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Abstract
Deep neural networks (DNNs) have already impacted the field of medicine in data analysis, classification, and image process-
ing. Unfortunately, their performance is drastically reduced when datasets are scarce in nature (e.g., rare diseases or early-
research data). In such scenarios, DNNs display poor capacity for generalization and often lead to highly biased estimates 
and silent failures. Moreover, deterministic systems cannot provide epistemic uncertainty, a key component to asserting the 
model’s reliability. In this work, we developed a probabilistic system for classification as a framework for addressing the 
aforementioned criticalities. Specifically, we implemented a Bayesian convolutional neural network (BCNN) for the classi-
fication of cardiac amyloidosis (CA) subtypes. We prepared four different CNNs: base-deterministic, dropout-deterministic, 
dropout-Bayesian, and Bayesian. We then trained them on a dataset of 1107 PET images from 47 CA and control patients 
(data scarcity scenario). The Bayesian model achieved performances (78.28 (1.99) % test accuracy) comparable to the base-
deterministic, dropout-deterministic, and dropout-Bayesian ones, while showing strongly increased “Out of Distribution” 
input detection (validation-test accuracy mismatch reduction). Additionally, both the dropout-Bayesian and the Bayesian 
models enriched the classification through confidence estimates, while reducing the criticalities of the dropout-deterministic 
and base-deterministic approaches. This in turn increased the model’s reliability, also providing much needed insights into 
the network’s estimates. The obtained results suggest that a Bayesian CNN can be a promising solution for addressing the 
challenges posed by data scarcity in medical imaging classification tasks.

Keywords Bayesian convolutional neural networks · Cardiac amyloidosis · Data scarcity · Probabilistic programming · 
Uncertainty · Deep learning

Introduction

Artificial intelligence (AI), which is already having an 
impact in the field of medicine, will play an even larger 
role during the next few years [1]. Modern deep neural net-
works (DNNs) have produced remarkable achievements in 

data analysis, classification, and image processing. DNNs 
have drawn more and more the attention of experts as their 
involvement using medical data can improve the precision 
of medical applications. If large datasets are available, neu-
ral networks can interpret very complex phenomena more 
effectively than traditional statistical methods. Sadly, their 
performance is directly correlated with the size of the input 
[1]. This is a non-trivial criticality where datasets are scarce 
in nature (i.e., rare diseases or unusual/early-research data), 
data aggregation is not possible, and/or augmentation capa-
bilities are limited. Deep learning models are also vulner-
able to overfitting, especially when constrained by small 
datasets. This in turn negatively impacts their capacity for 
generalization [2]. This is an important challenge for situ-
ations where dramatic outcomes can result from silent fail-
ures (i.e., the network confidently failing to classify data), 
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such as in medical diagnosis [3]. Additionally, no epistemic 
uncertainty, particularly significant when training data are 
lacking, is provided in either classification or regression 
use cases. Many solutions, such as dropout (during train-
ing) [4], data augmentation [5], and k-fold cross validation 
[6], have been proposed in literature to counteract overfitting 
and correctly assess the performance. Despite these efforts, 
problems regarding interpretability of the output and the 
related uncertainty still exist. To mitigate these issues, the 
Bayesian paradigm can be viewed as a systematic frame-
work for analyzing and training uncertainty-aware neural 
networks, with good learning capabilities from small data-
sets and resistance to overfitting [7]. Particularly, Bayesian 
neural networks (BNNs) are a viable framework for using 
deep learning in contexts where there is a need to produce 
information capable of alerting the user if a system should 
fail to generalize [8]. Many studies have investigated the 
use of the Bayesian paradigm in medicine for classification 
tasks. Some applications concern the classification of histo-
pathological images [9], oral cancer images [10], and rest-
ing state functional magnetic resonance imaging (rs-fMRI) 
images for Alzheimer’s disease [11]. More applications of 
the Bayesian paradigm are available in the thorough review 
work by Abdullah et al. [12].

Bayesian Neural Networks

The concept behind BNNs comes from the application of 
the Bayesian paradigm to artificial neural networks (ANNs) 
in order to render them probabilistic systems. The Bayes-
ian approach to probability (in contrast to the frequentist 
approach) spans from the meaning behind Bayes’s rule 
shown in the Eq. 1:

where P(H|D) is called the posterior, P(D|H) the likelihhod, 
P(H) the prior, and P(D) the evidence. P(D) is obtained by 
integrating over all the possible parameter in order to nor-
malize the posterior. This step is intractable for practical 
models and is tackled through various approaches (see also 
predictive posterior later). H and D respectively represent 
the hypothesis and the available data. Applying the Bayes’ 
formula to train a predictor can be thought of as learning 
from data D [8]. One possible description for a BNN is 
that of a stochastic neural network trained using Bayesian 
inference [8]. The design and implementation of a BNN is 
compound of two steps: the definition of the network archi-
tecture and the selection of a stochastic model (in terms of 
prior distribution on the network’s parameters and/or prior 
confidence in the predictive capabilities) [8]. The stochastic 

(1)P(H|D) =
P(D|H)P(H)

