level Method AUC​ Accuracy Sensitivity Specificity PPV NPV

Scan-level Split 1 0.983 0.918 0.9 0.939 0.947 0.886
Split 2 0.996 0.984 0.973 1 1 0.963
Split 3 1 1 1 1 1 1
Split 4 0.965 0.908 0.897 0.923 0.946 0.857
Split 5 0.913 0.841 0.941 0.743 0.78 0.929
Mean 0.971 ± 0.032 0.930 ± 0.057 0.942 ± 0.040 0.921 ± 0.094 0.935 ± 0.081 0.927 ± 0.051

Patient-level Split 1 0.969 0.881 0.84 0.941 0.955 0.8
Split 2 0.99 0.976 0.958 1 1 0.944
Split 3 1 1 1 1 1 1
Split 4 0.949 0.854 0.833 0.882 0.909 0.789
Split 5 0.958 0.878 0.917 0.824 0.88 0.875
Mean 0.973 ± 0.019 0.918 ± 0.059 0.910 ± 0.065 0.929 ± 0.068 0.949 ± 0.048 0.882 ± 0.081

Fig. 5   Receiver operating characteristic curves of the testing sets over five splits. A Scan level. B Patient level
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radiologist C was 0.968 (95% CI 0.926 to 1.000), 0.936 (95% 
CI 0.883 to 0.979), 0.830 (95% CI 0.755 to 0.904), and 0.894 
(95% CI 0.830 to 0.947), respectively. The AUC values 
were 0.999 (95% CI 0.994 to 1.000), 0.933 (95% CI 0.879 
to 0.979), 0.842 (95% CI 0.769 to 0.909), and 0.904 (95% 
CI 0.846 to 0.953), respectively. In addition, at the patient 
level, the diagnostic accuracy of the model radiologist A, 
radiologist B, and radiologist C was 0.986 (95% CI 0.959 to 
1.000), 0.918 (95% CI 0.849 to 0.973), 0.822 (95% CI 0.726 
to 0.904), and 0.904 (95% CI 0.836 to 0.973), respectively. 
The AUC values were 1.000 (95% CI 1.000 to 1.000), 0.917 

(95% CI 0.855 to 0.973), 0.828 (95% CI 0.742 to 0.903), and 
0.908 (95% CI 0.844 to 0.969), respectively. The sensitivity 
of the model was 0.971 (95% CI 0.912 to 1.000), and the 
specificity was 1.000 (95% CI 1.000 to 1.000) (Table 3).

The diagnostic performance of the model was supe-
rior to that of the radiologist, both at the CT sequence 
level and at the patient level, and there was a statisti-
cally significant difference in AUC values between the 
model and radiologist A, radiologist B, and radiologist 
C (p < 0.05) (Table 4). The corresponding ROC curves 
are shown in Fig. 6.

Table 3   Performance of the lung graph–based machine learning model and radiologists in the identification of f-ILD on the independent valida-
tion set

Statistics in the square brackets showed 95% confidence intervals (CIs). Evaluation results (except AUC) of the proposed method were calculated 
by using the standard classification decision threshold of 0.5
Average average of five groups of models, PPV positive predict value, NPV negative predict value

Method Evaluation level AUC​ Accuracy Sensitivity Specificity PPV NPV

Split 1 Scan-level 0.998 (0.992, 
1.000)

0.957 (0.915, 
0.989)

0.929 (0.837, 
1.000)

0.981 (0.939, 
1.000)

0.975 (0.917, 
1.000)

0.944 (0.878, 
1.000)

Split 2 0.997 (0.989, 
1.000)

0.957 (0.915, 
0.989)

0.905 (0.810, 
0.979)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.929 (0.855, 
0.984)

Split 3 0.998 (0.992, 
1.000)

0.968 (0.926, 
1.000)

0.952 (0.880, 
1.000)

0.981 (0.932, 
1.000)

