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Abstract
Lung cancer is the second most fatal disease worldwide. In the last few years, radiomics is being explored to develop prediction 
models for various clinical endpoints in lung cancer. However, the robustness of radiomic features is under question and has been 
identified as one of the roadblocks in the implementation of a radiomic-based prediction model in the clinic. Many past studies have 
suggested identifying the robust radiomic feature to develop a prediction model. In our earlier study, we identified robust radiomic 
features for prediction model development. The objective of this study was to develop and validate the robust radiomic signatures 
for predicting 2-year overall survival in non-small cell lung cancer (NSCLC). This retrospective study included a cohort of 300 stage 
I–IV NSCLC patients. Institutional 200 patients’ data were included for training and internal validation and 100 patients’ data from 
The Cancer Image Archive (TCIA) open-source image repository for external validation. Radiomic features were extracted from 
the CT images of both cohorts. The feature selection was performed using hierarchical clustering, a Chi-squared test, and recursive 
feature elimination (RFE). In total, six prediction models were developed using random forest (RF-Model-O, RF-Model-B), gradi-
ent boosting (GB-Model-O, GB-Model-B), and support vector(SV-Model-O, SV-Model-B) classifiers to predict 2-year overall 
survival (OS) on original data as well as balanced data. Model validation was performed using 10-fold cross-validation, internal 
validation, and external validation. Using a multistep feature selection method, the overall top 10 features were chosen. On internal 
validation, the two random forest models (RF-Model-O, RF-Model-B) displayed the highest accuracy; their scores on the original 
and balanced datasets were 0.81 and 0.77 respectively. During external validation, both the random forest models’ accuracy was 
0.68. In our study, robust radiomic features showed promising predictive performance to predict 2-year overall survival in NSCLC.

Introduction

Lung cancer is a fatal disease and second-most common cancer 
worldwide [1]. As per Global Cancer Statistics 2020 (GLO-
BOCAN 2020), lung cancer is the most common cause of 

cancer-related death worldwide [2]. Lung cancer alone accounts 
for 2,093,876 (11.6%) new cases every year and 1,761,007 
(18.4%) deaths every year worldwide [2]. Non-small-cell lung 
cancer (NSCLC) accounts for 85% of lung cancer globally [3]. 
The prognosis of the disease and survival of the patients grossly 
depend on the stage of the disease upon diagnosis. Staging of 
the disease is performed based on the tumor (T), node (N), and 
metastasis (M) stage (TNM stage) of the disease [4]. TNM stag-
ing is often a complex system and depends on imaging, pathol-
ogy, and clinical assessment. As a consequence, it is sometimes 
difficult to identify the disease stage very accurately resulting 
in poor outcomes of treatment.

With the advent of genomic biology and other technical  
developments, identification of disease sub-group has become 
more accurate, and survival has improved significantly. For 
example, gene sequencing by polymerase chain reaction 
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(PCR) assays is a widely used method for the identifica-
tion of epidermal growth factor receptor (EGFR) muta-
tions in NSCLC patients [3, 5–9]. The diagnosis of the 
presence of EGFR mutation in NSCLC patients opens the 
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option of targeted therapy using tyrosine kinase inhibi-
tors (TKIs) that improves the overall survival in patients 
with EGFR mutation [9]. Several driver gene mutations 
like EGFR, BRAF, KRAS, MET, ALK, and ROS1 were 
also identified and may be druggable targets. In NSCLC 
patients, about 32% worldwide and 38% of Asians have  
EGFR mutations [3–10]. The overall prevalence of EGFR 
mutation is higher in females (female vs. male: 43.7% 
vs. 24.0%) [3]. The prevalence of EGFR mutation is also 
higher in non-smokers (non-smokers vs. past or current  
smokers: 49.3% vs. 21.5%) [3]. Many other mutations 
(EGFR, ALK, ROS1, BRAF, NTRK, MET, and RET) in 
NSCLC patients have resulted in several subgroups. These 
patients are treated with targeted therapy and personalized 
treatment [4, 5]. However, these biomarker-guided tar-
geted therapies have improved the survival significantly, 
but occasionally these treatments fail. In given circum-
stances, patient selection for these expensive targeted 
therapies becomes crucial, and radionics-based prediction 
models may be helpful as shown in various retrospective  
studies [10].

