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Abstract
The objective of this study is to develop a radiomic signature constructed from deep learning features and a nomogram for predic-
tion of axillary lymph node metastasis (ALNM) in breast cancer patients. Preoperative magnetic resonance imaging data from 
479 breast cancer patients with 488 lesions were studied. The included patients were divided into two cohorts by time (training/
testing cohort, n = 366/122). Deep learning features were extracted from diffusion-weighted imaging–quantitatively measured 
apparent diffusion coefficient (DWI-ADC) imaging and dynamic contrast-enhanced MRI (DCE-MRI) by a pretrained neural 
network of DenseNet121. After the selection of both radiomic and clinicopathological features, deep learning signature and a 
nomogram were built for independent validation. Twenty-three deep learning features were automatically selected in the train-
ing cohort to establish the deep learning signature of ALNM. Three clinicopathological factors, including LN palpability (odds 
ratio (OR) = 6.04; 95% confidence interval (CI) = 3.06–12.54, P = 0.004), tumor size in MRI (OR = 1.45, 95% CI = 1.18–1.80, 
P = 0.104), and Ki-67 (OR = 1.01; 95% CI = 1.00–1.02, P = 0.099), were selected and combined with radiomic signature to 
build a combined nomogram. The nomogram showed excellent predictive ability for ALNM (AUC 0.80 and 0.71 in training 
and testing cohorts, respectively). The sensitivity, specificity, and accuracy were 65%, 80%, and 75%, respectively, in the test-
ing cohort. MRI-based deep learning radiomics in patients with breast cancer could be used to predict ALNM, providing a 
noninvasive approach to structuring the treatment strategy.
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Abbreviations
ALND  Axillary lymph node dissection
ALNM  Axillary lymph node metastasis
AUC   Area under the receiver operating characteristic 

curve
CI  Confidence interval
DL  Deep learning

ER  Estrogen receptor
HER2  Human epidermal growth factor receptor 2
MRI  Magnetic resonance imaging
NPV  Negative predictive value
PPV  Positive predictive value
PR  Progesterone receptor
ROC  Receiver operating characteristic
SLNB  Sentinel lymph node biopsy

Introduction

Female breast cancer has surpassed lung cancer as the most 
commonly diagnosed cancer, and it is the leading cause of 
cancer-related death among women worldwide [1]. Axillary 
lymph node metastasis (ALNM) is one of essential prog-
nostic factors for breast cancer, guiding therapy decisions 
[2]. Currently, the gold standard for diagnosing ALNM is 
still pathological examination. Axillary lymph node dissec-
tion (ALND) and sentinel lymph node biopsy (SLNB) are 
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most commonly recommended in clinical practice. How-
ever, both of them are invasive procedures and have some 
complications, such as numbness, seroma, lymphedema, and 
infection [3]. SLNB has been criticized because of its high 
false-negative rate [4]. It would be beneficial to develop a 
noninvasive and precise diagnostic approach to evaluating 
axillary lymph node status preoperatively, reducing unneces-
sary lymph node operation and patient distress.

Breast magnetic resonance imaging (MRI), as a nonin-
vasive method, has been widely used in clinical practice 
with a variety of indications, including screening of high-
risk women, tumor staging, and neoadjuvant chemotherapy 
(NACT) response assessment. Typical breast MRI proto-
cols include multiple different sequences, for instance, 
T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI), and diffusion-weighted imaging (DWI), as well as 
dynamic contrast-enhanced MRI (DCE-MRI). MRI features 
mainly derived from DCE and DWI allow for independently 
predicting lymph node status. The low apparent diffusion 
coefficient (ADC) value and rim enhancement of tumor 
in patients with breast cancer were associated with lymph 
node metastasis [5, 6]. However, manual annotation of tumor 
imaging characteristics is generally limited to a few qualita-
tive descriptors and observer subjectivity [7, 8].

