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Abstract
The aim of this study is to investigate the use of an exponential-plateau model to determine the required training dataset 
size that yields the maximum medical image segmentation performance. CT and MR images of patients with renal tumors 
acquired between 1997 and 2017 were retrospectively collected from our nephrectomy registry. Modality-based datasets of 
50, 100, 150, 200, 250, and 300 images were assembled to train models with an 80–20 training-validation split evaluated 
against 50 randomly held out test set images. A third experiment using the KiTS21 dataset was also used to explore the 
effects of different model architectures. Exponential-plateau models were used to establish the relationship of dataset size 
to model generalizability performance. For segmenting non-neoplastic kidney regions on CT and MR imaging, our model 
yielded test Dice score plateaus of 0.93 ± 0.02 and 0.92 ± 0.04 with the number of training-validation images needed to reach 
the plateaus of 54 and 122, respectively. For segmenting CT and MR tumor regions, we modeled a test Dice score plateau 
of 0.85 ± 0.20 and 0.76 ± 0.27 , with 125 and 389 training-validation images needed to reach the plateaus. For the KiTS21 
dataset, the best Dice score plateaus for nn-UNet 2D and 3D architectures were 0.67 ± 0.29 and 0.84 ± 0.18 with number to 
reach performance plateau of 177 and 440. Our research validates that differing imaging modalities, target structures, and 
model architectures all affect the amount of training images required to reach a performance plateau. The modeling approach 
we developed will help future researchers determine for their experiments when additional training-validation images will 
likely not further improve model performance.
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Introduction

Semantic segmentation of medical images offers new 
insights from standard imaging for the treatment and 
research of diseases. These insights may be particularly 
valuable for renal cell carcinoma, the eighth most com-
mon malignancy in the United States, given the frequent 
detection of small, potentially indolent renal masses using 
cross-sectional (CT) imaging [1–3]. In addition to aiding 
in pre-operative decision-making, readily available accurate 
segmentations of kidneys and tumors can be used through 
3D modeling and other means to improve patient education, 
surgical simulation trainings, and even as overlay options in 
intra-operative imaging [4].
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Machine learning and deep learning approaches have 
been used for semantic segmentation across medical spe-
cialties and specifically for renal anatomic structures [5–9].
The U-Net architecture is a CNN architecture with good per-
formance on a range of medical segmentation tasks [10–13]. 
With growing variations to the U-Net architecture frame-
work, Isensee et al. published their open-sourced “no new 
U-Net” (nnU-Net) framework that extends the U-Net archi-
tecture by encompassing best practices for pre-processing, 
model selection, hyperparameter, and post-processing steps 
together with model architecture design [14]. The nnU-Net 
framework is recognized as the state-of-the-art framework 
in medical image semantic segmentation, being externally 
validated and winning several open-sourced medical image 
segmentation challenges in the 2018 Medical Decathlon 
Segmentation Challenge [15]. Additionally, all the top sub-
missions in the 2021 open-access Kidney and Kidney Tumor 
Segmentation Challenges used variations of the nnU-Net 
framework [16, 17].

While nnU-Net is becoming established as a standard 
segmentation model, more work remains to study evidence-
based ways to assemble datasets for robust model training. 
Curating representative datasets to train semantic segmenta-
tion algorithms is one of the most challenging and critical 
steps in model development and one that can be particu-
larly difficult to revisit after pre-processing and modeling 
phases have begun. Our team sought to investigate how we 
can evaluate training size volume during the pre-processing 
and modeling steps.

Here, we hypothesize that an exponential-plateau model 
can be used to determine at what dataset sizes segmentation 
performance reaches a Dice plateau to identify when adding 
additional images is unlikely to improve model performance 
on a holdout test set with a given CNN architecture. We  
further investigate the generalizability of a standard nnU- 
Net self-adapting framework by comparing its performance 
on different size datasets of two different imaging modali-
ties, CT and T2-weighted MR imaging, predicting renal 
tumor and non-neoplastic renal parenchyma labels. The 
main objective of this study is to investigate how research-
ers can determine the size of datasets required for automated 
CNN segmentation to provide robust predictions for custom 
medical image segmentation purposes.

