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Abstract
COVID-19 has claimed millions of lives since its outbreak in December 2019, and the damage continues, so it is urgent to 
develop new technologies to aid its diagnosis. However, the state-of-the-art deep learning methods often rely on large-scale 
labeled data, limiting their clinical application in COVID-19 identification. Recently, capsule networks have achieved highly 
competitive performance for COVID-19 detection, but they require expensive routing computation or traditional matrix 
multiplication to deal with the capsule dimensional entanglement. A more lightweight capsule network is developed to 
effectively address these problems, namely DPDH-CapNet, which aims to enhance the technology of automated diagnosis 
for COVID-19 chest X-ray images. It adopts depthwise convolution (D), point convolution (P), and dilated convolution (D) 
to construct a new feature extractor, thus successfully capturing the local and global dependencies of COVID-19 pathologi-
cal features. Simultaneously, it constructs the classification layer by homogeneous (H) vector capsules with an adaptive, 
non-iterative, and non-routing mechanism. We conduct experiments on two publicly available combined datasets, including 
normal, pneumonia, and COVID-19 images. With a limited number of samples, the parameters of the proposed model are 
reduced by 9x compared to the state-of-the-art capsule network. Moreover, our model has faster convergence speed and bet-
ter generalization, and its accuracy, precision, recall, and F-measure are improved to 97.99%, 98.05%, 98.02%, and 98.03%, 
respectively. In addition, experimental results demonstrate that, contrary to the transfer learning method, the proposed model 
does not require pre-training and a large number of training samples.
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Introduction

Coronavirus disease (COVID-19) has rapidly spread across 
the globe since December 2019, claiming tens of thou-
sands of lives. Three years have passed, the repeated epi-
demics still severely influence people’s work, study, and 
life. It is urgent to develop new detection technologies. 
COVID-19 has similarities with other pneumonia diseases, 
such as severe acute respiratory syndrome (SARS) or viral 

pneumonia (VP), which requires a large number of profes-
sional radiologists, thus significantly increasing the pressure 
on hospital emergency departments and emergency cent-
ers. Compared with CT imaging, chest X-ray (CXR) has 
a shorter diagnostic time and lower cost. Thus more and 
more researchers attempt to introduce deep learning (DL), 
especially convolutional neural network (CNN), to improve 
COVID-19 detection efficiency and accuracy on chest X-ray 
images [1–4].

The current state-of-the-art CNN models are highly com-
plex in structure, which determines their “data-starved” 
property. This heavily limits their application in COVID-19 
detection. This problem is effectively addressed by using 
transfer learning, that is, fine-tunes models trained on large-
scale data using COVID-19 datasets. To solve the problem 
of insufficient COVID-19 samples, Loey et al. [5] introduced 
Generative Adversarial Network (GAN) based on the clas-
sical DL framework AlexNet, the effect of which is better 
than other transfer learning methods, such as GoogleNet and 
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ResNet18. Abbas et al. [6] adopted VGGNet to design a 
decomposition, transfer, and synthesis method for classify-
ing CXR images into three categories: normal, COVID-19, 
and SARS. Its performance outperformed the traditional 
VGG19 pre-trained model. In addition, many research 
attempts to improve ResNet to obtain better classification 
performance, such as the paper [7] combined ResNet with 
the feature pyramid network. Unlike this, [8] used multiple 
image levels to diagnose COVID-19 at the 3D CT volume 
level. Its detection performance is superior to that of a single 
3D-Resnet. Other transfer methods include Inception [9], 
DenseNet [10]. Transfer learning has achieved satisfactory 
results in COVID-19 identification, but it cannot be the pre-
ferred method for clinical diagnosis of COVID-19 due to its 
complex model and high computational overhead. Therefore, 
some researchers proposed DL frameworks specifically for 
COVID-19. The COVID-net proposed by Wang et al. [11] 
achieved 83.5% accuracy in the classification of COVID-19, 
normal, pneumonia-bacterial, and pneumonia-viral. Moreo-
ver, Ozturk et al. [12] used 17 convolutional layers to design 
a model based on DarkNet, with an accuracy of 98.08% for 
binary classification and 87.02% for multi-class classifica-
tion. But the performance of this type of model on multi-
classification needs to be further improved. Additionally, 
since CNN has some potential defects, especially it cannot 
capture the relative positional relationship between features, 
Hinton et al. [13] exploited a new architecture, referred to 
as Capsule Network, as a powerful alternative to CNN. This 
structure uses capsules (that is, vectors containing feature 
information) to build capsule layers, and effectively avoids 
the loss of high-level feature information through routing 
mechanisms, demonstrating certain advantages in medical 
image processing [14, 15]. Inspired by this, Afshar et al. 
[16] proposed a capsule network for identifying COVID-19 
using X-ray images, named COVID-CAPS, and achieved 
an accuracy of 95.7% and an area under the curve (AUC) 
of 0.97. Similarly, Toraman et al. [17] proposed an artificial 
neural network approach to detect COVID-19 disease. On 
their basis, Fudong Li et al. [2] recently designed a new cap-
sule network using multi-head attention routing and obtained 
the optimal effect on COVID-19 chest X-ray image classi-
fication. In response to the current problems in COVID-19 
detection: 