Radiomics, a hot research topic in recent years, is a pro-
cess of converting medical images into mineable data by 
extracting high-throughput quantitative features. [9]. The 
subsequent analysis of these features can expose intratumor 
heterogeneity and provide potential noninvasive biomarkers 
for clinical-decision support [9, 10]. Radiomic nomogram, 
a graphic representation of model that combines radiomic 
signature and clinical characteristics, has improved the pre-
diction ability of axillary lymph node metastasis in breast 
cancer [11].

In combination with deep learning features automati-
cally learned from convolutional neural networks, radiomics 
showed excellent performance in cancer diagnosis [12, 13]. 
Compared to the predefined handcrafted radiomics features, 
deep features of the tuning model are high-level features 
learning directly from image pixels in a data-driven way, 
which could supplement predictive information to improve 
the model performance. To date, most studies used tradi-
tional radiomics methods and obtained average performance 
by manually extracting features from only one sequence—
dynamic contrast-enhanced MRI [11, 14, 15]. Few radiom-
ics studies combined multiple sequences for the prediction 
of ALNM [16, 17]. Until now, deep learning has been less 
often combined with radiomics for the prediction of ALNM 
in breast cancer.

Therefore, the purpose of this study was to develop a 
noninvasive radiomic signature from preoperative DCE-
MRI and DWI of the primary tumor combined with clin-
icopathologic factors to predict ALN metastasis in patients 

with invasive breast cancer, which helps identifying those 
patients who have certain negative lymph node invasion and 
reduce unnecessary invasive procedure.

Materials and Methods

Patients

This retrospective study was approved by the Institutional 
Ethics Committee of our hospital, and the informed consent 
requirement was waived (No.XHEC-D-2022–236). Between 
February 1, 2018, and June 31, 2020, totally 488 lesions of 
479 patients were included as the training/testing cohort. 
Nine patients had bilateral simultaneous breast cancer. Our 
inclusion criteria were patients with (1) preoperative con-
trast-enhanced MRI examination before surgery or biopsy; 
(2) histologically confirmed primary invasive breast cancer; 
and (3) SLN biopsy or ALND to evaluate the status of ALN. 
The exclusion criteria were as follows: (1) underwent biopsy, 
chemoradiotherapy before MRI examination; (2) insufficient 
image quality; (3) incomplete clinicopathological data.

Finally, a total of 488 lesions (166 lymph node metas-
tasis positive and 322 negative) in 479 patients (mean age, 
58.0 ± 11.8 years; age range, 28–89 years) who met the cri-
teria and with DCE-MRI of the same spatial resolution and 
completed clinicopathologic characteristics were included 
in this study. The included patients were divided into two 
cohorts by time. Lesions diagnosed between February 
2018 and October 2019 were assigned to a training cohort 
(n = 366, 123 positive LN/243 negative LN), and lesions 
diagnosed between November 2019 and June 2020 were 
included as an independent testing cohort (n = 122, 44 posi-
tive LN/78 negative LN). The recruitment pathway is shown 
in Supplementary material 1.

Clinicopathological Characteristics

Baseline clinical and histopathological data were collected 
from patient medical records and postoperative histopathol-
ogy reports, including patient age, menopausal status, LN 
palpability, LN status (LN with macrometastasis or micro-
metastasis was considered positive), status of human epi-
dermal growth factor receptor 2 (HER2), estrogen receptor 
(ER), progesterone receptor (PR), KI-67 index, histological 
tumor type and grade, and multifocality (yes or no). Tumor 
size obtained from MRI report was also considered as a 
clinical characteristic. The details of patient characteristics 
in the training cohort and testing cohort are presented in 
Table 1.
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Imaging Acquisition

Imaging was performed on a 3.0 T whole-body MRI scan-
ner (Ingenia, Philips, Netherlands). The patients were posi-
tioned in the prone position with both breasts placed in an 
eight-channel phase-array breast coil. The contrast-enhanced 
T1-weighted imaging (T1 + C), T2-weighted imaging 
(T2WI), and diffusion-weighted imaging–quantitatively 
measured apparent diffusion coefficient (DWI-ADC) imag-
ing were acquired for analysis. The acquisition parameters 
of the protocols are given in Supplementary material 2. The 
enhanced T1 high-resolution isotropic volume excitation 
(e_THRIVE) on Ingenia were obtained before and four times 
after the intravenous injection of gadopentetate dimeglumine 
(Gd-DTPA; Beilu, Beijing, China) with 0.1 mmol/kg at a 
flow rate of 2 mL/s and 20 mL normal saline flush.

