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Abstract
Image quality control (QC) is crucial for the accurate diagnosis of knee diseases using radiographs. However, the manual 
QC process is subjective, labor intensive, and time-consuming. In this study, we aimed to develop an artificial intelligence 
(AI) model to automate the QC procedure typically performed by clinicians. We proposed an AI-based fully automatic QC 
model for knee radiographs using high-resolution net (HR-Net) to identify predefined key points in images. We then per-
formed geometric calculations to transform the identified key points into three QC criteria, namely, anteroposterior (AP)/
lateral (LAT) overlap ratios and LAT flexion angle. The proposed model was trained and validated using 2212 knee plain 
radiographs from 1208 patients and an additional 1572 knee radiographs from 753 patients collected from six external cent-
ers for further external validation. For the internal validation cohort, the proposed AI model and clinicians showed high 
intraclass consistency coefficients (ICCs) for AP/LAT fibular head overlap and LAT knee flexion angle of 0.952, 0.895, 
and 0.993, respectively. For the external validation cohort, the ICCs were also high, with values of 0.934, 0.856, and 0.991, 
respectively. There were no significant differences between the AI model and clinicians in any of the three QC criteria, and 
the AI model required significantly less measurement time than clinicians. The experimental results demonstrated that the 
AI model performed comparably to clinicians and required less time. Therefore, the proposed AI-based model has great 
potential as a convenient tool for clinical practice by automating the QC procedure for knee radiographs.
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Abbreviations
AI  Artificial Intelligence
AP  Anteroposterior
LAT  Lateral
ICCs  Intraclass consistency coefficients
CNNs  Convolutional neural networks
QC  Quality control
CI  Confidence intervals
SONK  Spontaneous osteonecrosis of the knee

Introduction

The knee joint is one of the largest and most complex 
joints in the human body and is subjected to strong gravi-
tational forces [1]. Knee injuries can result from physical 
activities, aging, wear-and-tear, and various diseases, such 
as osteoarthritis (OA), rheumatic arthritis, spontaneous 
osteonecrosis of the knee (SONK), and knee instability 
[2–4]. Due to its frequency of injury, the knee joint is 
commonly examined in clinical practice. Anteroposterior 
(AP) and lateral (LAT) knee radiographs are currently the 
most commonly used imaging methods for assessing and 
diagnosing knee problems such as OA and SONK [4–8]. 
Kellgren and Lawrence [9] were pioneers in developing 
a classification system for osteoarthritis (OA) based on 
radiographs of the knee. They used AP knee radiographs 
and assigned a grade from 0 to 4 to each radiograph, with 
higher grades indicating increasing severity of OA. Subse-
quent research [10, 11] has shown that flexion radiographs 
(where the knee is flexed at 30 to 60°) can provide a more 
precise assessment of OA degeneration and narrowing, 
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leading to more accurate diagnosis and treatment. There-
fore, obtaining high-quality knee radiographs is crucial 
for the accurate diagnosis and treatment of knee diseases 
[6, 10, 11]. Clinicians’ decision-making regarding disease 
diagnosis and treatment can be compromised by low-qual-
ity radiographs, which can directly impact patient care 
[12]. However, the rejection rate for clinically qualified 
knee radiographs is often between 8 and 12%, indicating 
the need for improvements [13, 14].

Quality control (QC) is crucial in ensuring sufficient 
image quality for accurately diagnosing knee diseases. 
Typically, QC of knee joint radiographs involves quantita-
tive measurements of imaging quality, such as the signal-
to-noise ratio, level of sharpness, and number of artifacts, 
along with a number of positioning criteria. These criteria 
include the overlap ratio of the fibular head with the tibia 
on AP and LAT projections, the flexion angle on LAT pro-
jections, sufficient overlap of the femoral condyles on LAT 
projections, femoral and tibial condyles symmetry on AP 
projections, patella position on both AP and LAT projec-
tions, and visualization of the joint space. To qualify as 
clinically acceptable, knee joint radiographs must meet 
specific criteria [15], as follows:

