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Abstract
This study aims to investigate the influence of adaptive statistical iterative reconstruction-V (ASIR-V) and deep learning 
image reconstruction (DLIR) on CT radiomics feature robustness. A standardized phantom was scanned under single-energy 
CT (SECT) and dual-energy CT (DECT) modes at standard and low (20 and 10 mGy) dose levels. Images of SECT 120 kVp 
and corresponding DECT 120 kVp-like virtual monochromatic images were generated with filtered back-projection (FBP), 
ASIR-V at 40% (AV-40) and 100% (AV-100) blending levels, and DLIR algorithm at low (DLIR-L), medium (DLIR-M), and 
high (DLIR-H) strength levels. Ninety-four features were extracted via Pyradiomics. Reproducibility of features was calcu-
lated between standard and low dose levels, between reconstruction algorithms in reference to FBP images, and within scan 
mode, using intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The average percentage of 
features with ICC > 0.90 and CCC > 0.90 between the two dose levels was 21.28% and 20.75% in AV-40 images, and 39.90% 
and 35.11% in AV-100 images, respectively, and increased from 15.43 to 45.22% and from 15.43 to 44.15% with an increas-
ing strength level of DLIR. The average percentage of features with ICC > 0.90 and CCC > 0.90 in reference to FBP images 
was 26.07% and 25.80% in AV-40 images, and 18.88% and 18.62% in AV-100 images, respectively, and decreased from 27.93 
to 17.82% and from 27.66 to 17.29% with an increasing strength level of DLIR. DLIR and ASIR-V algorithms showed low 
reproducibility in reference to FBP images, while the high-strength DLIR algorithm provides an opportunity for minimizing 
radiomics variability due to dose reduction.
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Abbreviations
ASIR-V  Adaptive statistical iterative reconstruction-V
CCC   Concordance correlation coefficient
DECT  Dual-energy computed tomography
DLIR  Deep learning image reconstruction
DLR  Deep learning reconstruction
FBP  Filtered back-projection
ICC  Intraclass correlation coefficient
IR  Iterative reconstruction
ROI  Region of interest
SECT  Single-energy computed tomography
VMI  Virtual monoenergetic image

Introduction

Radiomics converts medical imaging data into high-
dimensional minable features for constructing diagnostic, 
prognostic, or predictive models to aid clinical decision-
making [1–6]. However, the issue of robustness should be 
evaluated before applying radiomics as a daily tool in clin-
ical practice [6–10]. It is of interest to better understand 
the influence of acquisition and reconstruction parameters 
on radiomics robustness [11–19]. It has been shown that 
single-energy CT (SECT) and dual-energy CT (DECT) 
scan modes and discrepancy in technique setups among 
platforms impact the reproducibility of radiomic features 
[13–19]. Owing to developments in CT acquisition tech-
nique and reconstruction algorithms [20–22], low-dose 
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CT has been realized with comparable and even better 
image quality [23–28]. Compared to the traditional fil-
tered back projection (FBP), iterative reconstruction (IR) 
algorithms and deep learning image reconstruction (DLIR) 
algorithm have been successively introduced to provide 
better image quality with lower radiation dose [20–28], 
but their influence on the radiomics features has not been 
fully investigated.

The application of low-dose CT scan protocols and 
new reconstruction algorithms becomes a potential source 
of radiomics variability. It is necessary to find a way to 
reduce radiomics variability due to the use of scan proto-
cols at different dose levels, and to allow the translation 
of radiomics models derived at high-dose level to lower 
ones. On one hand, CT radiomics features are sensitive to 
diverse reconstruction algorithms and present significant 
variation when comparing different strength levels [12, 
29–31]. On the other hand, the difference between images 
acquired at distinct low and ultra-low dose levels can be 
bridged by careful adjusting of strength levels of IR algo-
rithms [29–31]. Nevertheless, it is unclear how reconstruc-
tion algorithms, such as the DLIR algorithm, impact the 
underlying minable information in images [14]. Although 
the deep learning reconstruction (DLR) algorithm by 
Canon Medical Systems showed potential for improving 
radiomics reproducibility in SECT images [32], the poten-
tial of the DLIR algorithm by GE Healthcare for reducing 
SECT and DECT radiomics variability is still unknown.