Tumor Segmentation

The slice which showed the maximum layer of the tumor 
was selected by a radiologist (Y.C. with 4-year experience 
of breast MRI) for analysis. The tumor was segmented 
manually by using the ITK-SNAP software (an open-source 
software, version 3.8, http:// www. itksn ap. org). Tumor seg-
mentation was performed by the same radiologist who was 

blinded to the clinical and pathological information of the 
patients, and all contours were reviewed by another senior 
radiologist (W.L. with more than 10 years of experience). 
For radiomic feature extraction, we used the precontrast 
DWI (images of b = 800 s/mm2), the ADC map, and the 
second and fourth postcontrast phase of the DCE sequence 
(dyn2 and dyn4). The tumor region of interest (ROI) was 
firstly manually delineated on the dyn2 image and DWI and 
then was copied to the corresponding sequence (dyn4 and 
ADC map), followed by a manual adjustment of the segmen-
tation contours on these sequences as needed. Only the larg-
est tumor lesion was segmented for analysis in the cases that 
patients had ipsilateral multifocal or multicentric lesions.

Radiomics Features Extraction, Selection, 
and Radiomics Signature Construction

A total of 1000 deep learning features were extracted from 
each ROI by the pretrained Densely Connected Convolu-
tional Networks (DenseNet)121 [18] on ImageNet by using 
Keras 2.0.5 of Python 3.7. Features of two DCE phases and 
DWI-ADC sequence were extracted separately.

We used two methods to select/rank the most significant 
features prior to the modeling process for ALN metastasis 
status classification—the maximum relevance minimum 

Table 1  Clinical and histopathological characteristics of patients in the entire, training, and testing cohorts

*Data from 113 patients were unavailable; **Data from 40 patients were unavailable

Entire cohort Training cohort Testing cohort P value

(N = 488) (n = 366) (n = 122)
Age (mean ± SD) 58.0 ± 11.8 58.3 ± 11.6 57.1 ± 12.5 0.376
Menopausal status Menopause 368 282 86 0.145

Premenopausal 120 84 36
LN palpability Positive 64 51 13 0.353

Negative 424 315 109
Histological type Invasive ductal carcinoma 427 321 106 0.930

Invasive lobular carcinoma 13 10 3
Others 48 35 13

Histological grade* I 7 5 2 0.794
II 215 163 52
III 153 113 40

Molecular subtype** Luminal A 110 84 26 0.404
Luminal B 253 173 70
HER2 enriched 39 31 8
Triple negative 46 37 9

Multifocal Yes 26 22 4 0.245
No 462 344 118

Tumor size, median (IQR), cm 2.4 (1.5, 2.9) 2.5 (1.5, 3.0) 2.2 (1.4, 2.6) 0.186
Enhancement pattern Mass 420 311 109 0.227

Non-mass enhancement 68 55 13

http://www.itksnap.org
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redundancy (mRMR) algorithm and the least absolute 
shrinkage and selection operator (LASSO) technique. At 
first, mRMR was used to eliminate the redundancy of the 
features; meanwhile features of high correlation with the 
label were retained. Then LASSO with tenfold cross-val-
idation was conducted to choose the optimized subset of 
features to construct the final model. In considering of the 
imbalance of the data, we used Synthetic Minority Over-
sampling Technique (SMOTE) to oversampling of the small 
number parts.