For AP knee radiographs, the following must be met: (1) 
The image should show the femoral and tibial condyles 
as well as the fibular head, with the articular surface in 
the center of the image. (2) The capitellum of the fibula 
should only slightly overlap with the tibia. (3) All bone 
textures of the knee joint should be clearly visible, and 
the surrounding soft tissue should be visible. (4) The knee 
joint should be fully displayed in the center of the image 
and parallel to the long axis of the image.
For LAT knee radiographs, the following criteria must 
be met: (1) The knee joint space should be in the center 
of the image, and the femoral condyle and tibial plateau 
should overlap well. (2) The patella should be displayed 
laterally, with a clear gap with the femur, and the articular 
surface border should be sharp and without shadowing. 
(3) There should be minimal overlap of the femur and tib-
ial plateau. (4) All bone textures of the knee joint should 
be clearly visible, as should the surrounding soft tissues.

Today, QC of knee joint AP and LAT radiographs is 
mainly performed through manual evaluation, which can 
be subjective and influenced by factors such as radiologist 
experience, cognitive level, fatigue, and environmental con-
ditions, among others; thus, it can be challenging to meet 
clinical requirements with this approach [6, 10]. Therefore, 
there is an urgent need for automated, real-time radiograph 
quality analysis to assist technicians in determining the need 
for re-examination before the patient leaves the X-ray room, 
saving time and improving patient satisfaction [16].

Recent advancements in artificial intelligence (AI), par-
ticularly in deep-learning-based techniques, have enabled 
the development of convolutional neural networks (CNNs) 
with immense potential in various medical imaging appli-
cations such as recognition, classification, segmentation, 
diagnosis, and even decision-making [17–23]. With access 
to large amounts of labeled data, certain AI models based 
on deep learning have been shown to perform comparably or 
even better than human experts in assisting clinicians with 
disease screening and identification, resulting in improved 
work efficiency. Additionally, these models play a significant 
role in clinical education by enhancing the skills of junior 
radiologists [24, 25]. Previous studies have demonstrated 
the effectiveness of CNNs in performing image QC of chest 
radiographs [26–28], where the AI-based QC model auto-
matically measured three quality criteria of AP chest radio-
graphs: correct inclusion of lungs at all four edges, patient 
rotation, and inspiration. These studies found that the AI 
model achieved good agreement with clinicians, suggesting 
that the AI model can automate chest radiograph QC.

In this study, we aimed to investigate the feasibility of 
automated QC for knee joint radiographs using AI. We iden-
tified the three most critical and error-prone criteria for knee 
joint radiograph positioning, including the overlap ratio of 
the fibular head with the tibia on AP and LAT projections, 
as well as the flexion angle on LAT projections. The objec-
tive was to compare the performance of our proposed AI-
based model with observations made by clinicians to assess 
whether the AI-based QC model can automate the output of 
clinicians in knee radiograph QC.

Materials and Methods

Ethics Statement

This study was approved by the Institutional Review Board 
of Shanghai Changzheng Hospital (2022SL071) before 
patient information was accessed, and the requirement for 
informed patient consent was waived due to the retrospective 
nature of the analysis and the anonymity of the data.

Data Collection

We retrospectively collected 2,212 knee joint plain radio-
graphs from 1208 patients from the Picture Archiving and 
Communication System (PACS) of Shanghai Changzheng 
Hospital (also referred to as Center 1) to train and validate 
the proposed AI model. Of these radiographs, 910 were 
AP radiographs, and 1302 were LAT radiographs. Specifi-
cally, 1638 plain radiographs from 796 patients (includ-
ing 597 AP radiographs and 1041 LAT radiographs) 
were randomly selected as the training cohort, while the 
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remaining 574 images from 412 patients (including 313 
AP radiographs and 261 LAT radiographs) were used as 
the internal validation cohort. It is worth mentioning that 
we used a patient-wise partitioning strategy for the train-
ing and validation cohorts, ensuring that images from a 
single patient were only included in either the training or 
validation dataset, but not both.