Therefore, the aim of this study was to investigate the 
influence of DLIR on the robustness of radiomics features 
and to find out whether DLIR provided an opportunity for 
minimizing CT radiomics variability at different dose levels.

Materials and Methods

Phantom

The workflow of the present study is presented in Fig. 1. 
The ethics approval was not required because this was a 
phantom study. A 330-mm diameter Gammex phantom 
(Gammex Inc.) made of water-equivalent material was 
scanned. The phantom has sixteen 28-mm diameter holes 
for holding interchangeable inserts with various densities. 
To mimic contrast media in blood vessel, five iodine inserts 
with concentrations from 2.0 to 15.0 mg/mL were selected. 
To simulate a wide range of densities in the human body, 
11 tissue inserts with densities of 0.44 to 1.69 g/cm3 were 
chosen. The inserts were placed to avoid beam-hardening 
artifacts, and their positions remained the same across the 
scans in the study.

Image Acquisition and Reconstruction

All images were acquired on a 256-slice CT scanner with 
dual-energy CT imaging capability (Revolution Apex CT, 
GE Healthcare). The acquisition parameters are presented 
in Table 1. The SECT and DECT scans were performed 
with conventional 120 kVp and the rapid kVp switching 
dual-energy imaging technology (80/140 kVp), respec-
tively, at two dose levels (volume CT dose indexes, CTDI-
Vol 20 and 10 mGy). The 20 mGy dose level was selected 
as the reference level for an adult abdomen based on the 
clinical practice in our institution [33]. The 10 mGy level 
was selected to simulate low-dose protocol, following the 
previous study results indicating that using a high strength 
level of the DLIR algorithm could potentially reduce half 
of the radiation dose [23–28]. Tube currents and rota-
tion time were modified to obtain these two dose levels. 
The scan field of view (500 mm × 500 mm), matrix size 
(512 × 512), and section thickness (5 mm) were kept the 
same across all scans. All the scans were repeated, sev-
eral minutes after the first scan after reposition, to allow 
repeatability analysis.

The conventional 120-kVp images were generated for 
SECT scans. The virtual monochromatic images (VMI) 
were reconstructed at 70  keV to create 120-kVp-like 
images for DECT scans, since the CT numbers of images 
at the energy level of 70 keV were used as a clinical stand-
ard of reference at our institution and were reported to be 
comparable to those of 120-kVp images [34]. A standard 
reconstruction kernel was used for all reconstructions. Six 
reconstruction algorithms were applied: FBP, adaptive sta-
tistical iterative reconstruction-V (ASIR-V, GE Healthcare) 
at 40% (AV-40) and 100% (AV-100) blending levels, and 
DLIR (TrueFidelity™, GE Healthcare) at low (DLIR-L), 
medium (DLIR-M), and high (DLIR-H) strength levels. 
Therefore, 24 sets of images were generated in total.

Segmentation and Feature Extraction

The circular regions of interest (ROIs) were plotted using 
an open-source ITK-SNAP software version 3.6.0 (http:// 
www. itksn ap. org/ pmwiki/ pmwiki. php). We copied the ROIs 
from one scan to another with rigid registrations to mini-
mize extra variations due to segmentation. Sixteen 25-mm- 
(26-pixel) diameter circular ROIs were drawn at the center 
of each insert, covering each insert as much as possible 
while avoiding touching its edge. To present the true dif-
ference among platforms, we did not employ any image 
pre-processing steps. The radiomics features were extracted 
via Python version 3.7.6 (https:// www. python. org) with 
Pyradiomics version 3.0 (https:// pyrad iomics. readt hedocs. 
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io/ en/ latest/) from each ROI on original images. Since the 
shape and size of ROIs were fixed, the 26 shape-based fea-
tures were excluded. Within 94 extracted features, 19 were 

first-order features, and 75 were texture features. The details 
of radiomics analysis methods are presented in Supplemen-
tary Note S1.