P(D)
,P(D) = ∫ P(D|�)P(�) d�

part in model parametrization can be viewed as the forma-
tion of the hypothesis H [8]. Looking at the Eq. 1 also gives 
a more complete picture of the probabilistic point of view 
for the training process. Initially, the prior is defined during 
the network’s construction process. We then proceed at the 
computation of the likelihood (how good the model fits the 
data) through some form of probabilistic alternative to for-
ward and back-propagation. Lastly, we normalize the result 
for the evidence (all the possible models fitting the data) in 
order to update our prior belief with new found information 
and construct the new posterior. This process is repeated 
throughout various epochs, as for classic neural networks, 
until performance criteria are met. Epistemic uncertainty is 
included in the posterior [8] during training and at inference. 
More precisely, once the model is trained, at inference time, 
an approximate form of the predictive posterior, of which 
the analytical form is shown in Eq. 2, is used.

where P(ŷ|x̂,D) represents new data probability given the 
known data, P(ŷ|x̂, 𝜃) represents the probability with respect 
to model parameters, and it considers the effect the known 
data have on the parameters ( P(�|D) ). This means that, 
with the same stochastic model and equal inputs, different 
outputs can be given, cumulatively providing an epistemic 
uncertainty profile. True Bayesian inference for large neural 
networks is intractable (integrals on milions of parameters 
for evidence and predictive posterior), so alternative meth-
ods, such as variational inference [13], Markov Chain Monte 
Carlo [14], and dropout Bayesian approximation [15], are 
used in order to render these models computationally feasi-
ble. Giving more insight in the world of BNNs is not in the 
scope of this article, but good resources are available in the 
literature such as Jospin et al. [8] and Mullachery et al. [16]. 
In this work, we propose a Bayesian convolutional neural 
network (BCNN), a convolutional neural network (CNN) 
in structure with normal distributions imposed on param-
eters as priors for stochastic model parametrization (Fig. 1). 
The CNN underlying architecture follows the traditional 
structure, with convolutional layers to extract the input’s 
features and subsequent fully connected layers to proceed 
with the classification. From this, the BCNN is obtained 
simply by using Bayesian layers instead of traditional ones, 
as better explained in the “Materials and Methods” section. 
The BCNN will be trained with variational inference [13] 
through back-propagation using Bayes-by-backprop [17] 
with the local reparametrization trick [18]. Another type 
of approximate BCNN will be proposed through dropout-
Bayesian approximation [15], as a more computationally 
light method.

(2)P(ŷ|x̂,D) = ∫ P(ŷ|x̂, 𝜃)P(𝜃|D) d𝜃
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The Diagnosis of Cardiac Amyloidosis

Amyloidosis are a class of disorders caused by the extracel-
lular deposition of soluble misfolded proteins that collect and 
deposit as amyloid fibrils [19]. The heart, as of many other 
organs, is affected by this disease and frequently involved, 
particularly in immunoglobulin light chain amyloidosis (AL) 
and transthyretin-related amyloidosis (ATTR) [20]. These two 
subtypes of amyloidosis call for different treatments: while 
ATTR patients receive small RNA-silencing molecules or 
stabilizers, AL patients are typically treated with chemo-
therapy or stem cell transplantation [21, 22]. Additionally, 
cardiac amyloidosis (CA) can be frequently misdiagnosed, 
particularly in its early stages, resulting in a significant diag-
nosis delay, which may reduce the efficacy of the treatments 

[23]. The characterization of CA by PET imaging, particularly 
following [18F]-florbetaben injection, has recently gained 
momentum in the literature [24, 25]. According to Kim et al. 
[25], this diagnostic methodology has a sensitivity of 0.95 
(0.87–0.99) and a specificity of 0.98 (0.87–1.00) when dis-
cerning AL-CA patients from non AL-CA. Typically, one or 
two 3D PET images are acquired between 40 min and 1 h fol-
lowing the injection of the tracer, and they are visually exam-
ined in relation to standardized uptake values (SUV). The 
examination could be greatly optimized if an appropriate diag-
nosis of CA could be made from images obtained quickly, i.e., 
just a few minutes after the radiotracer injection [23]. Unfor-
tunately, early PET acquisitions have not yet been shown to 
be able to diagnose the existence of cardiac amyloidosis, and 
late acquisitions are still not capable of accurately discerning 

Fig. 1  Deterministic (left) vs bayesian (right) for fully connected layers (up) and convolutional layers (down)
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between ATTRs and CTRLs [26]. Ideally, we would like to 
be able to correctly diagnose the different subtypes of CA 
through images acquired early, without the need to compute 
derived values, so that both the acquisition and diagnostic 
pipeline could be optimized.