Materials and Methods

This retrospective study was approved by our institutional 
review board, was HIPAA compliant, and was performed in 
accordance with the ethical standards contained in the 1964 
Declaration of Helsinki. CT and MR images from our radiol-
ogy database of patients presenting with kidney tumors were 
collected, curated, and annotated. The final segmentations 

consisted of manual segmentations and automated predicted 
segmentations with manual correction of kidney parenchyma 
and renal tumors. KiTS21 images were downloaded from 
the open-sourced repository with details on acquisition and 
segmentation as described in the authors’ publication. Each 
image volume was used as a single case for analysis, where 
different slices from the same volume were not analyzed 
separately [18]. The details of each dataset are described in 
the following sections.

CT Reference Image Segmentations

We analyzed manually segmented cross-sectional imaging 
derived from the previously described Nephrectomy Reg-
istry [19]. This dataset consisted of 1233 non-contrast and 
various contrast phase abdomen/pelvis CT images from 
patients who underwent a radical nephrectomy for a renal 
tumor between 2000 and 2017 without metastatic lesions or 
positive lymph nodes at the time of surgery. The scans were 
stored as NIfTI images with de-identified header informa-
tion and corresponding manual segmentations of kidney and 
tumor. The manual segmentations were performed by trained 
medical image analysts and reviewed by an expert radiolo-
gist, nephrologist, and two urologic oncology fellows using 
the segmentation software ITK-snap RRID:SCR_002010 
(version 2.2; University of Pennsylvania, Philadelphia, PA) 
[20]. There were 356 images excluded after data curation 
due to having shifted voxel intensities ( n = 2 ), non-axial 
images ( n = 2 ), or not having manual segmentations for both 
kidneys and renal tumor ( n = 352 ). A particular character-
istic of this dataset is that all the CT images were cropped 
around both kidneys together on the in-plane view and 3 
axial slices above the most superior and 3 slices below the 
most inferior kidney voxels regardless of kidney laterality to 
reduce memory space usage in the manual segmentation pro-
cess. To reduce the variability in image shape due to crop-
ping, the scans were then resampled to a standard 256-pixel 
coronal plane width and 128-pixel medial plane depth. In 
cases where the images were smaller than the standard size, 
zero padding was used to reach the 256 by 128 dimension.

MR Reference Image Segmentations

A total of 501 patients who underwent partial ( n = 313 ) or 
radical nephrectomy ( n = 188 ) with available MR imaging 
performed before surgery between 1997 and 2014 were iden-
tified from our Radiology database. Only T2-weighted with 
fat-saturation coronal abdominal/pelvic MR images were 
selected for the study ( n = 419 ). The images were stored in 
an internal server using the NIfTI format with de-identified 
header information. Patients with small lesions not seen on 
the single coronal T2-weighted MR series analyzed ( n = 28 ) 
and patients with total kidney volume (TKV) greater than 
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600 mL (due to polycystic kidney disease) ( n = 7 ) were 
excluded from the study. To expedite the image segmenta-
tion process, a U-Net-based algorithm trained to segment 
kidneys affected by polycystic kidney disease was used to 
segment the right and left kidneys [21]. Next, the autogen-
erated kidney segmentations were manually refined and the 
tumors were manually annotated by two urologic oncology 
fellows.

Data Subsets and Stratification

To test the effect on dataset sizes, we compiled MR and CT 
training and validation sets of 50, 100, 150, 200, 250, and 
300 reference image segmentations using an 80–20 training 
validation split for each fold. 50 random CT and 50 random 
MR reference image segmentations were separately held out 
for testing. For the KiTS21 data, 20% of the 300 images 
were held out to make a 60-image test set with the remain-
ing 240 images available for the training-validation split. 80, 
120, 160, 200, and 240 were the different training-validation 
set sizes that we used for the KiTS21 dataset.

nnU‑Net Specifications

For nnU-net automatic pre-processing, the correct modality 
was specified for each dataset as either “CT” or “T2.” nnU-
Net models were trained according to the instructions on 
the creators’ public GitHub RRID:SCR_002630 page [22]. 
Fivefold cross-validation was employed for each dataset size 
using the 3d_fullres configuration. For the KiTS21 experi-
ment, both the 3d_fullres and 2D configurations were used. 
The final ensemble model consisted of “majority voting” of 
the five sub-models trained on different training and valida-
tion sets of data, where the ensemble prediction was the 
most common prediction from each sub-model predicting 
the label (background, kidney, or tumor) for a voxel.