Radiomics is a new workflow that extracts high-throughput 
data from medical images called radiomic features. Radiomic 
features may show a very high correlation with the treatment 
outcome. Many publications on radiomics have demonstrated 
the role of radiomic features in the diagnosis and prognosis of 
the disease in many cancer types [11–17]. Many researchers 
have demonstrated the role of radiomics in prediction model 
development and treatment outcome prediction [10]. Aerts, 
He et al. in their study have demonstrated the potential of 
radiomic features in the prediction of the overall survival in 
NSCLC patients [18]. A study by He et al. showed the use 
of radiomic features in the prediction of progression-free 
survival in lung cancer [19]. In a similar study, Tunali et al. 
developed a prediction model to predict local recurrence [20]. 
Nevertheless, several studies have shown the importance of 
radiomic signatures in the prediction of various clinical end-
points, and many studies have also raised concerns about the 
stability of radiomic features [20–22]. The stability of radi-
omic features is often assessed by measuring similarities in 
feature values in repeatability (test–retest) and reproducibility 
studies. It is of utmost importance generalizing the radiomic-
based prediction model across the clinic and worldwide. The 
stability of radiomic features depends on various factors like 
differences in imaging equipment, imaging parameters or pro-
tocols, image reconstruction algorithms, tumor delineation, 
and pre-processing steps of radiomic feature extraction. The 
instability of radiomic features has been identified to be a key 
issue with the generalization of the radiomic-based predic-
tion model [20–22]. Several studies have been performed to 
identify robust radiomic features among the many features 
extracted from medical images [20–22]. In our earlier repeat-
ability and reproducibility study, we have identified robust 

radiomic signature on phantom and clinical cohort [21]. In 
this study, we aim to develop and validate those robust radi-
omic signatures for the overall survival prediction in non-
small cell lung cancer patients.

Material and Method

The study was approved by the Institution Ethics Commit-
tee (IEC) (IEC-2) of our hospital as a retrospective study. A 
consent form waiver is provided by the same IEC as an institu-
tional policy. All the data of the patients were kept confidential.

Patients

TMH Dataset

Two hundred patients of non-small cell lung carcinoma 
(NSCLC) who underwent treatment with a combination 
of surgery, chemotherapy, and radiotherapy in our hospi-
tal from January 2012 to January 2017 were included in 
this study. The pre-treatment CT or PET/CT scans of these 
patients was extracted from the hospital PACS and was 
included. Similarly, clinical data were extracted from the 
hospital information system (HIS). Patients’ demographic 
data are shown in Table 1.

External Validation Set

The Cancer Image Archive (TCIA) open-source data: 100 
NSCLC patients with CT images and RT structures (GTV-
1) and survival data of NSCLC-radiomics collection were 
downloaded from the TCIA portal [18, 23]. The CT scans 
and GTV were used to extract radiomic features.

Pre‑Processing of Data

Clinical data extracted from the HIS were cleaned and con-
verted into a form amenable to machine learning. CT or 
PET/CT scans were checked for completeness, and contrast-
enhanced CT series of PET/CT or CT studies were selected 
for this study.

Based on median overall survival (OS) in both the data-
sets, 2-year OS was selected as a clinical endpoint (Table 1). 
For both datasets, OS were binarized based on 2-year OS 
[(OS < 2 years) = 1 and (OS > 2 years) = 0].

PET/CT Imaging Procedure

TMH Dataset

Pre-treatment PET/CT scans were performed using Gemini 
TF16 or Gemini TF64 PET/CT scanners (Philips Medical 
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Systems, Netherlands). The CT of PET/CT scans were 
performed after the injection of 60 to 80 ml of non-ionic 
contrast using the protocol mentioned in Supplementary 
Table s1. CT images were reconstructed using the filtered 
back project (FBP) reconstruction algorithm.

TCIA External Validation Set

Pre-treatment CT scans were performed using a Gemini 
CT scanner (Philips Medical Systems, Netherlands). The 
CT scans were performed after the intravenous injec-
tion of 80 ml of non-ionic contrast using the protocol was 

mentioned in Supplementary Table s1. CT images were 
reconstructed using the filtered back projection (FBP) recon-
struction algorithm.

From both cohorts, CT data were extracted in Digital 
Imaging and Communications in Medicine (DIOCM) for-
mat for radiomic extraction.