To further validate the generalizability of the proposed 
AI-based QC model across different hospitals, an inde-
pendent external validation cohort was collected from six 
other hospitals (referred to as Centers 2–7) that included 
1572 knee radiographs from 753 patients, including 912 AP 
radiographs and 660 LAT radiographs, as shown in Fig. 1. 
In this study, we focused on performing QC for individual 
images rather than patient disease diagnosis, and so QC per-
formance was evaluated at the individual-image level rather 
than at the patient level.

The data collected for this study adhered to the following 
inclusion and exclusion criteria. Radiographs were included 
if they (1) were taken from patients over 18 years old; (2) 
were plain knee joint radiographs; and (3) were obtained in 
accordance with standard guidelines [29]. Radiographs were 
excluded if (1) they were not AP or LAT projections of the 
knee joint; (2) they were blurred or occluded, thus affecting 
the observation of knee joint structures; (3) the knee joint 
depicted on the radiograph exhibited fractures, foreign bod-
ies, postoperative changes, or severe osteoarthritis; or (4) 
they showed multiple knee joints in a single image.

All images were captured using equipment from Philips, 
General Electric or Canon, and any sensitive information 
was fully anonymized. Table 1 shows the data distribution 
for all cohorts.

Data Annotations

Plain knee radiographs are commonly used to diagnose knee 
joint diseases due to their ability to reveal the structural 
information of the knee. In this study, we selected three of 
the most critical and computationally challenging QC crite-
ria for knee radiographs to evaluate the performance of an 
AI-based model against clinicians. These criteria are defined 
as follows:

1. Anteroposterior fibular head overlap ratio (AP overlap 
ratio): measures the overlap ratio between the fibular 
head and the tibia on AP knee plain radiographs.

2. Lateral fibular head overlap ratio (LAT overlap ratio): 
measures the overlap ratio between the fibular head and 
the tibia on LAT knee plain radiograph.

3. Flexion angle of the lateral knee (LAT flexion angle): 
measures the angle between the femur and the tibia on 
LAT knee plain radiograph.

To ensure the accuracy of the annotations, two associ-
ate chief musculoskeletal (MSK) radiologists with 10 and 
13 years of experience first annotated all plain knee radio-
graphs with key points. A committee of two chief MSK radi-
ologists with 26 and 36 years of experience then reviewed 
all annotations and corrected any misplaced key points. Two 
other experts simultaneously reviewed all annotations, and 
any ambiguous labels were discarded. All annotations were 
then confirmed to be consistent and indisputable.

Preprocessing

All AP/LAT knee radiographs were converted from raw 
DICOM format to npy format using Python and SimpleITK 
[30]. To enhance the visualization of skeletal features and 
remove redundant information, we adjusted the displayed 
details using window width and window level as calculated 
by adaptive histogram equalization with limited contrast.

Computing of QC Criteria

Computing QC results for overlap ratios or flexion angle 
directly from images is challenging. To address this prob-
lem, we defined key points that describe the important 
positions of knee joints in an image. According to the QC 
requirements, for the AP knee plain radiographs, we used 
5 key points, and for the LAT knee plain radiographs, we 
used 9 key points. Table 2 describes the definitions of these 
key points.

Figure 2 shows examples of predefined key points (A–I) 
and their corresponding auxiliary lines on AP and LAT knee 
plain radiographs. The line connecting key points A and B 
represents the diaphyseal orientation of the fibula, defined 
as  L1. The distance from key point C to line  L1 is defined 
as Sc, the distance from key point D to line  L1 is defined as 
Sd, and the distance from key point E to line  L1 is defined as 
Se. The overlap ratio is calculated using (S

c
− S

e
)∕(S

c
− S

d
) , 

as shown in Fig. 2a, if key points E and C are located on 
the same side of straight line L1; otherwise, it is calculated 
using (S

c
− S

e
)∕(S

c
− S

d
) , as shown in Fig. 2b. The line con-

necting key points F and G represents the diaphyseal orien-
tation of the femur, defined as  L2. The line connecting key 
points H and I represents the diaphyseal orientation of the 
tibia, defined as  L3. The LAT flexion angle is defined as the 
angle between line  L2 and line  L3.