The Clinical Study

In this work, to explore the potential in adopting the Bayes-
ian paradigm, we present the workflow regarding the devel-
opment of a BCNN for cardiac amyloidosis (CA) subtype 
classification from PET images acquired 15  min after 
[18F]-florbetaben injection. We will then compare it to a 
traditional deterministic CNN, a dropout-deterministic and 
a dropout-Bayesian one (with all of the mentioned CNN’s 
sharing the same architecture). The intention is to provide 
the application of the proposed method for rare or quasi-rare 
pathologies diagnosis in nuclear medical imaging, where 
much of the problems previously highlighted represent a 
typical situation due to low data availability. The objective 
is the construction of an uncertainty aware classification 
system able to produce reliable results and give insight nec-
essary for future application in clinical practice. Moreover, 
such analyses are performed on early acquired PET images, 
not requiring any derived value computation.

Matherials and Methods

Subjects’ Images Acquisition and Preprocessing

Forty-seven subjects, acquired from 2016 to 2020 in the 
Nuclear Medicine Unit of Fondazione Toscana Gabriele 
Monasterio (FTGM), were used in this retrospective study 
(13 ATTR-CA patients, 15 AL-CA patients, and 19 control 
patients). Following the results given by the first 6 patients 
(2 AL, 2 ATTR, 2 CTRL) the sample size was estimated at 
9 for each group, given a power of 0.95 and a small effect 
(G*Power Software, version 3.1, University of Dusseldorf 
Department of Psychology, Dusseldorf, Germany). The con-
trols had a CA-like suspicion which ended up with a dif-
ferent diagnosis (such as hypertensive cardiac hypertrophy, 
primary hypertrophic cardiomyopathy, or left ventricular 
hypertrophy secondary to an aortic valve). According to the 
most recent cardiological evidence and guidelines [27, 28], 
the diagnosis of CA was made by combining multiple clini-
cal investigations: clinical examination, biomarkers posi-
tivity (N terminal fraction of pro-brain natriuretic peptide, 
high sensitivity troponin T, immunoglobulin light-chains 
in serum and/or in urine), electrocardiogram, echocardiog-
raphy, bone-scintigraphy, CMR and histology of amyloid 
deposition. None of the ATTR subjects had serum or uri-
nary monoclonal component. Note that the final label was 

assigned through cardiac biopsy, so the diagnosis is to be 
considered certain. Both the AIFA (Agenzia Italiana del 
Farmaco) committee and the institutional ethics commit-
tee gave their approval to the study. The research complied 
with the Helsinki Declaration. An informed consent form 
was signed by all the participants. PET/CT images were 
acquired using a Discovery RX VCT 64-slice tomography 
(GE Healthcare, Milwaukee, WI, USA). The heart was first 
imaged using a low-dose computed tomography (CT). Then, 
for roughly 40 min, PET acquisition in list mode was car-
ried out. The [18F]-florbetaben intravenous bolus injection 
signaled the beginning of the PET acquisition. A sinogram 
was created from the raw list-mode data that covered a 
time range of 5 min, beginning 15 min after the injection. 
Then, using the ordered-subset expectation maximization 
(OSEM) iterative technique, PET pictures were rebuilt to 
provide 3D static images. Forty-seven axial slices with a 
128×128 pixel matrix made up each 3D volume. Of these, 
only those covering the heart were used in the investigation, 
which resulted in a range of 21 to 25 slices, on average, 
being taken into consideration for each patient. The selected 
images were subsequently cropped, obtaining 77×104 pixels 
heart-centered slices. After the pre-processing steps, 1107 
images (375 AL, 312 ATTR, and 420 CTRL) were selected. 
These were divided in 2 groups of 38 and 9 subjects. To 
avoid data leakage, we used the first group (10 ATTR, 12 
AL, 16 CTRL) for training and validating the network (80% 
training, 20% validation) and the second group (3 ATTR, 3 
AL, 3 CTRL) for testing; the same datasets were used for 
all the developed models. The training, validation, and test 
set comprised of 717, 180, and 210 images respectively. 5x 
data augmentation was used, through image transformations 
composed randomly of ± 10° rotations and ± 10% horizon-
tal and vertical translations, producing 3585 new images, 
for a total of 4302 images for the training set. Images were 
previously rescaled from 16 bit to double precision photon 
coincidence counting and then subsequently normalized to 
values between 0 and 1 (float32) in order to accelerate con-
vergence. Labels were one-hot encoded for the three classes.

Networks’ Architecture

The architecture for the CNN, dropout-deterministic CNN, 
(DropCNN), dropout-Bayesian CNN (DropBCNN), and 
BCNN is comprised of 5 convolutional modules and a final 
classifier made of 3 linear layers with respective ReLU acti-
vation functions (except in the last layer, where the ReLU 
is substituted with a Softmax to obtain probabilities from 
logits). Each convolutional module is made up of a convo-
lutional layer of 12 filters (each 3×3), a batch normaliza-
tion (in order to help with the network’s regularization), 
a ReLU, and a final max pooling layer of dimension 3×3. 
Padding for the convolutional layers was set to “same” to 
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maintain image dimension; padding for the max pooling 
layers was set to 1 in both x and y dimensions. In the last 
convolutional module, the max pooling is substituted with 
a flattening layer in order to proceed with the classification 
in the final layers of the network. The difference between 
the four networks arise in the type of convolutional and 
classification layers used. While in the BCNN both the 
convolutional and linear layers are Bayesian and based on 
Gaussian mixture priors, for the DropBCNN, DropCNN 
and CNN, the layers are classic deterministic, and the 
DropBCNN and DropCNN have dropout layers after the 
first two dense layers. The network has 93,827 parameters 
for the deterministic and dropout implementations. For the 
BCNN, 312 parameters are point estimates, and 93,515 are 
drawn from distributions. Considering the approach used 
for the Bayesian layers described in Blundell et al. [17], 
the total number of parameters in the BCNN is then raised 

to 187,342 (parameters are doubled for all the wheights 
drawn form a distribution). The schematic common to all 
the networks is shown in Fig. 2 with the relative legends.