Segmentation Model Statistical Analysis

Final evaluation of the process was done using the different 
nnU-Net models to predict segmentations on the holdout 
modality-specific test sets. Average test Dice scores were 
the main metric used to compare models of different size 
datasets. Dice score is the most used metric in 3D imag-
ing segmentation measuring the degree of overlap between 
predicted and reference standard segmentations with a per-
fect overlap of 1 and no overlap of 0. Taha et al. describe 
the Dice metric and other metrics including Jaccard, true 
positive rate (TPR), and mean surface distance (MSD) 
more fully [23]. Additionally, a paired Student’s t-test was 
performed between the dataset size test set predictions to 
evaluate the difference of model performance. The evalua-
tion of the 300-dataset size ensemble models was done using 

the Jaccard index, TPR, and MSD. Further, the predicted 
volumes were compared to the reference standard volumes 
using the Bland–Altman analysis and linear regression.

Dataset Size Performance Plateau Estimation

Segmentation model performance measured by average test 
Dice score was observed to plateau as dataset size increased. 
The exponential-plateau model was defined as

where estimated parameters are DM, the maximum achiev-
able Dice, D0, the minimum Dice, and k , the exponential rate 
constant. D(x) is the estimated Dice given x , the amount of 
training images. The parameters of the model were fit using 
the curve_fit function in the scipy open-sourced library that 
uses a non-linear least squares method [24]. We defined the 
plateau point as within 0.01 Dice of the maximum predicted 
Dice score. This model was used to investigate the relation-
ship between dataset size and observed test Dice and to 
determine at what size dataset test Dice performance pla-
teaus were reached.

Results

Internal Dataset

Patient and Image Characteristics

A total of 350 images per imaging modality were randomly 
selected for the study. The patient characteristics are pre-
sented in Table 1. Voxel size and slice number parameters 
for the CT and MR datasets can be found in Table 2. The 
in-plane axial resolution of CT images was standardized to 
256 × 128 voxels, while MR images varied between 201 and 
512 voxels with most images having a coronal in-plane reso-
lution of 256 × 256 voxels.

(1)D(x) = D
M
− (D

M
− D

0
) × e

−kx

Table 1  Cohort characteristics

* Mean ± standard deviation

Parameter Value (CT dataset) Value (MR dataset)

No. of subjects 350 350
Males 229 217
Females 121 133
*Age 63 ± 13 [19–88] 59 ± 14 [20–88]
*Height  (m2) 1.72 ± 0.1 [1.43–2.04] 1.73 ± 0.1 [1.49–2.04]
*Weight (kg) 92.79 ± 25.02 [45–200] 90.17 ± 22.33 [46–190]
*BMI (kg/m2) 31.00 ± 7.34 [16–62] 30.13 ± 6.52 [17–57]
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Kidney Segmentation Models

The best observed ensemble models for the CT and MR 
images were the 250 and 300 dataset size ensemble models 
having Dice scores of 0.93 and 0.92, respectively. The CT 
generally had better Dice scores at lower dataset sizes than 
the MR model, but the nnU-Net ensemble framework was 
found to provide estimates of over 0.89 mean test set Dice 
score for both CT and MR kidney segmentation predictions 
with as little as 50 training and validation examples.

The plateau point for improved performance with more 
CT images from our model occurs at 54 images at an aver-
age test Dice score of 0.93, while the plateau point for MR 
images is at 122 images at an average test Dice score of 0.91 
as seen in Fig. 1a. No statistical difference was observed 
between the ensemble models past the plateau point.