Fig. 1  Study workflow. The current study consists of three steps, 
namely phantom imaging, radiomics analysis, and statistical analysis. 
A standardized phantom with sixteen clinical-relevant densities was 
scanned on a 256-slice rapid kVp-switching dual-energy CT scan-
ner using SECT and DECT acquisition techniques, respectively, with 
comparable parameters at standard and low (20 and 10  mGy) dose 
levels. Images of SECT 120 kVp and corresponding DECT 120 kVp-
like virtual monochromatic images at an energy level of 70 keV were 
generated. Six reconstruction algorithms were applied: FBP, adaptive 
statistical iterative reconstruction-V (ASIR-V, GE Healthcare) at 40% 
(AV-40) and 100% (AV-100) blending levels, and DLIR (TrueFidel-

ity™, GE Healthcare) at low (DLIR-L), medium (DLIR-M) and high 
(DLIR-H) strength levels. Therefore, 24 sets of images were gener-
ated in total. Pyradiomics was employed to extract 19 first-order and 
75 texture radiomics features from ROIs segmented with a rigid reg-
istration. The repeatability of features was assessed by Bland–Altman 
analysis for repeated scans. Reproducibility of features was calculated 
between standard and low dose levels within the same scan mode, 
and between reconstruction algorithms in reference to FBP images, 
and across 24 sets of images, using intraclass correlation coefficient 
(ICC) and concordance correlation coefficient (CCC). The percentage 
of reproducible features and ICC and CCC values were compared

Table 1  CT acquisition 
parameters

Scan mode Tube 
voltage 
(kVp)

Milliamperage 
(mAs)

Revolution 
time (sec)

Pitch Volume CT 
dose index 
(mGy)

Reconstruction 
kernel

SECT 120 180 0.8 0.984 10.00 Standard
SECT 120 215 0.7 0.516 19.98 Standard
DECT 80/140 335 0.6 0.984 10.00 Standard
DECT 80/140 370 1.0 0.984 19.75 Standard
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Radiomics Robustness Analysis

The robustness of radiomics features was evaluated in terms 
of repeatability and reproducibility. Test–retest repeatabil-
ity of features was assessed by Bland–Altman analysis for 
repeated scans, with a cutoff value of 90% [35]. To test the 
hypothesis that the obtained biases of the radiomics feature 
values between the scan and re-scan were equal to zero, a one-
sample t-test was performed. The reproducibility of radiomic 
features was estimated using intraclass correlation coefficient 
(ICC) with single rater, absolute agreement, two-way random 
effects model [36], and concordance correlation coefficient 
(CCC) [37, 38]. The reproducibility of features was calcu-
lated between the standard and low-dose levels for each recon-
struction algorithm. The reproducibility of features was also 
estimated between reconstruction algorithms in reference to 
the FBP images for each scan mode per dose level, to find 
out whether the reconstruction algorithm alters information 
in images. The FBP images were used as reference, as they 
were considered the original version of the images. We fur-
ther evaluated the reproducibility across all 24 image sets, to 
identify potential opportunity for minimizing radiomics vari-
ability. The reproducibility of features was considered excel-
lent if ICC or CCC was > 0.9, good if ICC or CCC was > 0.75 
and ≤ 0.9, moderate if ICC or CCC was > 0.5 and ≤ 0.75, and 
poor if ICC or CCC was ≤ 0.5 [39–41].

Statistical Analysis

The statistical analysis was performed with R language 
version 4.1.3 (https:// www.r- proje ct. org/) within RStudio 
version 1.4.1106 (https:// www. rstud io. com/) [42]. The 

proportions of reproducible radiomic features as nominal 
variables are presented as the percentage and were com-
pared among different reconstruction algorithms using 
Cochran’s Q test. ICC and CCC values as continuous vari-
ables are presented as average value and were compared 
among different reconstruction algorithms using the Fried-
man test. A P value less than 0.05 was considered statisti-
cally significant. The significance threshold for adjusted 
P values was set at 0.05, applying the Bonferroni method 
for post hoc pairwise multiple-comparison correction. The 
details of data analysis methods are presented in Supple-
mentary Note S2.