0.976 (0.914, 
1.000)

0.962 (0.902, 
1.000)

Split 4 0.997 (0.991, 
1.000)

0.957 (0.915, 
0.989)

0.905 (0.814, 
0.978)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.929 (0.862, 
0.983)

Split 5 0.995 (0.984, 
1.000)

0.968 (0.926, 
1.000)

0.929 (0.844, 
1.000)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.945 (0.879, 
1.000)

Average 0.999 (0.994, 
1.000)

0.968 (0.926, 
1.000)

0.929 (0.844, 
1.000)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.945 (0.873, 
1.000)

Radiologist A 0.933 (0.879, 
0.979)

0.936 (0.883, 
0.979)

0.905 (0.810, 
0.970)

0.962 (0.902, 
1.000)

0.950 (0.868, 
1.000)

0.926 (0.849, 
0.983)

Radiologist B 0.842 (0.769, 
0.909)

0.830 (0.755, 
0.904)

0.952 (0.882, 
1.000)

0.731 (0.607, 
0.854)

0.741 (0.621, 
0.857)

0.950 (0.871, 
1.000)

Radiologist C 0.904 (0.846, 
0.953)

0.894 (0.830, 
0.947)

1.000 (1.000, 
1.000)

0.808 (0.692, 
0.906)

0.808 (0.690, 
0.906)

1.000 (1.000, 
1.000)

Split 1 Patient-level 1.000 (1.000, 
1.000)

0.986 (0.959, 
1.000)

0.971 (0.905, 
1.000)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.974 (0.915, 
1.000)

Split 2 0.997 (0.988, 
1.000)

0.973 (0.932, 
1.000)

0.943 (0.861, 
1.000)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.950 (0.881, 
1.000)

Split 3 0.999 (0.995, 
1.000)

0.986 (0.959, 
1.000)

0.971 (0.903, 
1.000)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.974 (0.913, 
1.000)

Split 4 0.998 (0.994, 
1.000)

0.959 (0.918, 
1.000)

0.914 (0.821, 
1.000)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.927 (0.838, 
1.000)

Split 5 0.998 (0.992, 
1.000)

0.973 (0.932, 
1.000)

0.943 (0.857, 
1.000)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.950 (0.870, 
1.000)

Average 1.000 (1.000, 
1.000)

0.986 (0.959, 
1.000)

0.971 (0.912, 
1.000)

1.000 (1.000, 
1.000)

1.000 (1.000, 
1.000)

0.974 (0.919, 
1.000)

Radiologist A 0.917 (0.855, 
0.973)

0.918 (0.849, 
0.973)

0.886 (0.774, 
0.974)

0.947 (0.872, 
1.000)

0.939 (0.853, 
1.000)

0.900 (0.795, 
0.977)

Radiologist B 0.828 (0.742, 
0.903)

0.822 (0.726, 
0.904)

0.971 (0.912, 
1.000)

0.684 (0.525, 
0.825)

0.739 (0.608, 
0.860)

0.963 (0.880, 
1.000)

Radiologist C 0.908 (0.844, 
0.969)

0.904 (0.836, 
0.973)

1.000 (1.000, 
1.000)

0.816 (0.688, 
0.938)

0.833 (0.705, 
0.944)

1.000 (1.000, 
1.000)
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Discussion

To our knowledge, this is the first study to develop and 
validate a lung graph–based machine learning model for 
identification of f-ILD, and the lung graph-based Weighted 

Ensemble model exhibited excellent classification perfor-
mance in the validation set.