Tumor Segmentation Models

Segmenting tumors is more difficult than kidneys because of 
the increased heterogeneity of tumor size, shape, intensity, 
and the differentiation from other renal structures like simple 
cysts. The best performing tumor ensemble models for CT 
and MR were both from the 300-dataset size with average 
test Dice scores of 0.86 and 0.76, respectively. For segment-
ing tumor tissue on CT and MR, our model estimated a pla-
teau point at 126 and 389 images at a test Dice score of 0.84 
and 0.76, respectively. No statistically significant difference 
was observed beyond the CT tumor plateau point; however, 
statistical difference ( p = 0.03 ; paired Student’s t-test) was 
observed between the 200 and 250-dataset size points for 
the MR tumor ensemble models. These values can be visu-
alized in Fig. 1b. In both cases, the median test Dice scores 
are higher than the mean, representing the effect of difficult 
outlier test examples weighing down the average.

Stability of Plateau Prediction Analysis

To assess the stability of our modeling approach while simu-
lating the usefulness of it when building a dataset, we mod-
eled different fits dropping higher size datasets. In Fig. 2a, 
the reliability of the model fit is evident even without the 
250 and 300 size datasets. The maximum predicted Dice 
for these three fits are 0.84, 0.84, and 0.83. In contrast, the 
plateau stability for the MR tumor is less stable with more 
significant differences between the three model fits. The 
maximal plateaus were estimated to be at a Dice of 0.76, 
0.76, and 0.71 (Fig. 2b). The large jump between dropping 
the 300 and both dropping the 300 and 250 dataset plateaus 
suggests that the model is yet to stabilize, while the congru-
ency between all the data and the drop 300 dataset plateaus 

Table 2  Image characteristics

CT MR

In-plane voxel width × height 
(mm)

Mean 1.03 × 1.03 1.34 × 1.34
Median 1 × 1 1.56 × 1.56
Range 0.49–1.85 0.59–1.95
Slice thickness (mm)
Mean ± Std 4.03 ± 1.38 6.26 ± 1.65
Median 5 6
Range 0.6–8 2–15
Number of slices
Mean ± Std 45 ± 24 32 ± 12
Median 37 30
Range 20–211 6–116

Fig. 1  a Mean kidney and b mean tumor test Dice score prediction. 
The solid scatter points represent the ensemble models, and the faded 
color points represent the individual 5 folds at different dataset sizes. 
The dotted line is the fitted exponential-plateau model for CT (blue) 
and MR (orange) image modalities. Arrows indicate where the pla-

teau point is estimated on each curve. Student’s paired t-test was used 
to determine where the ensemble predicted Dice scores for each test 
set were statistically significantly different, where ***p ≤ 0.001 , 
**p ≤ 0.01 , and * p ≤ 0.05
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suggests the model is starting to stabilize and a real perfor-
mance plateau is being reached.

Overall Model Performance

Looking more closely at the ensemble models from the 
300-dataset size for the CT and MR models, it is evident 
how a few test examples have a significant effect on the over-
all test Dice scores with individual test scores below 0.2. 
These difficult examples tend to be smaller tumors, present-
ing more of a challenge for the model to recognize. Analysis 
of the CT and MR ensemble models by test Dice vs. volume 
is shown in Fig. 3a.

Recognizing the trend in Fig. 3, we analyzed how the 
test Dice of tumors in the smallest reference segmentation 
volume quartile in each dataset plateaued using our expo-
nential-plateau model. The mean of CT tumor sizes in the 
smallest quartile of the test dataset was 22.0 ± 12.7 mL. 
The predicted plateau is estimated to require 378 images 
to reach 0.711 test Dice. For MR, the test reference seg-
mentation volumes in the smallest quartile were all from 
partial nephrectomies with a mean of 8.7 ± 4.0 mL. Our 
model estimated a plateau at 338 images of 0.53 mean test 
Dice. Figure 3b shows the relationship for both the CT and 
MR datasets.

Fig. 2  a Mean CT and b MR tumor test Dice score prediction with 
fitted exponential-plateau models on progressively dropped out larger 
datasets. The dotted lines are the fitted exponential-plateau models 

for all of the data (blue), dropping the 300 size dataset (orange), and 
dropping the 300 and 250 size datasets (green). The all data (blue) 
and drop 300 datasets (orange) overlap

Fig. 3  a Test Dice of the ensemble models trained on the 300-size 
dataset vs. log of tumor size for CT (blue points) and MR (orange 
points). b CT (blue) and MR (orange) exponential-plateau model fit 

of test Dice vs. training size of images with the lowest quartile refer-
ence segmentation tumor volumes
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Overall Ensemble Model Test‑Set Results

We conducted a linear regression analysis for kidney and 
tumor volumes between the reference standard segmen-
tations and the CT and MR ensemble model predictions. 
Excellent agreement is observed for the kidney segmenta-
tions with an R2 of 0.969 for the CT model and 0.904 for 
the MR model (Fig. 4a, c). Similarly, the tumor segmenta-
tions showed good agreement with an R2 of 0.932 and 0.982, 
respectively (Fig. 4b, d).