Fig. 2  Networks’ architecture (a) and legends (b) for CNN (up), DropCNN and DropBCNN (mid) and BCNN (down)

Table 1  Hyperparameters for the proposed networks

Hyperparameter Value

Number of epochs 125
Learning rate 1.25 ∗ 10−5

Batch size 128
Optimizer Adam
Loss function CrossEntropyLoss
Prior (only BCNN) Normal mixture (mean = 

0, SDs = [1, 0.5], weight 
= 0.5)

Monte Carlo gradient estimates (only 
BCNN)

3
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Fig. 3  Learning curves (blue for training and red for validation) for the 
CNN (a), DropCNN with p = 0.25 (b), DropCNN with p = 0.5 (c), 
BCNN (d), DropBCNN with p = 0.25 (e), and DropBCNN with p = 

0.5 (f). The shadow lines represent the true curves, more variable due 
to the use of mini-batch and Bayesian methods. Full lines represent the 
smoothed curves, superimposed for a better interpretation of the trend

Fig. 4  Examples of the uncertainty profiles obtained from the BCNN: AL prediction (left), ATTR prediction (center), CTRL prediction (right)
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Networks’ Implementation

We developed the architecture in Python, using the 
PyTorch framework [29] and Blitz [30] library for the 
Bayesian layers. Starting from the handcrafted datasets, 
we proceeded to split the training and validation dataset 
according to a principle of iterative stochastic validation. 
As a first step, we performed tuning of the hyperparam-
eters on a specific split of the training and validation data-
set. Then, we validated the network by repeating the train-
ing and validation steps while random splitting the dataset 
each time (five times). Finally, we considered the valida-
tion performance as a mean of all the results obtained with 
this method. We used a batch size of 128 images for each 
iteration (34 iterations per epoch) for a total of 125 epochs 
with a 1.25 ∗ 10−5 learning rate, using Adam optimizer 
with default parameters and cross-entropy loss. For the 
Bayesian layers, we used a double Gaussian mixture prior 
with mean equal to 0, first standard deviation equal to 1, 
second standard deviation equal to 0.5, and mixture weight 
equal to 0.5 (meaning the second prior weights half the 
first). For both the validation and training sets’ loss and 
accuracy evaluation (and, consequently, for the backpropa-
gation algorithm), we sampled 3 Monte Carlo estimates 
of the gradient and mediated the results. A synthesis of 
the used hyperparameters for the models is available in 
Table 1. The CNN with dropout layers was validated and 
tested using dropout only during training (as it is normally 
done, in this case is referred to as DropCNN) and as an 

approximate Bayesian network by keeping dropout active 
during evaluation and test (in this case is referred to as 
DropBCNN). The final test results for the DropBCNN 
and BCNN were obtained by sampling 100 deterministic 
models from the trained networks and assigning the class 
by majority voting of the sampled population. The train-
ing was carried out on a system with a 6-cores/12threads 
Intel i7 7800X CPU, 64 GB of RAM, GTX 1080Ti GPU, 
and Ubuntu 22.04 LTS OS. Each training epoch took ∼
1 s for the CNN, DropCNN, and DropBCNN, while the 
BCNN required ∼ 6.5 s (reducible to 4.5 s by only tak-
ing one Monte Carlo estimate of the gradient). Classify-
ing an image required ∼1.9 ms for the CNN, DropCNN 
and DropBCNN and ∼9.5 ms for the BCNN. Note that, 
to obtain a useful classification with the correspond-
ing uncertainty profiles, the probabilistic networks need 
to classify an image for n different times and then vote 
by majority, so the time for the DropBCNN and BCNN 
should be considered n times (n = 100 in our case).

Results

Figure 3 shows a representative example of the learn-
ing curves for the CNN, DropCNN (dropout layers inac-
tive at evaluation, dropout probability of 25% and 50%), 
DropBCNN (dropout layers active at evaluation, dropout 
probability of 25% and 50%), and the BCNN. Table  2 
shows the result for accuracy on the four tested networks. 