Radiomics score for each image sequence and their com-
bination was calculated by summing the selected features 
weighted by their corresponding coefficients.

Clinicopathological Model, Combined 
Model, and Nomogram Establishment

Univariate analysis was applied to select statistically signifi-
cant clinicopathological characteristics (P < 0.05), includ-
ing patient age, menopausal status, LN palpability, status of 
HER2, ER and PR, KI-67 index, and histological tumor type 
and grade, multifocality, and tumor size. Backward stepwise 
multivariate logistic regression was used to construct the 
clinicopathological and combined model based on the sig-
nificant clinicopathological characteristics and the combina-
tion of the clinical features and radiomics score, respectively. 
To provide the clinicians and patients with an individualized 
and easy-to-use tool for LN metastasis prediction, the com-
bined model was exhibited as a nomogram.

Model Performance Evaluation

Radiomics signature, clinicopathological model, and com-
bined model were constructed on the basis of data from 
training cohort, and then the performance of the above mod-
els was strictly evaluated with an independent testing cohort.

The receiver operating characteristic (ROC) curve analy-
sis was performed, and the area under the ROC curve (AUC) 
and accuracy were used to evaluate the performance of the 
models. The optimal cutoff threshold was identified by max-
imizing the Youden index (sensitivity + specificity − 1). The 
AUC, sensitivity, specificity, accuracy, positive predictive 
value (PPV), and negative predictive value (NPV) were then 
calculated with the cutoff of ROC curve identified in the 
training cohort, which was also applied to the testing cohort.

The Delong test was used to compare these models 
according to AUC values. The agreement between the 
LN metastasis predictions and the actual outcomes was 
assessed using a calibration curve. In addition, the Hos-
mer–Lemeshow test was used to assess the performance 
of the combined nomogram. To investigate the clinical 

usefulness of the deep learning signature, we adopted the 
decision curve analysis (DCA) to estimate the standard net 
benefits (sNB) at different threshold probabilities.

Statistical Analysis

The Mann–Whitney U-test and x2 test or Fisher’s exact 
test were used to assess the difference in continuous and 
categorical variables separately. All statistical analyses for 
the present study were performed with R (version 3.5.1) 
and Python (version 3.7.0). A two-tailed P value < 0.05 
indicated statistical significance.

Results

Radiomics Signature Construction

After the feature extraction and selection, twenty-three 
features were selected to build the radiomics signature, 
including two features from dyn2, 7 from dyn4, 7 from 
DWI, and 7 from ADC. The rad-score based on selected 
features weighted by their coefficients was calculated 
by using the formula in the Supplementary material 3. 
There was a statistically significant difference in rad score 
between malignant and non-malignant group in both train-
ing (P < 0.0001) and testing cohort (P = 0.0035)). The 
radiomic scores of patients are shown in Fig. 1.

As shown in Fig. 2, in the training cohort, the AUC of 
dyn2, dyn4, DWI, ADC, and combined radiomic signature 
were 0.66, 0.72, 0.70, 0.69, and 0.76, respectively. In the 
testing cohort, the AUC of dyn2, dyn4, DWI, ADC,and 
combined radiomic signature were 0.63, 0.63, 0.65, 0.63, 
and 0.66, respectively.

Construction of Clinicopathological Model 
and Combined Nomogram

After univariate analysis and backward stepwise-selec-
tion multiple logistic regression analysis, three clinico-
pathological factors were selected to construct clinico-
pathological model including LN palpability (odds ratio 
(OR) = 6.04; 95% confidence interval (CI) = 3.06–12.54, 
P = 0.004), tumor size in MRI (OR = 1.45, 95% 
CI = 1.18–1.80, P = 0.104), and Ki-67(OR = 1.01; 95% 
CI = 1.00–1.02, P = 0.099). Then we developed a nomo-
gram based on a radiomic signature and the three signifi-
cant clinicopathological factors (Fig. 3).
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Classification Performance