Using a Bland–Altman analysis, the percent volume 
difference between the reference standard kidney volumes 
and the volumes from the CT and MR ensemble model 
predictions resulted in a bias ± SD of −0.99% ± 6.21% 
and −0.79% ± 7.23% , respectively (Fig. 5a, c). A larger 
percent difference was observed for the case of tumor vol-
ume comparison with a bias ± SD of 6.36% ± 46.17% and 
22.69% ± 58.58% for the CT and MR ensemble models, 
respectively (Fig. 5b, d).

The agreement of the overlap between the reference 
standard and predicted segmentations was assessed by the 
Dice coefficient, Jaccard index (Jacc), and true positive rate 

(TPR). In Fig. 6, the three metrics are presented on a scale 
from 0 to 1 (where 1 indicates perfect agreement) evaluat-
ing the 300-dataset sizes for CT and MR ensemble model 
performance for kidney and tumor independently. The mean 
value and standard deviation of each metric distribution are 
summarized in Table 3.

Lastly, we performed a qualitative analysis in 2D and with 
3D rendering of our models to identify both good and poor 
performing cases as shown in Fig. 7. The false-positive label 
refers to voxels incorrectly predicted as kidney or tumor. The 
false-negative label refers to voxels incorrectly predicted as 
non-kidney or non-tumor. In general, we found that our model 
tends to produce more false-negative than false-positive seg-
mentations, sometimes entirely missing areas of generally 
smaller tumors.

KiTS21 Dataset

The KiTS21 open-sourced training dataset allowed us to 
further investigate the effect of different model architec-
tures using our method with the well-established data. 
Notably, as described in the authors’ publication, the 

Fig. 4  Linear regression analysis examining the concordance between predicted and reference segmentation volume sizes. a CT kidney. b CT 
tumor. c MR kidney. d MR tumor
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KiTS21 data is of all corticomedullary contrast phase 
images as opposed to our internal dataset that has multi-
ple different contrast phases and non-contrast images [18]. 
For this dataset, we specifically investigated the perfor-
mance of the different models on segmenting tumor, since 
we observed that even the smaller datasets were able to 
accurately segment non-neoplastic kidney, limiting the 
need to predict the dataset size saturation point for Dice 
performance. By focusing on just segmenting tumor, we 
were also able to incorporate another facet into the model 
investigating the effects of different model architectures, 
namely, comparing 2D and 3D models.

Regarding performance, the top performing tumor ensem-
ble models for the 2D and 3D architectures were both from the 
300-dataset size with average test Dice scores of 0.67 ± 0.29 
and 0.84 ± 0.18 , respectively. The exponential-plateau model 
predicted a maximum with required dataset size of 0.76 at 177 

images and 0.88 at 440 images for the 2D and 3D model as 
shown in Fig. 8a, b.

Like our experiments on the internal dataset, we investi-
gated the stability of our plateau predictions dropping the larg-
est size dataset sizes in the analysis. In Fig. 9a, b, the reliability 
of the maximum achievable Dice is evident even without the 
240 and 200 size datasets. The maximum predicted Dice for 
the “all data,” “drop 240,” and “drop 240, 200” fits for the 2D 
and 3D models are 0.76, 0.75, and 0.75 and 0.88, 0.87, and 
0.85 for the 2D and 3D models, respectively.