Radiomic Extraction

Internal Dataset The CT series of PET/CT scans were 
loaded on Intellispace Discovery Portal (research-only build; 

Table 1  Demographic data 
of patient population used in 
this study

Variable TMH cohort External 
validation 
cohort

t-statistics p value

Age (year) Median 56 71 −10.5  < 0.005
1st Qu 50 62
3rd Qu 64 76

Sex Female 65 27 1.7 0.08
Male 135 73

Pathology Adenocarcinoma 161 10 15.8  < 0.005
Squamous cell carcinoma 32 37
Others 7 53

TNM stage T1 20 18 0.24 0.81
T2 98 44
T3 48 13
T4 34 25
N0 77 43 −0.85 0.39
N1 26 6
N2 85 31
N3 12 20
M0 151 99 5.0  < 0.005
M1 49 1

AJCC_stage IA 9 28 2.7 0.007
IIA 38 8
IIB 32 –
III 2 –
IIIA 32 24
IIIB 11 40
IV 76 0

WHO performance 
score

0 123 –
1 75 –
2 2 –

Treatment Chemo 78 100
Surgery + chemo 122 –

Overall survival (days) Median 815.5 416 1.3 0.20
1st Qu 447.2 172
3rd Qu 1219.8 1165

Survival  < 2 years 110 67
 > 2 years 90 33
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Philips Medical System, Eindhoven, The Netherlands) and 
primary tumor delineation was performed using 3D con-
touring software by the experienced (more than 15 years) 
medical physicists and saved as radiotherapy structure 
(DICOM series: RT structure) by the name of gross tumor 
volume (GTV). The GTVs were checked and approved by 
experienced (more than 20 years) nuclear medicine physi-
cians and radiologists. Subsequently, the DICOM images 
and GTV were transferred to the research computer for 
radiomic extraction. On a research PC, radiomic features 
were extracted using in-house developed PyRadGUI soft-
ware using a combination of Plastimatch [24] and Pyradi-
omics software [25]. The following pre-processing steps 
were performed using PyRadGUI software. Image conver-
sion: DICOM images and RT structures were converted into 
NRRD format using the Plastimatch package. Resampling: 
Images were resampled using a 2 × 2 × 2 mm cube isotropic 
voxel. Filtering and transformation of image: Three sets 
of images were generated applying Laplacian of Gaussian 
(LoG) filters with sigma values of 1, 2, and 3 mm. We also 
generated eight sets of wavelet-transformed images using 
eight combinations of high-pass and low-pass wavelet fil-
ters [25]. Finally, a total of 1093 radiomic features were 
extracted from the 12 imaging sets (1 set of original images, 
3 sets of LoG images, and 8 sets of wavelet images) and cor-
responding GTVs [25].

External Validation Set The TCIA dataset contains CT 
Image and RT structure (GTV) in DICOM format. We per-
formed the same operation as described in the earlier sec-
tion, and 1093 radiomic features were extracted for every 
patient’s data.

Data Balancing

Usually, it is assumed that balanced endpoints are more 
appropriate to train most of the machine learning algo-
rithms for prediction model development [26]. The 
majority of the time clinical endpoints have imbalanced 
ratios, which do not meet the assumptions of balanced 
endpoints and require data balancing. Data balancing was 
performed using synthetic minority oversampling tech-
nique (SMOTE).

Prediction Algorithm Used

Several radiomic studies have shown that random forest 
(RFC), support vector (SVC), and gradient boosting classi-
fier (GBC) algorithms are the most efficient classification 
algorithms for treatment response and outcome events pre-
diction in radiomics based analysis in several types of cancer 
(28–30). Hence, in this study, we have used RFC, SVC, and 

GBC for the overall survival prediction. Additionally, we also 
developed deep learning (DL) multilayer perceptron model.

Radiomic Feature Selection

We opted for a two-step process to select the best radiomic 
features for OS prediction out of 1093 radiomic features 
extracted from CT images. We selected 121 stable radiomic 
features based on our earlier radiomic stability study [21]. 
Subsequently, the top 50 features were selected using the 
Chi-squared test. Finally, the top 10 features were selected 
by applying recursive feature elimination (RFE) methods 
using random forest (RFE-RF). Python 3.9.0 software is 
used for the feature selection process.