It is important to note that key points A, B, F, G, I, and H 
are used to determine the diaphyseal orientation of the tibia, 
femur, and fibula. However, these key points are not unique, 
and slight movement along the diaphyseal orientation will 
not affect the finalization of the diaphyseal orientation. For 
instance, key points A and B can be slightly adjusted along 
line  L1, but it is essential to ensure that the point is in the 
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middle of the backbone cross-section (in the vertical direc-
tion of  L1).

The Proposed AI‑Based QC Model

In this study, we used an HR-Net-based framework [31] to 
design our automatic QC model for knee joint radiographs, 
as shown in Fig. 3. Our model was trained to detect a set of 
predefined key points, and auxiliary lines were drawn to aid 
in the interpretation of key measurements, as precise values 
for knee flexion angle and overlap ratios are not directly 
available. Finally, we used a set of simple but effective geo-
metric calculations to compute the overlap ratio of the fibu-
lar head with the tibia on AP and LAT projections, as well 
as the flexion angle on LAT projections.

More specifically, we first applied an HR-Net [31] model 
pretrained using ImageNet [32] as a feature extraction back-
bone to detect predefined key points (key points A–E for AP 
knee radiographs and A–I for LAT knee radiographs). Aux-
iliary lines were then drawn to interpret key measurements 
such as the diaphyseal orientation of the tibia, femur, and 
fibular head and the overlap between the fibular head and the 
tibia. Subsequently, geometric calculations were performed 
to calculate the overlap ratio of the fibular head and the tibia 
and the angle between the femur and the tibia.

As shown in Fig. 3, HR-Net is a parallel multiresolution 
and multibranch network framework that ensures seman-
tic information interaction between different branches and 
maintains high resolution throughout the whole process. 
Here, semantic information refers to the computed image 
features at different scales. The model starts from a stem 
block that decreases the input resolution to 1/4 by using 
two stride-2 3 × 3 convolutions; the resulting image then 
serves as the input of the multiresolution and multibranch 
network. A high-resolution subnetwork is then used as the 

first stage (S1 in Fig. 3), and the previous high resolution 
is maintained (1/4 of the original input resolution) through-
out the whole process. At each new stage, a high-to-low 
resolution stream is added in parallel and connected to the 
multiresolution streams. The later stages not only consist 
of the resolutions from the previous stage but also have 
an extra lower resolution stream. Four stages are applied 
in the whole process, and the number of channels C is 
doubled while the resolution gradually drops to half (i.e., 
C = 32, 64, 128, and 256 for feature maps F1, F2, F3, and 
F4, respectively).

To make better use of multiresolution information, an 
exchange model is used to exchange information across 
parallel subnetworks and is repeated several times (e.g., 
every 4 residual units; only 2 residual units are shown 
in Fig. 1). In the exchange model, information from dif-
ferent subnetworks is downsampled/upsampled to the 
same resolution, and 3 × 3 convolutions with stride 1 
are used to maintain channel consistency. For example, 
if the feature I

r
, r = 1, 2, 3  in stage 3 (S3) is associated 

with the output feature O
r
, r = 1, 2, 3 after an exchange 

model, and the final output is the sum of the three inputs 
o
r
= ∫ r

1
(I1) + ∫ r

2
(I2) + ∫ r

3
(I3) , where r is the resolution 

index, an extra output o
r
= ∫ 4

1
(I1) + ∫ 4

2
(I2) + ∫ 4

3
(I3)  is 

obtained across stages (from S3 to S4). The model repeats 
the information exchange across the multiresolution sub-
networks, with S2, S3, and S4 containing 1, 4, and 3 
exchange models, respectively. This enables more effec-
tive multiscale fusion learning and allows subnetworks 
with different resolutions to contribute different pieces 
semantic information, leading to a more expressive final 
feature map. Subsequently, features F2-F4 are converted 
to be consistent with feature F1 using upsampling and 1*1 
Conv (H*W*C, F1 is only 1*1 Conv), and then features 
F1-F4 are concatenated as O1. Finally, a 1 * 1 conv is used 
to obtain the final output with shape H*W*9. Afterward, 
the location with the highest probability (maximum acti-
vation) in the output probability map is considered the 
detected key point.