Fig. 5  Confusion matrices: CNN (left), BCNN (center), DropBCNN with p = 0.5 (right)

Table 2  Mean (SD) accuracy 
values for training, validation, 
and test set assessed for the 
six networks. Last column: 
mean (SD) mismatch between 
performance on the validation 
and test set

Model Training Acc. Validation Acc. Test Acc. Val-Test mismatch

CNN 99.61 (0.24)% 98.78 (0.82)% 77.05 (2.88)% 21.73 (2.25)%
DropCNN (p = 0.25) 97.11 (0.60)% 98.44 (0.64)% 74.48 (1.77)% 23.93 (2.18)%
DropCNN (p = 0.5) 88.84 (0.96)% 97.45 (1.29)% 78.19 (3.55)% 19.26 (4.55)%
DropBCNN (p = 0.25) 96.97 (0.52)% 96.55 (1.29)% 75.90 (2.63)% 20.65 (2.91)%
DropBCNN (p = 0.5) 90.35 (1.38)% 90.11 (0.96)% 77.33 (2.14)% 13.02 (2.72)%
BCNN 96.71 (0.63)% 83.75 (2.89)% 78.28 (1.99)% 6.14 (3.83)%
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Data are shown for accuracy on training, validation, and 
test set. Moreover, validation-test mismatch is provided as 
a measure of the capacity of the network to detect out-of-
distribution (OOD) data [31]. Figure 4 shows the uncer-
tainty profiles examples on the three different classes 
(those shown in the figure are relative to the BCNN). Note 
that these profiles are only obtainable with probabilistic 
instances of the network by sampling n deterministic mod-
els (n = 100 in this case) and considering all the resulting 
predictions. From this uncertainty profiles, we can gather 
the metrics shown in Table 6 (confidence for CTRL and 
ATTR was similar and is displayed as a single value). Here, 
the percentages refer to the number of deterministic net-
works (sampled from the probabilistic ones) agreeing on 
the inferred classification. “Correct” and “Incorrect” refer 
to the prediction, and “AL” and “CTRL & ATTR” refer 
to the corresponding true class. The CNN and DropCNN 
are absent from Table 6 as non probabilistic. Figure 5 
shows the confusion matrices for the CNN, BCNN, and 
DropBCNN (with p = 0.5). In order to better assess the 
models’ performance, Tables 3, 4, and 5 report precision, 
recall, and F1-score respectively, in a “1 vs all” fashion.

Discussion

The first thing to notice from the obtained results is that 
the use of dropout only at the training stage (DropCNN) 
produces a strange phenomenon resulting in higher accu-
racy and lower loss on the validation set compared to the 
training set. This can already be seen when the dropout 
probability is set to 25% and is exacerbated with 50% 
dropout probability. This should be due to the fact that, 
while during training only some units are active, at vali-
dation, the full feature set is used and scaled appropri-
ately, resulting in a more robust model and sometimes 
higher prediction scores. For our evaluation metrics, this 
is non-desirable behavior, as we are taking into considera-
tion the validation performance as an approximation of 
the real-world network performance on unseen patients. 
Treating the model as a Bayesian approximation and keep-
ing the dropout layers active at evaluation (DropBCNN) 
solves this problem, effectively realigning the training and 
validation curves both for accuracy and loss (see Fig. 3). 

Moreover, although the learning curves for the BCNN 
seem to provide a worse picture compared to the other 
models, the BCNN behavior is actually the desired one in 
order to avoid silent failures in deep learning systems. This 
is visible in Table 2 where we see the strong reduction in 
validation-test mismatch ( ∼7%, p-value < 0.05) in terms of 
accuracy when going to the BCNN from the DropBCNN 
(p=0.5) (Bayesian approximation) and an even stronger 
reduction compared to the deterministic model ( ∼15%, 
p-value < 0.05). This is indication of the improved capa-
bility of the BCNN in learning correct features and the 
ability to spot OOD inputs using the same patients (of 
the training set) in the validation set. Not only, the BCNN 
is also capable of achieving comparable accuracies on 
the test set with respect to the deterministic CNN (see 
Table 2). The Bayesian models are also able to provide a 
measure of epistemic uncertainty as seen in Table 6 and 
Fig. 4. This information, not available when using deter-
ministic networks, is invaluable to assess the reliability 
of the prediction, especially in medicine. Uncertainty 
profiles can also be used to improve the performance, 
give the model the capability to resist adversarial attacks 
[32], refuse the classification under a certain threshold 
to avoid failures, and guide the acquisition of more data 
towards where the epistemic uncertainty is the highest. 
Both the DropBCNN and BCNN are able to provide unce-
rainty metrics, but as is possible to see in Table 6, the 
fully Bayesian model displays a greater discrepancy both 

Table 3  Mean (SD) values for 
precision assessed for the six 
networks. Metrics are evaluated 
in a “1 vs all” fashion

Model Precision (AL) Precision (ATTR) Precision (CTRL)

CNN 99.18 (1.09)% 63.08 (2.81)% 73.68 (9.68)%
DropCNN (p = 0.25) 99.44 (1.13)% 59.86 (1.54)% 67.54 (5.85)%
DropCNN (p = 0.5) 99.48 (1.04)% 64.33 (5.57)% 74.21 (4.88)%
DropBCNN (p = 0.25) 99.18 (1.07)% 60.64 (2.19)% 75.50 (8.64)%
DropBCNN (p = 0.5) 99.72 (0.55)% 62.98 (2.85)% 72.88 (4.80)%
BCNN 97.12 (2.42)% 65.04 (5.31)% 70.98 (6.24)%