Prediction Model Development and Validation

The prediction models were developed using random forest 
(RF), support vector (SV), and gradient boosting (GB) algo-
rithms in Python 3.9.0 software. Hyperparameters of these pre-
diction algorithms were tuned using nested cross-validation, 
and the same parameters were used to develop all the prediction 
models. Subsequently, 10-fold cross-validation was performed 
to access the model performance on the internal dataset. In the 
next step, a train-test split (80:20) was performed for model 
development and validation. Three prediction algorithms were 
used to develop a total of six prediction models utilizing origi-
nal and balanced training sets.. RF models (RF-Model-O: on 
the original training data and RF-Model-B: on the balanced 
training data); SV models (SV-Model-O: on the original train-
ing data and SV-Model-B: on the balanced training data), and 
GB models (GB- Model-O: on the original training data and 
GB-Model-B: on the balanced training data) were developed 
on the internal dataset and validated on the test dataset. Subse-
quently, these models were also validated using the bootstrap 
(1000 iterations) method on the test dataset and on the external 
validation cohort.

Two deep learning models (simple-DL: 7-layer percep-
tron model without dropout layer and dropout-DL: 7-layer 
perceptron model with dropout layer) were also developed 
using an internal train-test dataset. Both the DL models 
were validated using the internal test dataset and an exter-
nal dataset.

Using random forest, support vector, and gradient boost-
ing algorithm, three models, i.e., RF-MODEL-V, SV-
MODEL-V, and GB_MODELS-V, were also developed for 
predicting 2-year overall survival with tumor volume as a 
single feature.

Statistical Tests

For all the statistical tests, different packages of Python 3.9.0 
open-source software were used. Descriptive statistical tests 
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Fig. 1  Heatmap of 121 radiomic features based on A Pearson’s correlation test and B z-score. Hierarchical clustering shows the clusters of radiomic features
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were performed to understand the distribution of patients 
in various categories. The demographic data of the internal 
and external cohorts were compared using t-test. Hierarchi-
cal clustering using Pearson’s correlation test and z-score 
and Chi-squared tests was performed for feature reduction. 
Recursive feature elimination using a random forest algo-
rithm was performed to select the most significant features 
for model development. The features from both cohorts were 
compared using a t-test and violin plot. Receiver operating 
characteristics area under the curve (AUC), accuracy, preci-
sion, recall, and f1-score were calculated for all prediction 
models on internal and external validation datasets.

Results

The descriptive statistics of demographic data and com-
parison for both cohorts are shown in Table 1. The heat-
map with hierarchical clustering and z-score heatmap of 
121 stable radiomic features shows several feature clusters 
(Fig. 1). Subsequently, based on hierarchical clustering 
and the multivariate Chi-squared test, top 50 significant 
features were selected. Finally, the RFE technique was 
applied using the random forest algorithm, and the 10 
most significant radiomic features were selected for model 
development. The significance of 10 selected features on 
the internal dataset using the Chi-squared test and the com-
parison of the distribution feature values on internal and 
external datasets are shown in the bar chart (Fig. 2A) and 
violin plot (Fig. 2B), respectively. The comparison of ten 
significant radiomic features between internal and exter-
nal cohorts is shown in Table 2. The violin plot and t-test 
show a similarity in feature distribution for the majority of 
selected features in internal and external datasets except 
for a few (Fig. 2).

The 10-fold cross-validation on the institutional (TMH) 
dataset showed a good prediction accuracy and AUC of 
0.73 ± 0.08 and 0.77 ± 0.08 for RF-Model-O, 0.69 ± 0.12 
and 0.76 ± 0.09 for SV-Model-O, and 0.73 ± 0.00 and 
0.79 ± 0.08 for GB-Model-O, respectively. The accuracy 
of models in train-test internal validation was between 
0.76 (for SV-Model-O) to 0.80 (RF-Model-O/GB-Model-
O) and AUC 0.81 (RF-Model-O/GB-Model-O) to 0.82 
(SV-Model-O) with the original training set (Fig. 3). The 
training and test prediction scores for all the models devel-
oped on the original dataset were found to be the same 
(Supplementary Table s2) The comparison of prediction 