Discussion

In this study, we investigated the process of determin-
ing the performance plateau for an nnU-Net framework 
(defined as within 0.01 Dice of the maximum predicted 

Fig. 5  Bland–Altman analysis of final 300-dataset size model predictions for each task. a CT kidney. b CT tumor. c MR kidney. d MR tumor
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Dice), in respect to dataset size when segmenting total 
kidneys and renal tumors on internal and open-sourced 
CT and internal T2-weighted MR images. We found the 
relationship of average test Dice score and data size can be 
approximated with an exponential-plateau model. Using 
this model, we found our nnU-Net model reached a test 
Dice plateau of 0.93 and 0.84 for our internal multiphase 
CT images for kidney and tumor segmentations at 54 and 
125 in the training and validation set trained with fivefold 
cross-validation. In contrast, MR images required more 
images with plateaus of 0.91 and 0.74 with 122 and 389 
images required in the training and validation set for kid-
ney and tumor, respectively. The estimated plateaus for the 
CT and MR tumor were stable when comparing the fits on 
all data and on removing the 300-size dataset. Because 
of how the MR tumor model predicts a plateau beyond 
the number of observed images, as well as the demon-
strated instability when removing the 300 and 250-size 
dataset, we are less confident in the MR tumor estimated 
plateau and have identified areas in which more data would 
be especially valuable. Regarding the KiTS21 dataset 

predicting tumor segmentations, the 3D model on the 240 
training-validation dataset reached a maximum observed 
Dice performance of 0.84 ± 0.18 with estimated maximum 
achievable Dice at 0.88 requiring 440 images, 200 more 
than currently available in the training-validation set.

Both CT and MR datasets yielded higher than 0.88 test 
Dice kidney predictions with datasets as low as 50 training-
validation images. We understand that kidney tissue is easier 
to segment compared to tumor tissue due to it often being 
larger and more homogenous. MR kidney tissue tended to 
have more variable voxel intensities (standard deviation of 
37 compared to 9.64 for CT kidney). This may explain the 
relatively lower performance in segmentation when com-
parted to CT. The standard deviation of voxel intensities 
for MR tumor is approximately seven times greater than CT 
tumor voxels, possibly explaining the need for more MR 
images to reach comparable segmentation performance. 
Another reason MR tumors might require more images is 
that the MR dataset includes tumors from pre-operative par-
tial nephrectomies, which are on average smaller and there-
fore generally more difficult to segment.

Fig. 6  Test metrics of final ensemble 300-dataset size model predictions for each testing set example colored by reference segmentation volume. 
a CT kidney. b CT tumor. c MR kidney. d MR tumor

Table 3  Summary statistics 
of the ensemble CT and 
MR models compared 
to the reference standard 
segmentations

Metric (mean ± SD)/
image modality

Dice coefficient Jaccard index TPR MSD

CT kidney 0.93 ± 0.02 0.87 ± 0.04 0.93 ± 0.03 0.60 ± 0.27

CT tumor 0.85 ± 0.20 0.77 ± 0.22 0.86 ± 0.21 1.42 ± 2.12

MR kidney 0.92 ± 0.04 0.85 ± 0.07 0.92 ± 0.05 0.50 ± 0.35

MR tumor 0.76 ± 0.27 0.66 ± 0.26 0.75 ± 0.28 15.15 ± 55.54
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The target performance for a specific organ/tissue deep 
learning segmentation model has been previously estab-
lished to be within inter-observer variability. This may 
be explained by human annotations used as the reference 
standard. Studies focused on CT kidney parenchyma seg-
mentation reported inter-observer Dice scores ranging 
from 0.96 to 0.99 [25, 26] and for MR between 0.93 and 
0.94 [27]. In the case of renal tumors, the inter-observer 
Dice scores reported for CT imaging range between 0.87 
and 0.93 [28, 29] and in MR imaging from 0.78 to 0.87 
[12]. Based on these parameters, we found that the kid-
ney and tumor model performance presented in this study 
for multiphase CT and T2-weighted MR images was 

comparable to previously presented measures for inter-
observer variability. The inclusion of the KiTS21 sub-
analysis extends our work in only using corticomedullary 
contrast phase images as well as examining the effect of 
different model architectures, namely, the 2D and 3D nn-
UNet models. It is interesting to note that the number 
required to reach dataset saturation for the 2D model is 
much less than the 3D model, 177 images vs. 440 images, 
despite it predicting lower possible Dice performance 
(0.76 vs. 0.89). This finding reveals that different archi-
tectures have different data efficiency and performance 
limits further extending the use of our method to allow 
investigators a standardized method to evaluate different 