Results

Test–Retest Repeatability Analysis

The average percentages of features that met the criteria of 
repeatability in SECT scans and DECT scans were 91.31% and 
95.04% at the 10 mGy dose level, and 90.60% and 96.81% at the 
20 mGy dose level, respectively (detailed results are presented in 
Supplementary Fig. S1 and Supplementary Table S1). The biases 
of the radiomics feature values between the scan and re-scan 
were not significantly different from zero (all P > 0.05).

Reproducibility of Radiomic Features Between 
Dose Levels

The average percentage of features with ICC > 0.90 and 
CCC > 0.90 was 21.28% and 20.75% for AV-40 images, 
and 39.90% and 35.11% for AV-100 images, respectively. 
Detailed results are presented in Fig. 2 and Supplementary 
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Fig. 2  Percentage of reproducible features between dose levels. The reproducibility of features was considered excellent if ICC or CCC 
was > 0.9, good if ICC or CCC was > 0.75 and ≤ 0.9, moderate if ICC or CCC was > 0.5 and ≤ 0.75, and poor if ICC or CCC was ≤ 0.5
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Figs. S2 and S3. The improvements for the AV-100 images 
were mainly identified in the texture features. The average 
percentage of features with ICC > 0.90 and CCC > 0.90 
between images acquired at 10 and 20 mGy dose levels 
increased with increasing strength level of the DLIR algo-
rithm from 15.43 to 45.22% and from 15.43 to 44.15%, 
respectively, which was supported by corresponding mean 
ICC and CCC values. Detailed results are presented in 
Table 2 and Supplementary Table S2.

Reproducibility of Radiomic Features in Reference 
to FBP Images

The average percentage of features with ICC > 0.90 and 
CCC > 0.90 in reference to FBP images was 26.06% and 
25.80% for AV-40 images, and 18.88% and 18.62% for 
AV-100 images, respectively. Detailed results are presented 
in Fig. 3 and Supplementary Figs. S4 and S5. The average 
percentage of the feature with ICC > 0.90 and CCC > 0.90 in 
reference to FBP images decreased with increasing strength 
level of the DLIR algorithm, from 27.93 to 17.82% and 
from 27.66 to 17.29%, respectively, which was supported 
by corresponding mean ICC and CCC values (Table 3 and 
Supplementary Table S3). In both cases, the reproducibility 
decreased more obviously within the texture features due 
to the stronger image noise reduction with the increased 
reconstruction strengths.

Reproducibility of Radiomics Features Within  
Scan Mode

The overall reproducibility within scan mode was 
low (Fig. 4). Within SECT scans at different dose lev-
els, DLIR-H images at 10 mGy and DLIR-M images at 
20 mGy showed the highest percentage with ICC > 0.90 
and CCC > 0.90 of 79.78% and 76.60%. Within the same 
reconstruction algorithm, DLIR-H images at 10 and 
20 mGy showed the highest percentage of features with 
ICC > 0.90 and CCC > 0.90 of 50.00% and 47.87%. The 
percentage of features with ICC > 0.90 and CCC > 0.90 
were 46.81% and 40.43% between AV-100 images at 10 
and 20 mGy. Within DECT scans at different dose levels, 
DLIR-H images at 10 and 20 mGy presented the highest 
percentage of features with ICC > 0.90 and CCC > 0.90 
of 40.42% and 40.42%. The percentage of features with 
ICC > 0.90 and CCC > 0.90 were 32.97% and 29.79% 
between AV-100 images at 10 and 20 mGy.