models developed using the original and balanced training 
set was found to be comparable (Table 3). The accuracy 
of the external validation cohort was found to be between 
0.57 (SV-Model-O) and 0.68 (RF-Model-O/GB-Model-O) 
and AUC 0.61(SV-Model-O) to 0.72 (RF-Model-O/GB-
Model-O) (Fig. 3). The test and external validation pre-
diction scores were found to be comparable to that of the 
bootstrap validation respectively. The internal and external 
validation results for all the models are shown in Table 4. 
The post-calibration model accuracy in internal validation 
was also found to be the same. The ROC curve of all the 
models for cross-validation, internal validation, and exter-
nal validation and bootstrap validation is shown in Fig. 3. 
The test ROC curve and confusion matrix for prediction 
models developed on original and balanced training sets 
are shown in Supplementary Figs. s1–s3. The test pre-
diction scores for prediction models developed on origi-
nal and balanced training sets are shown in Table 3. The 
detailed prediction scores of prediction models in internal 
and external validation are shown in Table 4. The confu-
sion matrix of internal and external validation is shown 
in Supplementary Fig. 4. The calibration plots of all three 
models are shown in Fig. 4. The deep learning models 
(simple-DL and dropout-DL) also performed well with 
accuracy = 0.76 and AUC = 0.72, respectively. However, 
these models failed in external validation with an accuracy 
of 0.55 for both models. The detailed model performance 
scores are shown in Table 4.

The accuracy of the tumor volume-based models, RF-
Model-V, SV-Model-V, and GB-Model-V, in the internal 
validation set was found to be 0.57, 0.50, and 0.51, respec-
tively. The details of the internal validation scores of these 
volume-based models are shown in the supplementary mate-
rial (Supplementary Table s3 and Fig. s5).

Fig. 2  The feature significance of the ten most important features on 
the Chi-squared test (A), the distribution of min–max scaled feature 
values of the top 10 significant features for the TMH cohort and the 
validation cohort (B)

◂ Table 2  The results of the unpaired t-test showing the relation 
between the features of the two datasets

Features t-statistics p value

original_shape_Flatness 2.02 0.04
original_shape_MajorAxisLength 1.28 0.20
original_shape_ 

Maximum2DDiameterColumn
−0.99 0.32

original_shape_Maximum2DDiameterRow 1.09 0.27
wavelet_LLH_glcm_Id −2.74 0.006
wavelet_LLH_glcm_SumEntropy −104.08 2.43e-236
wavelet_LHL_ngtdm_Strength −10.89 1.75e-23
wavelet_HLL_glszm_LargeAreaEmphasis 1.66 0.097
wavelet_HLL_glszm_ZoneVariance 1.66 0.094
log_sigma_3_mm_3D_firstorder_ 

RobustMeanAbsoluteDeviation
0.26 0.79
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Discussion

In the last few years, radiomics has been a major area of 
research in oncology to develop digital phenotypes for vari-
ous cancers [10–19]. Several radiomics-based prediction 

models have been developed, validated, and reported in the 
literature to predict various prediction endpoints in various 
cancer types. The role of radiomic features in the prediction 
of various clinical endpoints in lung cancer has been inves-
tigated and reported widely in the last few years [10–19,  
27, 28, 30, 32–35]. But the generalization of these radiomic 
models has raised concern in the radiomics community. The high 
number of radiomic features extracted from the medical images  
of tumors leads to a data explosion. This data explosion raises 
several concerns like issues related to feature repeatability  

Fig. 3  The ROC-AUC curve in 10-fold cross-validation, internal 
validation, and external validation. AUC curves of the random forest 
model, gradient boosting model, and support vector model are shown 
in the first, second, and last rows, respectively

◂

Table 3  The comparison of the prediction model developed on the original and balance dataset

O stands for original data set, B stands for balanced dataset

Prediction model Dataset Accuracy Precision Recall f1-score AUC 

Random forest model RF-Model-O Internal validation 0.83 0.84 0.82 0.83 0.87
RF-Model-B 0.80 0.80 0.80 0.80 0.87
RF-Model-O External validation 0.68 0.66 0.68 0.67 0.69
RF-Model-B 0.71 0.69 0.71 0.69 0.69

Support vector SV-Model-O Internal validation 0.78 0.80 0.78 0.78 0.82
SV-Model-B 0.75 0.76 0.75 0.75 0.83
SV-Model-O External validation 0.57 0.62 0.57 0.58 0.61
SV-Model-B 0.61 0.62 0.61 0.61 0.61

Gradient boost GB-Model-O Internal validation 0.80 0.81 0.80 0.80 0.81
GB-Model-B 0.80 0.82 0.80 0.80 0.86
GB-Model-O External validation 0.68 0.66 0.68 0.67 0.72
GB-Model-B 0.65 0.63 0.65 0.64 .65