Fig. 1  Inclusion and exclusion criteria for this study. A total of 3784 
knee plain radiographs were used to train and validate the generaliza-
tion performance of the proposed AI-based QC model

◂

Table 1  Data distribution for 
different cohorts

No. of patients No. of APs No. of LATs

Training cohort (Center 1) 796 597 1041
Internal validation cohort (Center 1) 412 313 261
External validation cohort 753 912 660
   Center 2 20 20 16
   Center 3 144 279 215
   Center 4 168 174 111
   Center 5 244 266 209
   Center 6 83 81 51
    Center 7 94 92 58
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Implementation Details

In this study, we used the mean square error (MSE) loss to 
measure the deviation between the regressed heatmaps and 
the ground-truth heatmaps, which were generated using a 2D 
Gaussian distribution with sigma = 2. It should be recalled 
that the LAT knee joint radiograph has four additional key 
points over the AP knee joint. To manage this difference, we 
set the regression objective to 0 for these four key points on 
the AP knee radiographs. This approach offers two benefits: 
the model can handle both AP/LAT knee radiographs, and the 

input image can be automatically identified as an AP or LAT 
knee radiograph based on the number of detected key points.

We trained the model using stochastic gradient descent 
(SGD) with an initial learning rate of 0.002, which decayed by 
10 after 50 epochs and 56 epochs. The momentum was set to 
0.9, and the weight decay was set to 0.0001. We used a mini-
batch size of 4 and trained the model for a total of 60 epochs. 
The short side of the input image was resized to 288 while 
keeping the original aspect ratio. To increase the diversity of 
the data, data augmentation strategies including random flips 
and random inversions with a probability of 0.5 were used. 

Table 2  Detailed description of key points

AP/LAT Key point Description

AP/LAT A/B Diaphyseal orientation of the fibula is determined by two points on the center of the fibula diaphysis: key point A in the 
mid-fibula and key point B in the distal fibula

C The key point on the head of the fibula closest to the tibia
D The key point on the fibular head furthest away from the tibia
E The key point where the fibular head overlaps the tibia

LAT F/G Diaphyseal orientation of the femur is determined by two points on the center of the femur diaphysis: key point F in the 
proximal femur and key point G in the mid-femur

H/I Diaphyseal orientation of the tibia is determined by two points on the center of the tibia diaphysis: key point H in the 
proximal tibia and key point I in the mid-tibia

a b

Fig. 2  Example annotations of predefined key points and their corresponding auxiliary lines. a AP knee plain radiograph. b LAT knee plain 
radiograph. Auxiliary lines L1, L2, L3, vertical lines Sc, Sd, Se and flexion angle are all shown
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Experiments were implemented using the open-source tool-
box mmdetection and pytorch [33]. To speed up training, we 
used four NVIDIA 1080TI GPUs to train our model.

Results

Primary Validation

We evaluated the performance of the proposed AI-based 
QC model by measuring its agreement with clinicians 
using the intraclass correlation coefficient (ICC) [34]. We 

chose two-way random effects, absolute agreement, and 
a single rater as our measurement model, abbreviated as 
ICC(2,1) [34]. ICC > 0.75 indicates good reliability, and 
ICC > 0.9 indicates excellent reliability. p values less than 
0.05 were considered to indicate statistical significance 
using independent-samples t tests.