Discussion

In this study, we investigated the influence of ASIR-V and 
DLIR algorithms on the robustness of radiomics features in 
reference to the traditional FBP reconstruction algorithm 
and evaluated whether DLIR provided an opportunity for 

Table 2  Reproducibility of 
radiomic features between 10 
and 20 mGy dose level images

P value indicates the results of comparisons using Cochran’s Q test for proportions of reproducible radi-
omic features and the results of comparisons using Friedman test for ICC and CCC as continuous vari-
ables. The results of post hoc multiple pairwise comparisons applying the Bonferroni method for correction 
are presented in Supplementary Table S2

Reconstruction 
algorithm

ICC > 0.90, % ICC, mean CCC > 0.90, % CCC, mean

SECT (N = 94)
  FBP 15.96% 0.5589 15.96% 0.5489
  AV-40 18.09% 0.6449 17.02% 0.6348
  AV-100 46.81% 0.8746 40.43% 0.8678
  DLIR-L 15.96% 0.6014 15.96% 0.5915
  DLIR-M 23.40% 0.7297 22.34% 0.7199
  DLIR-H 50.00% 0.8762 47.87% 0.8697
  P value < 0.001 < 0.001 < 0.001 < 0.001
  Overall 28.37 ± 15.79% 0.7143 ± 0.1370 26.60 ± 14.00% 0.7054 ± 0.1386

DECT (N = 94)
  FBP 29.79% 0.7030 29.79% 0.6933
  AV-40 24.47% 0.6700 24.47% 0.6613
  AV-100 32.98% 0.7593 29.79% 0.7496
  DLIR-L 14.89% 0.7232 14.89% 0.5602
  DLIR-M 29.79% 0.7623 29.79% 0.7131
  DLIR-H 40.43% 0.5709 40.43% 0.7534
  P value < 0.001 < 0.001 < 0.001 < 0.001
  Overall 28.72 ± 8.56% 0.6981 ± 0.0714 28.19 ± 8.34% 0.6885 ± 0.0718
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minimizing CT radiomics variability existing at different 
dose levels. Our study showed that the reproducibility in ref-
erence to FBP images was generally low and decreased with 
increasing strength level of ASIR-V and DLIR algorithms, 
indicating image reconstruction algorithms potentially altered 
radiomics features. However, the reproducibility between 
the standard and low dose levels increased with increasing 
strength level of ASIR-V and DLIR algorithms, showing the 
potential for minimizing radiomics variability with higher 
reconstruction strength for using acquisitions at different 
dose levels. Overall, the DLIR algorithm showed a higher 
possibility for reducing variability due to dose reduction than 
the ASIR-V algorithm. Within SECT scans, DLIR-H images 
at the dose levels of 10 and 20 mGy were considered the most 
reproducible when the same reconstruction algorithm was 
used. Within DECT scans, the DLIR-H algorithm showed the 
highest reproducibility between images at 10 and 20 mGy. 
These results provided insights for retrospective data collec-
tion and future protocol implementations.

The dose reduction is an important source of nonrepro-
ducible features caused by the higher image noise at reduced 

radiation dose levels [12, 29–31]. The higher level of ASIR-
V and DLIR algorithms allow greater reduction of image 
noise [23–28] and are therefore expected to provide higher 
reproducibility of features between images acquired at dif-
ferent dose levels. Our results showed that the highest level 
of ASIR-V (AV-100) and DLIR (DLIR-H) images both had 
a better ability to reduce dose-induced radiomics variability 
within both SECT and DECT scans. We believe that ASIR-V 
and DLIR algorithms could at least partially harmonize the 
radiomics variability due to dose reduction protocols. In an 
era of pursuing lower radiation dose as possible, our findings 
may have important implications, because they provided 
insights into the possibility for generalizability of radiomics 
models derived from scan protocols of different dose levels.