Table 4  The performance of prediction models in internal and external validation

Algorithm Dataset Model Accuracy Classification report AUC 

Precision Recall f1-score

Random forest classifier (RFC) 10-Fold cross-validation RFC 0.72 ± 0.10 – – – 0.77 ± 0.08
Internal validation RF-Model-O 0.83 0.84 0.82 0.83 0.87
Bootstrap-internal validation RF-Model-O 0.81 ± 0.05 0.83 ± 0.05 0.80 ± 0.07 0.82 ± 0.05 0.80 ± 0.06
External validation RF-Model-O 0.68 0.66 0.68 0.67 0.69
Bootstrap-external validation RF-Model-O 0.72 ± 0.04 0.77 ± 0.06 0.85 ± 0.03 0.81 ± 0.03 0.69 ± 0.05

Support vector classifier (SVC) 10-Fold cross-validation SVC 0.69 ± 0.12 – – – 0.76 ± 0.09
Internal validation SV-Model-O 0.78 0.80 0.78 0.78 0.82
Bootstrap-internal validation SV-Model-O 0.78 ± 0.08 0.94 ± 0.07 0.68 ± 0.12 0.81 ± 0.03 0.81 ± 0.09
External validation SV-Model-O 0.57 0.62 0.57 0.58 0.61
Bootstrap-external validation SV-Model-O 0.57 ± 0.06 0.73 ± 0.07 0.57 ± 0.07 0.64 ± 0.06 0.61 ± 0.07

Gradient boosting classifier 
(GBC)

10-Fold cross-validation GBC 0.73 ± 0.07 – – – 0.79 ± 0.08
Internal validation GB-Model-O 0.80 0.81 0.80 0.80 0.81
Bootstrap-internal validation GB-Model-O 0.72 ± 0.05 0.84 ± 0.06 0.67 ± 0.07 0.74 ± 0.06 0.81 ± 0.05
External validation GB-Model-O 0.68 0.66 0.68 0.67 0.72
Bootstrap-external validation GB-Model-O 0.70 ± 0.03 0.73 ± 0.04 0.86 ± 0.03 0.79 ± 0.03 0.67 ± 0.04

7-layer perceptron model Internal validation Simple-DL 0.76 0.7 0.73 0.71 0.72
Dropout-DL 0.76 0.7 0.73 0.71 0.72

External validation Simple-DL 0.55
Dropout-DL 0.55
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and reproducibility, feature redundancy, feature insignifi-
cance, and multidimensionality which is the biggest chal-
lenge facing the radiomic community. To overcome these 
challenges, the model development needs to undergo sev-
eral steps, i.e., identification of stable features, removal of 
redundant features, selection of most significant features, 
and finally selection of the best prediction algorithm [29]. 
In this study, we have implemented a multistep feature selec-
tion process to identify the most suitable features for the 
overall survival prediction in NSCLC patients. Based on our 
earlier study on the repeatability and reproducibility of CT 
radiomic features, we selected 121 robust radiomic features 
out of 1093 extracted features [21] for this study to mini-
mize the drawback related to the reproducibility of radiomic 
features. To reduce the redundancy, we used Chi-squared 
and hierarchical clustering using Pearson’s correlation and 
z-score analysis to identify and remove redundant features. 
Subsequently, we used a random forest algorithm-based 
recursive feature elimination (RFE) technique to identify 
the most suitable radiomic features to predict 2-year overall 
survival. In our investigation, these radiomic features were 
able to risk stratify patients into two groups and predict the 
overall survival in this cohort of patients. These radiomic 
features show a strong correlation with 2-year overall sur-
vival. We used the three most common machine learning 
algorithms, i.e., RFC, SVC, and GBC and the deep learning 
multilayer perceptron model to develop a prediction model. 
The average accuracy of RFC and GBC is similar with an 
accuracy of around 0.80 and has better accuracy than the 
SVC prediction model in internal validation. The training 
and test prediction scores for all the models were found 
to be comparable (Supplementary Table s2). Comparable  
training and test prediction scores indicate the reduced prob-
ability of model overfitting. Several studies in the past have 
reported similar findings and our results affirm these find-
ings [26, 27]. Similarly, the fact that GBC and RFC mod-
els performed equally well on 10-fold cross-validation and 
bootstrap validation suggests a robust prediction model. In 
external validation, the accuracy of GBC and RFC models 
was also found to be comparable and equally good (accuracy 
> 0.70). The calibration plot of GBC and RFC also shows 
similarity in the internal and external validation with a Brier 
score of around 0.15. The slight reduction in prediction 
accuracy matrices may be attributed to differences in the two 
cohorts as shown in Table 1. Some features also have dif-
ferent distributions in two cohorts as shown in the t-test and 
violin plot. However, bootstrap validation on internal tests 