ILD is characterized by varying degrees of inflammation 
and fibrosis in interstitial lung [1]. Compared to patients 
with non-f-ILD, patients with f-ILD had a poorer quality of 
life and prognosis. Imaging characteristics of f-ILD tend to 
be dominated by reticular pattern and traction bronchiecta-
sis with or without honeycombing [3]. Whereas non-f-ILD 
mainly presents as ground glass opacity or consolidation. 
However, definite diagnosis depends on tissue pathology. 
The treatment and prognosis of f-ILD and non-f-ILD are 
significantly different; early and accurate identification is 
especially essential to improve the prognosis [26–28]

Rafaee et  al. [29] achieved for the first time the 
identification of UIP in patients with IPF based on 
handcrafted radiomics with an AUC of 0.66. However, 
this artificial labeling of regions of interest was time- 
and effort-consuming, and the diagnostic performance of 
handcrafted radiomics-based model and physician remains 
unknown. The underlying structure of the lung map model 
used in this study is based on the 3D morphology of the 
lungs, dividing the lung into different regions, extracting 
each node and coding for different nodes, filtering 
features according to their importance, and analyzing the 
correlation between different features. Unlike previous 
studies that selected only a few levels of images and based 
on regions of interest [30–32], the 3D lung graph combined 
with deep learning algorithms achieved the integration 

Table 4   AUC comparisons between the lung graph–based model and 
visual assessments provided by three radiologists

All values were p-values obtained by Delong’s test. These val-
ues < 0.05 were considered significant
Average average of five groups of models

Evaluation 
level

p-values

Method Radiologist 
A

Radiologist 
B

Radiologist C

Scan-level Split 1 0.0160  < 0.0001 0.0006
Split 2 0.0183  < 0.0001 0.0007
Split 3 0.0160  < 0.0001 0.0007
Split 4 0.0153  < 0.0001 0.0008
Split 5 0.0242  < 0.0001 0.0011
Average 0.0142  < 0.0001 0.0006

Patient-level Split 1 0.0111  < 0.0001 0.0038
Split 2 0.0156  < 0.0001 0.0049
Split 3 0.0121  < 0.0001 0.0042
Split 4 0.0122  < 0.0001 0.0047
Split 5 0.0131  < 0.0001 0.0047
Average 0.0111  < 0.0001 0.0038

Fig. 6   Receiver operating characteristic curves of the external validation set. A Scan level. B Patient level. Average, average of five groups 
of models
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from local analysis to 3D images. The potential of graph 
model–based disease classification was confirmed in 
various disease such as chronic thromboembolic pulmonary 
hypertension, multidrug resistance prediction, and 
pulmonary tuberculosis type [23, 24, 33]. In our research, 
classification method divided the lung region into different 
sub-regions and completed the overall analysis to encode 
the subtle differences between different types of ILD by 
considering the feature nodes of the associated sub-regions 
and analyzing the global radiomics feature distribution. 
The performance of the model at both patient level and 
CT sequence level was considered. Our lung graph–based 
method gained good diagnostic accuracy in patient level 
and CT scan level in the testing set. Further, the external 
validation cohort demonstrated the excellent performance of 
the model, achieving higher diagnostic accuracy compared 
to radiologists.

There are several limitations in this study. First, more 
studies are needed to verify this result for a better clinical 
interpretation, depending on more diverse data. Second, 
although this classification model achieved f-ILD screen-
ing, it could not realize the segmentation and quantitative 
analysis of specific lesions. Third, the performance of the 
deep learning model was compared to only three chest 
radiologists in different experiences, which may not fully 
represent the entire range of physician capabilities, but as 
a national respiratory medicine center, the radiologists are 
likely to be more experienced compared to most hospitals 
and may overestimate the diagnostic capabilities of the phy-
sicians. Finally, the model is helpful to dichotomize only 
f-ILD and non-f-ILD without performing disease classifi-
cation for other different types of ILD, and this is the next 
major step of our further study. Moreover, the correlation of 
quantitative fibrosis and restrictive lung dysfunction need 
further research.

Conclusions

The lung graph-based machine learning model achieved 
high accuracy in identifying f-ILD. This model improves 
the efficiency of f-ILD diagnosis which could aid clinicians 
to accurately assess ILD.
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