Fig. 7  Test set image example cases illustrating both good and 
poor tumor model performance. a CT image of a large homogene-
ous hypointense tumor with good model prediction (kidney Dice 
score = 0.95, tumor Dice score = 0.96). b CT image of a small hypoin-
tense lesion with low contrast and not well-defined borders. The CT 
tumor model predicted only a small region within the tumor resulting 

in kidney and tumor Dice scores of 0.95 and 0.05, respectively. c MR 
image of a large heterogeneous tumor with a good model prediction 
(kidney Dice score = 0.96, tumor Dice score = 0.94). d MR image of 
a small hypointense tumor, in this case the MR tumor model did not 
generate a tumor prediction (kidney Dice score = 0.88, tumor Dice 
score = 0.17)
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kinds of model in real time for a task with a specific target 
organ and image modality. Whether due to size, heteroge-
neity, being paired or non-paired target structures, or other 
elements, different organs and/or pathology have different 
requirements to segment accurately as evidenced by vary-
ing validated inter-observer values [30].

Limitations to this work include different processing for 
the CT and MR images, the inclusion of partial nephrectomy 

patients in the MR dataset, and the lack of additional MR 
images to further assess the relationship between the dataset 
size and model performance. Our CT images were clipped 
around the kidneys presenting an easier task for automatic 
segmentation than the abdominal MR images. This clipping 
step was similar to a coarse-to-fine segmentation strategy 
found in the best performing KiTS21 models, where the ini-
tial model identifies the renal region of interest in the full 
CT abdomen and pelvis image before segmenting the spe-
cific tissue [16]. Tumors in the MR dataset were on average 
smaller than those in the CT dataset since the images came 
from patients undergoing partial and radical nephrectomies. 
In addition, we did not evaluate different configurations in 
the nnU-Net framework nor a series of different nnU-Net 
models as employed in some KiTS21 submissions [16, 17]. 
The last major limitation of this work is that this method 
establishes plateau performance relative to the holdout test 
set, which segmentation model developers must indepen-
dently ensure is representative of the real-world images for 
the intended task. We propose our method serving to estab-
lish a good candidate for clinical application but not replac-
ing the value of rigorously designed prospective clinical tri-
als to ensure robustness to real-world examples.

Future potential research spawned from our present work 
may include the impact of including other specific renal ana-
tomic structure and additional organs. Presumably, more 
renal anatomic structures would require more examples in 
the training and validation set to provide robust predictions. 
This would be especially true for structures like renal cysts 
which may only be present on a subset of training examples. 
The KiTS21 challenge included additional labels for simple 
cysts, providing a training set to explore this impact further. 

Fig. 8  a Mean tumor test Dice score prediction for 2D (blue) and 
3D (orange) models. The solid scatter points represent the ensemble 
models, and the faded color points represent the individual 5 folds at 
different dataset sizes. The dotted line is the fitted exponential-plateau 
model for 2D (blue) and 3D (orange) image modalities. Arrows indi-
cate where the plateau point is estimated on each curve. Student’s 
paired t-test was used to determine where the ensemble predicted 
Dice scores for each test set were statistically significantly different, 
where ***p ≤ 0.001

Fig. 9  a Mean 2D and b 3D tumor test Dice score prediction with fit-
ted exponential-plateau models on progressively dropped out larger 
datasets. The dotted lines are the fitted exponential-plateau models 

for all of the data (blue), dropping the 240 size dataset (orange), and 
dropping the 240 and 200 size datasets (green)



1780 Journal of Digital Imaging (2023) 36:1770–1781

1 3

It also would be interesting to examine whether the plateau 
point for dataset sizes is different for different organ systems 
[31]. Future work to further validate this relationship can 
provide guidance in the curation of custom segmentation 
datasets for medical image segmentation purposes.

Conclusion

An exponential-plateau model demonstrated how research-
ers can determine estimate how much if any benefit will be 
observed in final nnU-Net model performance from increasing 
the amount of training set data. Such application can help in 
the development of nnU-Net models by isolating whether sub-
optimal performance may be secondary to training dataset size.
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