and external cohorts shows the stability of radiomic-based 
prediction model in NSCLC. The deep learning model also 
showed good accuracy around 0.72 in internal validation but 
failed miserably in external validation. Both the deep learn-
ing models performed equally well in internal validation, 
whereas these models failed miserably in external validation 
suggesting the overfitting of the models.

As our development and internal validation cohort 
include NSCLC patients of stages I–IV, it establishes the fact 
that this model can predict the event rate across the disease 
stage. The external validation cohort had several dissimilari-
ties from that of the development cohort; i.e., it consists of 
stages I–III, the difference in the median age was around 
13 years, the difference in median overall survival, and the 
difference in treatment offered. Nevertheless, the prediction 
model performed well, and this also strengthens the claim of 
the generalized nature of this prediction model.

There is concern among the radiomic community regard-
ing the feature stability and predictability of the radiomic 
model in external validation. Several studies have been per-
formed to address the issues related to the stability of radi-
omic features [21, 22]. In our earlier study, we performed 
a rigorous analysis on a human cohort and phantom study 
to identify the most robust radiomic features [21]. In this 
study, we were successfully able to demonstrate two aspects 
of a good radiomic feature: (1) the predictive power and 
(2) the stability of robust radiomics-based prediction model 
in external validation. The results of the prediction mod-
els on internal validation confirm the predictive potential 
of these robust radiomic features. We have chosen the top 
10 radiomic features from 121 robust radiomic features that 
offered the highest accuracy in RFE using a random for-
est algorithm. While the success of these prediction mod-
els especially random forest and gradient boost models in 
external validation is encouraging, radiomic-based predic-
tion models may be generalized if feature stability is thor-
oughly and accurately assessed. Le et al. in their study have 
shown the ability of radiomic features to predict the overall 
survival using the cox model. In this study, the authors have 
also selected ten significant radiomic features similar to our 
study for model development [35]. A similar study by the 
same author demonstrated the predictive power of the radi-
omic-based prediction model in discriminating the patient 
in high- and low-risk groups as well as the overall survival 
prediction in multiorgan cancer [36]. With our study, we 
have assessed and demonstrated the predictive capability of 
robust radiomic features in the prediction of 2 years of the 
overall survival in lung cancer, which was also validated on 
external datasets. However, the radiomic features selected 
in our study are different from that of Le et al. which may 
be because of the features included at the beginning of the 
feature selection step, feature selection techniques used, and 
prediction algorithms used.

Fig. 4  The calibration plot and Brier scores of the prediction mod-
els with and without calibration in the internal validation set. The 
calibration plot and Brier score of random forest model, gradient 
boosting model, and support vector model in the first, second, and 
last row, respectively

◂
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Several studies in the past have suggested the role of decision 
support systems (DSS) in clinical decision-making [32–35]. 
Prediction of the overall survival is one of the important clini-
cal questions in oncology that can be answered by a DSS. Our 
study can contribute significantly to the development of a DSS 
for the prediction of the overall survival in lung cancer.

The current study has a number of limitations, including its 
retrospective nature and limited sample size, as well as a hetero-
geneous cohort. To address the issue of small sample size, we 
employed the cross-validation and bootstrap validation approach 
for model validation. In future research, our goal is to validate 
this model on a multicentric study retrospectively. Subsequently, 
this model will be trained on the large retrospective dataset and 
validated on the prospective dataset from a multicentric study. 
The ultimate objective of this research is to validate this predic-
tion model in multicentric prospective clinical trials and imple-
mentation of the decision support systems in clinics.

Conclusion

Robust radiomic features have shown promising results for 
the prediction of 2-year overall survival in non-small cell 
lung cancer. Comparing the SVC model, the RFC and GBC 
models performed better in internal and external validation. 
Despite the fact that this is merely an early study on a small 
development and validation dataset, the results of external 
validation suggest that the radiomic-based prediction model 
may eventually be generalized.
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