As shown in Table 3, the ICCs of the proposed AI-based 
QC model and clinicians in the internal validation cohort 
were 0.952 (95% confidence intervals (CI): 0.94–0.96), 
0.895 (95% CI: 0.87–0.91), and 0.993 (95% CI: 0.99–0.99) 
for the AP overlap ratio, LAT overlap ratio, and LAT 

Fig. 3  Pipeline of the proposed AI-based QC model

Table 3  ICC measurements between clinicians and the AI-based model in terms of AP overlap ratio, LAT overlap ratio, and LAT flexion angle

Data Sources AP overlap ratio (95% CI) LAT overlap ratio (95% CI) LAT flexion angle (95% CI)

Internal validation cohort
   Center 1 0.952 (0.94–0.96) 0.895 (0.87–0.91) 0.993 (0.99–0.99)

External validation cohort
   Center 2 0.913 (0.79–0.96) 0.909 (0.66–0.97) 0.984 (0.87–1.0)
   Center 3 0.915 (0.86–0.94) 0.874 (0.83–0.91) 0.976 (0.97–0.98)
   Center 4 0.930 (0.91–0.95) 0.869 (0.81–0.91) 0.978 (0.91–0.99)
   Center 5 0.940 (0.92–0.95) 0.827 (0.78–0.87) 0.997 (0.99–1.0)
   Center 6 0.934 (0.90–0.96) 0.877 (0.80–0.93) 0.993 (0.99–1.0)
   Center 7 0.911 (0.87–0.94) 0.825 (0.72–0.89) 0.983 (0.95–0.99)
   Mean 0.934 (0.92–0.94) 0.856 (0.83–0.88) 0.991 (0.99–0.99)
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flexion angle, respectively. There were no statistically sig-
nificant differences between clinicians and the AI-based 
model on any of the three criteria, namely, AP overlap ratio 
(p = 0.498), LAT overlap ratio (p = 0.858), and LAT flexion 
angle (p = 0.777). For the external validation cohort, the 
mean ICCs between clinicians and the AI-based model were 
0.934 (95% CI: 0.92–0.94), 0.856 (95% CI: 0.83–0.88), and 
0.991 (95% CI: 0.99–0.99) for the AP overlap ratio, LAT 
overlap ratio, and LAT flexion angle, respectively. Similarly, 
there were no statistically significant differences between 
clinicians and the AI-based model in terms of AP overlap 
ratio (p = 0.093), LAT overlap ratio (p = 0.278), and LAT 
flexion angle (p = 0.632). These results demonstrate that the 
QC performance of the proposed AI model is comparable 
to that of clinicians when testing on data within and across 
different centers, indicating great potential for application 
in clinical practice.

Figure 4 illustrates the correlation between the AI-based 
model and clinicians in terms of AP/LAT overlap ratios 
and LAT flexion angle. Specifically, Fig. 4a, b depicts the 
scatter points for the AP/LAT overlap ratios in the internal 
and external validation cohorts, respectively, while Fig. 4c 

shows the scatter points for the LAT flexion angle in both 
cohorts. The blue line in the center of each plot indicates 
exact agreement between the AI model and clinicians, mean-
ing no deviation between the two.

In general, the scatter points for the AP/LAT overlap 
ratios in Fig. 4a, b were closer to the centerline on the AP 
knee radiographs, suggesting a slight deviation. However, 
on the LAT knee radiographs, the scatter points were more 
spread out relative to the centerline. This pattern was con-
sistent across both internal and external validation cohorts. 
On the other hand, Fig. 4c shows high agreement between 
clinicians and the AI-based model for LAT flexion angle, 
with little deviation in either cohort.

To further quantify the agreement between the AI-based 
model and clinicians, Table 4 presents the mean, standard 
deviation, and maximum deviation of the AP/LAT overlap 
ratios in the internal and external validation cohorts. Nota-
bly, the mean, standard deviation, and maximum deviation 
of the LAT overlap ratio were consistently larger than those 
of the AP overlap ratio in both cohorts, which aligns with 
the scatter plots in Fig. 4. Since the LAT flexion angle ranges 
from 0 to 180, normalized values were also included in 

Fig. 4  Scatter plots of the correlations between the AI model and clinicians. a AP/LAT overlap ratios in the internal validation cohort, b AP/
LAT overlap ratios in the external validation cohort, c LAT flexion angles in both the internal and external validation cohorts