However, the higher strength level of ASIR-V and DLIR 
algorithms may further alter radiomics features compared 
with the FBP algorithm. The reproducibility of AV-100 in 
reference to FBP images was low. The ASIR-V algorithm 
reduces and regulates image noise using nonlinear opera-
tions, which allows improvement of the reproducibility 
of features for different scans. It comes at the expense of 

Fig. 3  Percentage of reproducible features in reference to FBP images. The reproducibility of features was considered excellent if ICC or CCC 
was > 0.9, good if ICC or CCC was > 0.75 and ≤ 0.9, moderate if ICC or CCC was > 0.5 and ≤ 0.75, and poor if ICC or CCC was ≤ 0.5
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impaired reproducibility in reference to other reconstruc-
tion algorithms such as FBP, because the ASIR-V algorithm 
with a higher strength level further alters the image texture 
from FBP when it reduces the noise [23]. The reproduc-
ibility of DLIR-H images in reference to FBP images was 
also low. Nevertheless, there is some doubt whether FBP 
images are informative enough because a significant part 
of the reproducible results in FBP images is considered due 
to repetitive noise [32]. The features which are not closely 
related to noise (e.g., mean) were stable among FBP, ASIR-
V, and DLIR images, while those reflecting correlations 
between pixels (e. g. the majority of texture features) showed 
a decreasing trend of reproducibility with increasing strength 

level of ASIR-V and DLIR algorithms. DLIR algorithm 
uses a deep learning neural network to remove noise and 
is expected to maintain texture in the FBP images [23–28]. 
We suspected that the significant noise reduction could 
explain in part the low radiomics reproducibility between 
FBP and DLIR images. In theory, the DLIR algorithm has 
more possibility to preserve original informative features 
than the IR algorithm, because the high strength level of the 
DLIR algorithm did not significantly change image texture 
[32] and was more acceptable for clinical diagnosis than a 
high strength level of IR algorithm [28, 43–48]. Meanwhile, 
DLIR-H images did show higher reproducibility of features 
between images acquired at two dose levels than that of 

Table 3  Reproducibility of 
radiomic features in reference to 
FBP images

P value indicates the results of comparisons using Cochran’s Q test for proportions of reproducible radi-
omic features and the results of comparisons using the Friedman test for ICC and CCC as continuous vari-
ables. The results of post hoc multiple pairwise comparisons applying the Bonferroni method for correction 
are presented in Supplementary Table S3

Reconstruction 
algorithm

ICC > 0.90, % ICC, mean CCC > 0.90, % CCC, mean

SECT 10 mGy (N = 94)
  AV-40 19.15% 0.5427 19.15% 0.5336
  AV-100 10.64% 0.2865 10.64% 0.2806
  DLIR-L 13.83% 0.5747 13.83% 0.5646
  DLIR-M 12.77% 0.4373 12.77% 0.4282
  DLIR-H 9.57% 0.3410 9.57% 0.3334
  P value 0.001 < 0.001 0.001 < 0.001
  Overall 13.19 ± 3.73% 0.4365 ± 0.1245 13.19 ± 3.73% 0.4281 ± 0.1230

SECT 20 mGy (N = 94)
  AV-40 21.28% 0.5708 21.28% 0.5611
  AV-100 11.70% 0.3201 11.70% 0.3135
  DLIR-L 21.28% 0.6180 21.28% 0.6081
  DLIR-M 13.83% 0.4978 12.77% 0.4884
  DLIR-H 12.77% 0.4156 11.70% 0.4070
  P value < 0.001 < 0.001 < 0.001 < 0.001
  Overall 16.17 ± 4.72% 0.4845 ± 0.1196 15.74 ± 5.07% 0.4756 ± 0.1183

DECT 10 mGy (N = 94)
  AV-40 39.36% 0.6678 39.36% 0.6605
  AV-100 28.72% 0.4339 28.72% 0.4285
  DLIR-L 39.36% 0.6761 39.36% 0.6686
  DLIR-M 31.91% 0.5218 31.91% 0.5136
  DLIR-H 24.47% 0.5043 24.47% 0.4978
  P value < 0.001 < 0.001 < 0.001 < 0.001
  Overall 32.77 ± 6.58% 0.5608 ± 0.1067 32.77 ± 6.58% 0.5538 ± 0.1061