The calibration curve for the nomogram was tested using 
Hosmer–Lemeshow test and yielded a non-significant result 
(P = 0.23 in training cohorts) providing evidence of good 
calibration (Fig. 4a, b). The nomogram displayed an AUC of 
0.80 (95% CI [0.75, 0.84]) for predicting LN metastases in 
the training cohort, and the sensitivity, specificity, and accu-
racy were 56%, 85%, and 72%, respectively. In the testing 
cohort, it also displayed excellent prediction efficacy, with 
an AUC of 0.71 (95% CI [0.61, 0.81]), and the sensitivity, 

specificity, and accuracy were 65%, 80%, and 75%, respec-
tively (Fig. 5a, b, Table 2).

Clinical Use

The decision curve analysis for the nomogram is shown in 
Fig. 6. The decision curve analysis indicated that when the 
threshold probability is within a range from 0.07 to 0.85, the 
net benefit of using nomogram to predict LN metastasis is 
greater than treat-all or treat-none scheme.

Fig. 1  Boxplots of the radiomic 
score in training cohort (a) 
and testing cohort (b). Label 0 
indicates axillary lymph node 
metastasis negative, and label 
1 indicate axillary lymph node 
metastasis positive
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Discussion

To date, there are plenty of works that evaluated the effec-
tiveness of breast radiomics in breast cancer diagnosis, 
identification, prognosis, or response to therapy, using the 
imaging information produced by different techniques (US, 
mammography, and MRI) [16, 19–21]. However, fewer are 
the studies that evaluate the use of breast radiomics in pre-
dicting axillary lymph node metastasis, especially using 
deep learning features. In this study, we developed a radi-
omic signature based on features extracted from DCE MRI 
and DWI-ADC, and the capability of the radiomic signature 
for estimating LN metastasis is impressing. Combined with 
clinicopathological characteristics, the nomogram displayed 

excellent ability to predict LN metastases with an AUC of 
0.71, a sensitivity of 65%, a specificity of 80%, and an accu-
racy of 75% in the independent testing cohort.

In addition, there are some strengths of our study that 
need to be highlighted. Firstly, most of previous studies 
are monocentric retrospective studies, with a population 
less than 400 patients. Our study includes 479 patients 
with 488 breast lesions, being in the top of the current 
literary trend.

Secondly, in this study, we applied a pretrained neural 
network of DenseNet121 [18] for radiomics feature extrac-
tion, which has a denser connectivity pattern compared to 
traditional convolutional networks. It has been widely used 
in different medical tasks, such as discrimination of pan-
creatic cysts [22] and LN status and diagnosis of COVID-
19 [23–25], showing comparable accuracy with other deep 
learning models [23, 24]. The application of deep learning 
features extracted by neural network from anatomical and 
functional MRI scans provided a new approach that was 
promising for intratumor heterogeneity quantification.

Thirdly, previous studies have proved that many clinico-
pathological characteristics were correlated with LN metas-
tasis, such as histological type, LN palpability, and multi-
focality [11, 26]. Our results were superior to the studies 
only based on the clinicopathologic information which all 
failed to reach an AUC > 0.8 [27]. We combined radiomic 
signature with clinicopathologic characteristics, including 
LN palpability, tumor size in MRI, and Ki-67, to effectively 
improve the prediction performance, improving AUC from 
0.76 to 0.80 in the training cohort.

Fourthly, regarding the choice of the contrast enhanced 
phase, there is currently no consensus in defining in which 
phase the extraction of features offers the best forecast. 
For the same purpose of this paper, Han et al. [11] and Liu 
et al. [14] have applied radiomic features extracted from 

Fig. 2  a, b ROC curves of 
dyn2, dyn4, DWI, ADC, and 
combined radiomic signature 
for prediction LN metastasis in 
the training cohorts
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the first contrast-enhanced phase, respectively, obtaining 
an AUC of 0.78 and 0.81. Song et al. [28] extracted fea-
tures from the second contrast-enhanced phase with an 
AUC of 0.805. For tumor-infiltrating lymphocyte (TIL) 
prediction, Tang et  al. [29] found that image features 
extracted from the delayed phases can help improve the 
model performance. Therefore, both the second and fourth 
contrast-enhanced phases were used in our study, and we 
also found that the model of dyn4 exceeded the model of 
dyn2 in identifying ALNM, and the final formula of the 
rad-score contained more features from dyn4 than dyn2.