Table 4  Means and standard 
deviations of absolute 
deviations between clinicians 
and the AI-based model in 
both the internal and external 
validation cohorts

*The AP/LAT overlap ratio ranges between 0 and 1, while the LAT flexion angle ranges between 0 and 
180; the numbers in parentheses represent normalized angles, ranging between 0 and 1. The p value was 
calculated based on the mean using t tests

AP overlap ratio LAT overlap ratio LAT flexion angle*

Internal validation cohort
   Mean 0.019 0.040 1.049(0.006)
   Standard deviation 0.018 0.039 0.748(0.004)
   Max deviation 0.117 0.217 3.730(0.021)

External validation cohort
   Mean 0.024 0.058 1.289(0.007)
   Standard deviation 0.026 0.058 1.109(0.006)
   Max deviation 0.352 0.544 8.582(0.477)
   p value  < 0.01  < 0.01  < 0.01
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Table 4 for a fair comparison. The normalized values dem-
onstrate significant agreement between clinicians and the 
AI-based model in terms of LAT flexion angle, with more 
agreement observed in the internal validation cohort, which 
is also consistent with the findings shown in Fig. 4.

Comprehensive Performance Analysis

Our primary validation results showed that the proposed 
AI-based QC model performed poorer on LAT radiographs 
than on AP radiographs. Through a comprehensive visual 
analysis of knee plain radiographs, we found that occlusions 
were relatively common on the LAT knee joint radiographs, 
as shown in Fig. 5a, b, making identifying key point C dif-
ficult and resulting in inaccurate LAT overlap ratios. Addi-
tionally, the fibular head is prone to variations, such as the 
distortions shown in Fig. 5c, d, resulting in deviations in the 
final measurement results. Due to occlusion and variation, 
the fibular head overlap ratio is generally less consistent on 
LAT knee radiographs than on AP knee radiographs. In sum-
mary, the deviations on AP knee radiographs are generally 
lower than those on LAT knee radiographs, mainly due to 
the relatively better clarity and visibility of the knees on the 
AP projections.

Performance in Key Point Detection

Since HR-Net-based key point detection is the basis of the 
proposed AI-based QC model, we reported the quantitative 
performance of the key point detection model in terms of 
average precision (AP) and average recall (AR) [35]. Object 
key point similarity (OKS) was used to measure the deviation 
in the key points, calculated as OKS =

∑

i
exp(−d2

i
∕2s2k2

i
𝛿(vi>0))

∑

i
𝛿(vi>0)

 . 

Here, s2 is the object scale, which we set as the area of the 
smallest bounding box containing all key points; di is the 
Euclidean distance between a detected key point and its cor-
responding ground truth; vi is the visibility flag; and ki is a 
predefined constant derived from the statistics of annotation 
deviations. Generally, ki = 2σi , where σi is the standard devi-
ation, which differs for different key points. We applied the 
mean of the statistical results of the key point detection sta-
tistics [35]; that is, σi for key points A–I were [0.083, 0.083, 
0.029, 0.029, 0.029, 0.083, 0.083, 0.083, 0.083].

As shown in Table 5, our experimental results showed 
that our key point detection model achieved excellent mean 
average precision (mAP) values. Figure 6 also visualizes 
examples of key point detection results, where red key points 
and lines are clinician annotations, and blue key points 
and lines represent the AI model’s generated results. As 
expected, we observed that occlusion and ambiguity affected 
the identification of key point C, which could lead to inac-
curate measurement results.

Discussion

In this study, we proposed an AI-based fully automatic QC 
model for knee radiographs. The model uses HR-Net to iden-
tify predefined key points in images and then performs a set 
of geometric calculations to transform these key points into 
three QC criteria: the AP overlap ratio, LAT overlap ratio, 
and LAT flexion angle. The proposed model was trained 
and validated using a total of 2212 knee plain radiographs, 
including 910 AP radiographs and 1,302 LAT radiographs. 
An additional 1572 knee radiographs, including 912 AP 
radiographs and 660 LAT radiographs, were also collected 
from six external centers as an external validation cohort.