Table 4  Mean (SD) values for recall assessed for the six networks. 
Metrics are evaluated in a “1 vs all” fashion

Model Recall (AL) Recall (ATTR) Recall (CTRL)

CNN 99.60 (2.72)% 85.00 (6.17)% 48.25 (6.48)%
DropCNN (p = 

0.25)
93.87 (3.11)% 84.72 (3.40)% 39.68 (4.92)%

DropCNN (p = 
0.5)

95.20 (4.88)% 85.00 (2.83)% 50.16 (15.82)%

DropBCNN (p = 
0.25)

95.47 (2.32)% 88.61 (3.77)% 38.73 (2.37)%

DropBCNN (p = 
0.5)

94.93 (2.97)% 85.27 (3.12)% 47.30 (6.61)%

BCNN 97.58 (1.77)% 77.97 (8.37)% 51.75 (14.81)%



2575Journal of Digital Imaging (2023) 36:2567–2577 

1 3

between “Correct” and “Incorrect” confidence ( ∼ 7% more 
compared to the best DropBCNN with p = 0.5, p-value < 
0.05) and between “AL” and “CTRL & ATTR” ( ∼ 7% more 
compared to the best DropBCNN with p = 0.5, p-value < 
0.05). This is in line with the confusion matrices in Fig. 5 
and the metrics of precision, recall, and F1-score showing 
better prediction capabilities towards the AL classifica-
tion vs the CTRL and ATTR discrimination for all the 
models (max p-value < 0.05). Certainly, to take into con-
sideration is the higher computational cost of the BCNN 
compared to the DropBCNN and CNN. In this sense, the 
Bayesian approximation can be seen as a way of maintain-
ing a measure of uncertainty while compromising between 
the better performance of a fully Bayesian model and the 
lower computational cost of a deterministic CNN.

Study’s Limitations

The main limitation of this work lies in the specific 
case study (early acquired cardiac PET images from CA 
patients) approached with the explained methodology. In 
particular, in the limited dataset and in the fact that the 
severity of the disease was not accounted for (as a general 
index across the various subtypes is not available), pos-
sibly leading to biased data and dataset split. To better 
explore the capabilities and potentiality of the Bayesian 
framework in similar scenarios and to produce a severity 
metric based on PET acquisitions are objectives of future 
works. Moreover, better tuning of the models and a major 
exploration of possible approximations and algorithms to 
improve Bayesian inference performance and computa-
tional cost could also be considered future works.

Conclusion

In the present work, four models were developed to assess, 
through a CA classification case study, the capability of 
BCNNs to overcome some of the limitations of deep learn-
ing in data scarcity scenarios. The developed BCNN showed 
comparable accuracy on the test dataset in comparison with the 
deterministic CNN; it is also able to reduce silent failures by 
spotting OOD inputs better than the deterministic and approxi-
mate bayesian models. Moreover, both the approximate Bayes-
ian DropBCNN and the BCNN provided epistemic uncertainty. 
It is well known that epistemic uncertainty is fundamental for 
enriching the prediction and delivering crucial information to 
improve model performance, better interpret results, and pos-
sibly construct thresholds to refuse classification.
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Table 5  Mean (SD) values for 
f1-score assessed for the six 
networks. Metrics are evaluated 
in a “1 vs all” fashion

Model F1-score (AL) F1-score (ATTR) F1-score (CTRL)

CNN 96.28 (1.25)% 72.28 (2.85)% 57.84 (5.57)%
DropCNN (p = 0.25) 96.55 (1.88)% 70.10 (1.29)% 49.79 (4.21)%
DropCNN (p = 0.5) 97.21 (2.40)% 73.02 (3.09)% 58.81 (11.91)%
DropBCNN (p = 0.25) 97.27 (1.16)% 71.99 (2.70)% 51.12 (3.84)%
DropBCNN (p = 0.5) 97.24 (1.56)% 72.43 (2.67)% 57.08 (5.30)%
BCNN 95.53 (2.94)% 70.11 (1.55)% 54.44 (12.32)%

Table 6  Mean (SD) results for uncertainty in the classification when 
the network is correct, incorrect, classifying ALs, and classifying 
CTRLs and ATTRs respectively. Mismatch between correct and incor-

rect predictions and between ALs and CTRLs and ATTRs predictions. 
The percentages refer to the confidence of the prediction

Model Correct Incorrect ALs CTRLs & ATTRs Corr. vs Incorr. ALs vs 
CTRLs & 
ATTRs

DropBCNN (p = 0.25) 95.12 (1.29)% 88.18 (0.99)% 96.34 (1.88)% 91.84 (1.88)% 6.94 (0.87)% 5.73 (1.96)%
DropBCNN (p = 0.5) 88.80 (1.93)% 81.40 (3.17)% 92.34 (2.93)% 84.19 (86.63)% 7.68 (2.61)% 8.15 (3.04)%
BCNN 89.25 (1.46)% 75.24 (5.34)% 95.97 (1.86)% 80.39 (2.77)% 14.20 (4.80)% 15.58 (3.30)%



2576 Journal of Digital Imaging (2023) 36:2567–2577

1 3

Conflict of Interest Nicola Martini is presently an employee of Yunu 
Inc.; his collaboration to the present study occurred before its present 
affiliation, his contribution to this article reflects entirely and only his 
own expertise on the matter, and he declares no competing financial 
or non-financial interests related to the present article. All the other 
authors do not have competing financial or non-financial interests to 
disclose concerning the present manuscript.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, G. Fortino, 
“A survey on deep learning in medicine: Why, how and when?,” 
Information Fusion, Elsevier, 66:111–137 (2021).