DECT 20 mGy (N = 94)
  AV-40 24.47% 0.5308 23.40% 0.5226
  AV-100 24.47% 0.3932 23.40% 0.3882
  DLIR-L 37.23% 0.5953 36.17% 0.5885
  DLIR-M 22.34% 0.4789 22.34% 0.4711
  DLIR-H 17.02% 0.4190 15.96% 0.4112
  P value < 0.001 < 0.001 < 0.001 < 0.001
  Overall 25.11 ± 7.43% 0.4834 ± 0.0823 24.26 ± 7.35% 0.4763 ± 0.0818
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AV-100 images. Therefore, further study is recommended 
to investigate whether the altered radiomics features due to 
the high strength level of the DLIR algorithm have an impact 
on the discriminative power of these features.

Comparison of the DLR algorithm (Canon Medical Sys-
tem) with FBP and IR algorithms has shown the advantage 
of the DLR algorithm for improving the yield of stable and 
reliable radiomics features in SECT images [32]. However, 
DLR and DLIR trained their models with different gold stand-
ards: DLR uses model-based image reconstruction images, 
while DLIR uses the high-dose FBP images. Therefore, they 
have different behaviors in noise reduction [48]. To maximize 
the data usage, especially retrospectively, in clinical applica-
tions, it is of interest to explain the varying reproducibility 
of images acquired at different dose levels and reconstruc-
tion algorithms. Our study applied the DLIR algorithm (GE 
Healthcare) to confirm the potential of deep learning for 
reproducible CT radiomics in both SECT and DECT images 
and further demonstrated that the increasing strength level of 
the DLIR algorithm allowed higher reproducibility for CT 
scans of different dose levels. Our study revealed opportuni-
ties with the DLIR algorithm in retrospective data collection 
and future protocol implementations for radiomics [49]. The 
current work differed from previous studies that applied the 
deep learning method as an image conversion filter to improve 
CT radiomics reproducibility [50, 51], but underlined that 
image reconstruction with the deep learning method has a 
high potential to improve radiomics research.

Several limitations of our study should be acknowledged. 
First, our study was a phantom study. Therefore, the results of 
our study should be carefully interpreted as hypothesis generat-
ing. The generalizability of our results to tumors or diseases in 
clinical application may be limited, partially due to the homo-
geneity of our inserts [52]. However, we consider our findings 
to give an important insight into the performance of different 
reconstruction algorithms and whether the DLIR algorithm 
could reduce variability in radiomics features from clinical 
examinations. Second, we only assessed the reproducibility 
between standard dose and half-dose protocols. Our findings 
may not directly guide algorithm selection in clinical when the 
degree of radiation reduction varies, especially when ultra-low 
dose protocols are used, but we believe our study demonstrated 
the possibility for the DLIR algorithm to improve radiomics 
reproducibility even with a greater dose reduction. Third, we 
did not investigate the influence of reconstruction algorithms 
on the discriminative power of radiomics features. Because 
DLIR and IR algorithms may alter radiomics features in refer-
ence to FBP images, further studies are required to evaluate 
their impact on the reproducibility of radiomics features as 
diagnostic, prognostic, or predictive biomarkers [32]. Finally, 
our study was performed with the only available standard 
kernel in one CT system. Other manufacturers provide differ-
ent deep learning-based algorithms with distinctly different 
reconstruction kernels for clinical use and may have different 
effects on radiomics reproducibility from those obtained in the 
current study [53].

Fig. 4  Percentage of reproducible features and mean ICC and CCC values within scan mode. Percentages indicated the features met the criteria 
of ICC or CCC was > 0.9. The values indicated the mean ICC or CCC values
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To summarize, increasing the strength level of ASIR-V 
and DLIR algorithms improved the reproducibility of fea-
tures between standard and low dose levels but decreased 
the reproducibility of features in reference to FBP images. 
DLIR algorithm may be applied for minimizing radiomics 
variability when combining images from protocols with dif-
ferent radiation doses is desired.
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