Fig. 5  Visualization of occlusion and variation of the fibular head. a 
and b show occlusion of the fibular head, making the location of key 
point C ambiguous and resulting in inaccurate LAT overlap ratios. In 
c and d, the fibular head is bent due to variations, where the red line 
indicates the orientation of the fibula. The curved fibular head distorts 

the calculations of Sc, Sd, and Se, resulting in inaccurate LAT over-
lap ratios. Due to occlusion and variation, the fibular head overlap 
ratio is generally less consistent on LAT knee radiographs than on AP 
knee radiographs
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Our results demonstrated that the proposed AI-based 
model achieved similar reliability to that of clinicians on 
all three QC criteria. In the internal validation cohort, the 
ICCs for the overlap ratios of the AP fibular head and LAT 
fibular head and the LAT flexion angle were 0.952, 0.895, 
and 0.993, respectively, while the corresponding ICCs for 
the external validation cohort were 0.934, 0.856, and 0.991. 
Our experimental results demonstrated that the differences 
in the performances between clinicians and the AI-based 
model on all three QC criteria in the internal and external 
validation cohorts were not significant. The proposed model 
was substantially more efficient, taking an average of 0.52 

± 0.10 (AP)/0.52 ± 0.10 (LAT) seconds to process a knee 
plain radiograph versus the 15.23 ± 1.33 (AP)/24.49 ± 1.91 
(LAT) seconds required by clinicians. Therefore, the pro-
posed AI-based QC model has great potential as an effective 
and efficient auxiliary tool to help clinicians reduce the time 
and effort in performing QC while maintaining objective, 
consistency, and comparable accuracy.

However, this study also had several limitations. First, we 
found statistically significant differences between the inter-
nal and external validation cohorts on all three QC criteria 
and our key point detection in our experimental results. This 
outcome was expected, given that the training and internal 

Table 5  Performance in key 
point detection

*mAP is the mean average precision, mAR is the mean average recall, and the p value is calculated based 
on the mAP using t tests

mAP* AP50 AP75 mAR* p value

AP Internal validation cohort 0.988 0.989 0.989 0.996  < 0.01
External validation cohort 0.922 0.986 0.986 0.955

LAT Internal validation cohort 0.846 0.990 0.972 0.903  < 0.01
External validation cohort 0.788 0.990 0.922 0.852

a b

Fig. 6  Visualization of key point detection, where the red key points and lines are from the clinician’s annotations and the blue key points and 
lines were generated by the AI model. Both occlusion and blurring affected the identification of key point C
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validation cohorts were obtained from the same center, 
whereas the external validation cohort was sourced from 
six other centers. Increasing the diversity of data sources 
in the training cohort could address this issue. Second, the 
performance in key point detection needs to be improved, 
especially on LAT knees, due to factors such as occlusion, 
blur, and variation that can affect the detection of key points. 
Additionally, key points A, B, F, G, H, and I, located along 
the diaphyseal orientation, are not well defined, and annota-
tions may vary between clinicians. Further exploration of 
other methods of determining the diaphyseal orientation is 
necessary. As a feasibility study, we only investigated three 
QC criteria for image positioning, and more quantitative 
measures, including imaging quality and other positioning 
criteria, will be explored in the future for a more complete, 
clinically applicable QC system. Finally, other quantitative 
metrics will also be explored to measure agreement between 
clinicians and the AI-based model.

In conclusion, the proposed AI-based QC model, by 
incorporating three objective QC criteria, including the AP 
overlap ratio, LAT overlap ratio, and LAT flexion angle, 
achieved reliability comparable to that of clinicians. In clini-
cal practice, clinicians are often too busy to carefully meas-
ure knee radiographs. The proposed AI-based QC model can 
automate the QC of knee radiographs with a performance 
that is highly consistent with traditional manual evaluation 
but more efficient. Therefore, the proposed AI-based model 
has great potential for automating the QC of knee radio-
graphs by clinicians while offering great conveniences to 
clinical practice.
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