 2. C.  Szegedy, W.  Zaremba, I.  Sutskever, J.  Bruna, D.  Erhan, 
I. Goodfellow, R. Fergus, “Intriguing properties of neural net-
works,” arXiv preprint, https:// doi. org/ 10. 48550/ arXiv: 1312. 6199 
(December 21, 2013).

 3. J. Ker, L. Wang, J. Rao, T. Lim, “Deep learning applications in 
medical image analysis,” IEEE Access, 6:9375–9389 (2017).

 4. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, 
“Dropout: a simple way to prevent neural networks from overfitting,” 
The journal of machine learning research, 15:1:1929–1958 (2014).

 5. C. Shorten, T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of big data, Springer, 6:1:1–48 
(2019).

 6. T. Fushiki, “Estimation of prediction error by using k-fold cross-
validation,” Statistics and Computing, Springer, 21:137–146 
(2011).

 7. S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, S. Udluft, 
“Decomposition of uncertainty in bayesian deep learning for effi-
cient and risk-sensitive learning,” in International Conference on 
Machine Learning, 1184–1193 (2018).

 8. L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, M. Bennamoun, 
“Hands-on bayesian neural networks–a tutorial for deep learning 
users,” IEEE Computational Intelligence Magazine, 17:2:29–48 
(2022).

 9. Ł. Raczkowski, M. Możejko, J. Zambonelli, E. Szczurek, “Ara: 
accurate, reliable and active histopathological image classifica-
tion framework with bayesian deep learning,” Scientific reports, 
Nature, 9:1:Article number: 14347 (2019).

 10. B.  Song, S.  Sunny, S.  Li, K.  Gurushanth, P.  Mendonca, 
N. Mukhia, S. Patrick, S. Gurudath, S. Raghavan, I. Tsusennaro, 
S. T. Leivon, T. Kolur, V. Shetty, V. R. Bushan, R. Ramesh, 
T. Peterson, V. Pillai, P. Wilder-Smith, A. Sigamani, A. Suresh, 
A. Kuriakose, P. Birur, R. Liang, “Bayesian deep learning for 
reliable oral cancer image classification,” Biomedical Optics 
Express, Optica Publishing Group, 12:10:6422–6430 (2021).

 11. S. Yadav, “Bayesian deep learning based convolutional neu-
ral network for classification of parkinson’s disease using 

functional magnetic resonance images,” SSRN, https:// doi. org/ 
10. 2139/ ssrn. 38337 60 (April 25, 2021).

 12. A. A. Abdullah, M. H. Masoud, T. M. Yaseen, “A review on 
bayesian deep learning in healthcare: Applications and chal-
lenges,” IEEE Access, 10:36538–36562 (2022).

 13. D. M. Blei, A. Kucukelbir, J. D. McAuliffe, “Variational infer-
ence: A review for statisticians,” Journal of the American sta-
tistical Association, 112:518:859–877 (2017).

 14. C. J. Geyer, “Introduction to markov chain monte carlo,” Hand-
book of markov chain monte carlo, Chapter 1 20116022, Boca 
Raton (2011).

 15. Y. Gal, Z. Ghahramani, “Dropout as a bayesian approximation: 
Representing model uncertainty in deep learning,” in Interna-
tional Conference on Machine Learning, 1050–1059 (2016).

 16. V. Mullachery, A. Khera, A. Husain, “Bayesian neural net-
works,” arXiv preprint, https:// doi. org/ 10. 48550/ arXiv: 1801. 
07710 (January 23, 2018).

 17. C.  Blundell, J.  Cornebise, K.  Kavukcuoglu, D.  Wierstra, 
“Weight uncertainty in neural network,” in International Con-
ference on Machine Learning, 1613–1622 (2015).

 18. D. P. Kingma, T. Salimans, M. Welling, “Variational dropout 
and the local reparameterization trick,” Advances in neural 
information processing systems 28, NIPS (2015).

 19. A. D. Wechalekar, J. D. Gillmore, P. N. Hawkins, “Systemic 
amyloidosis,” The Lancet, Elsevier, 387:10038:2641–2654 
(2016).

 20. A.  Martinez-Naharro, P.  N. Hawkins, M.  Fontana, “Cardiac 
amyloidosis,” Clinical Medicine, Royal College of Physicians, 
18:Suppl.2:30–35 (2018).

 21. M. Rosenzweig, H. Landau, “Light chain (al) amyloidosis: update 
on diagnosis and management,” Journal of Hematology & Oncol-
ogy, Springer, 4:1–8 (2011).