Fifthly, this study stood out from previous radiomic stud-
ies because we not only used two contrast-enhanced phases 
but also used additional DWI-ADC sequences for more 
robustly interpreting intratumor heterogeneity. Most of per-
vious works use only contrast-enhanced sequence which is 
the main sequence for detection and characterization of the 
breast lesion, but it might be inadequate to reflect tumor het-
erogeneity. DWI with ADC assesses the restriction of water 
molecule diffusion, which could increase the specificity 
of MRI for predicting ipsilateral axillary LN metastases in 
patients with newly diagnosed breast cancer [30]. Dong et al. 

[31] jointed only the T2-weighted and diffusion sequences 
for the prediction of sentinel lymph node metastasis with the 
aim of preventing the use of the intravenous contrast medium, 
obtaining AUC values of 0.805. Yu et al. [16] used contrast-
enhanced T1-weighted imaging (T1 + C), T2WI, and DWI-
ADC sequences to construct the radiomic signature which 
identified ALNM with AUC of 0.88 and predicted 3-year 
Disease-free survival (DFS) with AUC of 0.81. With a com-
bination of DCE-MRI and DWI-ADC sequences, we con-
structed a radiomic signature to predict LN metastasis with 
an AUC as high as 0.76 in the training cohort. In addition, we 
do notice that the selected radiomic features contained fewer 
DCE features but more DWI-ADC features. This observation 
merits further investigation in future work.

Our greatest advantage is that LNs can be evaluated pre-
operatively and without damage of lymph node biopsy. The 
clinicopathological-radiomic nomogram that incorporate the 
radiomic signature and clinicopathological factors success-
fully stratified breast cancer patients according to their risk 
of ALNM which can be used to guide the further treatment 
planning in breast cancer avoiding unnecessary SLNB or 
ALND and the corresponding complications.

Fig. 4  a, b Calibration curve of 
the nomogram for the training 
cohort and testing cohort. The 
calibration curve of the model 
shows the agreement between 
the predicted probability 
(x-axis) and actual probability 
(y-axis) in LN metastasis. The 
solid line in the middle rep-
resents the perfect prediction, 
and the dotted line represents 
the predictive power of the 
nomogram. The closer the solid 
line is to the dotted line, the 
better the predictive power of 
the model
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There are several limitations associated with this study. 
First, the dataset from a single MR scanner in a single 
institution with a consistent scanning protocol were used 
to extract deep learning features, which allows maximum 
reproducibility in the extraction and analysis of radiomic 
characteristics. Our findings required future multicenter 
validation in larger dataset to achieve high-level evidence, 
so that it could serve better in clinical application. Second, 
it is worth noting that radiomics, like other techniques, has 
some technical limitations—including susceptibility toward 
image acquisition and reconstruction parameters [32]. The 
convolutional neural network has been proven to be supe-
rior to radiomic analysis for the classification of enhancing 
lesions as benign or malignant at multiparametric breast 
MRI [33]. Although we have used a pretrained neural net-
work for feature extraction and achieved impressive results 
with radiomics methods, further advanced neural networks 
can be directly applied to the classification task of predicting 
ALNM in the future.

Conclusions

This study described the application of MRI-based deep 
learning radiomics in patients with breast cancer to predict 
axillary lymph node metastasis. Both the clinicopatholog-
ical-radiomic nomogram and the deep learning signature 
were valuable in clinical decision-making and provide a 
noninvasive approach to structuring the treatment strategy.
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