 22. F. L. Ruberg, M. Grogan, M. Hanna, J. W. Kelly, M. S. Maurer, 
“Transthyretin amyloid cardiomyopathy: Jacc state-of-the-art 
review,” Journal of the American College of Cardiology, JACC , 
73:22:2872–2891 (2019).

 23. M. F. Santarelli, D. Genovesi, V. Positano, M. Scipioni, G. Vergaro, 
B. Favilli, A. Giorgetti, M. Emdin, L. Landini, P. Marzullo, “Deep-
learning-based cardiac amyloidosis classification from early acquired 
pet images,” The International Journal of Cardiovascular Imaging, 
Springer, 37:7:2327–2335 (2021).

 24. M. Santarelli, M. Scipioni, D. Genovesi, A. Giorgetti, P. Marzullo, 
L. Landini, “Imaging techniques as an aid in the early detection of 
cardiac amyloidosis.,” Current Pharmaceutical Design, Bentham 
Science, 27:16:1878–1889 (2021).

 25. Y. J. Kim, S. Ha, Y.-i. Kim, “Cardiac amyloidosis imaging with 
amyloid positron emission tomography: a systematic review and 
meta-analysis,” Journal of Nuclear Cardiology, Springer, 27:123–
132 (2020).

 26. D. Genovesi, G. Vergaro, A. Giorgetti, P. Marzullo, M. Scipioni, 
M. F. Santarelli, A. Pucci, G. Buda, E. Volpi, M. Emdin, “[18f]-
florbetaben pet/ct for differential diagnosis among cardiac immu-
noglobulin light chain, transthyretin amyloidosis, and mimick-
ing conditions,” Cardiovascular Imaging, JACC , 14:1:246–255 
(2021).

 27. J. D. Gillmore, A. Wechalekar, J. Bird, J. Cavenagh, S. Hawkins, 
M. Kazmi, H. J. Lachmann, P. N. Hawkins, G. Pratt, B. Commit-
tee, “Guidelines on the diagnosis and investigation of al amyloi-
dosis,” British journal of haematology, 168:2:207–218 (2015).

 28. J. D. Gillmore, M. S. Maurer, R. H. Falk, G. Merlini, T. Damy, 
A. Dispenzieri, A. D. Wechalekar, J. L. Berk, C. C. Quarta, 
M. Grogan, H. J. Lachmann, S. Bokhari, A. Castano, S. Dorbala, 
G. B. Johnson, A. W. J. M. Glaudemans, T. Rezk, M. Fontana, 
G. Palladini, P. Milani, P. L. Guidalotti, K. Flatman, T. Lane, F. W. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv:1312.6199
https://doi.org/10.2139/ssrn.3833760
https://doi.org/10.2139/ssrn.3833760
https://doi.org/10.48550/arXiv:1801.07710
https://doi.org/10.48550/arXiv:1801.07710


2577Journal of Digital Imaging (2023) 36:2567–2577 

1 3

Vonberg, C. J. Whelan, J. C. Moon, F. L. Ruberg, E. J. Miller, 
D. F. Hutt, B. P. Hazenberg, C. Rapezzi, P. N. Hawkins, “Nonbi-
opsy diagnosis of cardiac transthyretin amyloidosis,” Circulation, 
AHA, 133:24:2404–2412 (2016).

 29. S. Imambi, K. B. Prakash, G. Kanagachidambaresan, “Pytorch,” 
Programming with TensorFlow: Solution for Edge Computing 
Applications, Springer, 87–104 (2021).

 30. P. Esposito, “Blitz - bayesian layers in torch zoo (a bayesian deep 
learing library for torch), github.” https:// github. com/ piEsp osito/ 
blitz- bayes ian- deep- learn ing/ (2020).

 31. T.  DeVries, W.  T. Graham, “Learning confidence for out-of-
distribution detection in neural networks,” arXiv preprint, https:// 
doi. org/ 10. 48550/ arXiv. 1802. 04865 (February 13, 2018).

 32. A. Uchendu, D. Campoy, C. Menart, A. Hildenbrandt, “Robustness 
of bayesian neural networks to white-box adversarial attacks,” in 
2021 IEEE Fourth International Conference on Artificial Intel-
ligence and Knowledge Engineering (AIKE), 72–80 (2021).

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://github.com/piEsposito/blitz-bayesian-deep-learning/
https://github.com/piEsposito/blitz-bayesian-deep-learning/
https://doi.org/10.48550/arXiv.1802.04865
https://doi.org/10.48550/arXiv.1802.04865

	Bayesian Convolutional Neural Networks in Medical Imaging Classification: A Promising Solution for Deep Learning Limits in Data Scarcity Scenarios
	Abstract
	Introduction
	Bayesian Neural Networks
	The Diagnosis of Cardiac Amyloidosis
	The Clinical Study

	Matherials and Methods
	Subjects’ Images Acquisition and Preprocessing
	Networks’ Architecture
	Networks’ Implementation

	Results
	Discussion
	Study’s Limitations
	Conclusion
	References