1.	 DL transfer learning models are highly complex;
2.	 CNNs specially designed for COVID-19 underperform 

in multi-classification;
3.	 Capsule networks rely on expensive routing calcula-

tions. A novel capsule network called DPDH-CapNet is 
exploited to promote COVID-19 automatical diagnosis. 
It utilizes depthwise convolution, point convolution, 
and dilated convolution to design a new feature extrac-
tion backbone while abandoning the traditional routing 

design between adjacent capsule layers, aiming to build 
a more lightweight and efficient architecture for COVID-
19 diagnosis. The main contributions are as follows:

1.	 This paper exploits a novel capsule network. Capsule 
layers are constructed by homogeneous vector capsules, 
which tactfully avoids traditional matrix multiplication 
between capsule layers or expensive routing computa-
tion to deal with the entanglement of capsule dimen-
sions. This operation makes the realizable precision of 
the model less dependent on the fine-tuned hyperpa-
rameters with the non-adaptive optimizer. At the same 
time, it can effectively capture the relationship between 
the lower-level capsule and the higher-level capsule to 
promote COVID-19 detection.

2.	 We adopt depthwise convolution, point convolution, and 
dilated convolution to design a new feature extractor. It 
can validly capture the local and global dependencies of 
feature maps with fewer parameters and lower compu-
tational overhead, further extract more abundant repre-
sentation features from X-ray images, and thus improve 
the pathology discrimination of the model.

3.	 The proposed model can be trained end-to-end on a 
limited training dataset. Moreover, it does not require 
external datasets for pre-training and transfer learning. 
More importantly, its parameters are 29,750, reduced by 
9x compared with the state-of-the-art capsule network.

4.	 Experimental results on the CXR dataset demonstrate 
that the proposed model outperforms the state-of-the-art 
capsule networks (shown in Fig. 1) and transfer learning 
methods. In addition, it also has faster convergence and 
better generalization.

The remainder of this paper is as follows. “Related 
Work’’ discusses the work related to our model. “Proposed 
Model’’ describes the proposed network architecture in 
detail. Experimental results and analysis are in “Experi-
mental Preparation’’. The conclusions and future work are 
in “Conclusion’’.

Related Work

The capsule network was first proposed by Hinton et al. [13], 
aiming to overcome the defect of CNN ignoring relative 
position information. General neural networks are composed 
of neurons, but capsule networks are composed of capsules, 
which are a set of neurons [18] that can be represented by 
feature vectors. The capsule not only represents a specific 
entity type, but also describes how the entity is instantiated, 
such as pose, texture, deformation, and the existence of these 
features themselves [19].
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Sabour et al. [18] first adopted a dynamic routing mech-
anism to train the weights between different capsule lay-
ers, thus allowing the output of the current sub-capsule to 
be mapped to the appropriate parent capsule. It achieved 
99.75% accuracy on MNIST classification. After that, Hin-
ton et al. [20] proposed a new routing iterative mechanism 
(EM algorithm) by changing the sub-capsule activation 
method while incorporating a gaussian mixture model. Simi-
larly, most research on capsule networks mainly focused on 
improving dynamic routing mechanisms. Rajasegaran et al. 
[21] proposed a novel dynamic routing (DeepCaps) based 
on 3D convolution to reduce the complexity. In addition, F. 
Ribeiro et al. [22] designed a routing by variational bayesian 
(VB) and combined it with a gaussian mixture model of the 
fitted transform. This method outperformed EM in terms of 
convergence speed, stability, and final test error. Venkatara-
man et al. [23] introduced another degree-centrality-based 
equal-variable routing. These operations further improved 
the performance of the capsule network. Unlike the above 
approaches, Choi et al. [19] (AR CapsNet) and Tsai et al. 
[24] used an attention mechanism to design routing to cap-
ture the relationship of adjacent capsule layers. Mazzia et al. 
[25] extended the research by adopting non-iterative, highly 
parallel self-attentive instead of dynamic routing, which con-
clusively reduced the parameters. Recently, Fudong Li et al. 
[2] confirmed the effectiveness of the multi-head attention 
mechanism on routing.

The routing mechanism is often iterative, parameterized, 
and limited to a certain extent by the entanglement of cap-
sule dimensions, so the computational overhead is vast. We 
abandon the routing process and only rely on the weights 
learned between capsule layers in the process of backpropa-
gation, which aims to implement the connection of the cap-
sule layer using an adaptive optimization strategy.

Proposed Model

As shown in Fig. 2, the proposed model consists of con-
volutional layers and capsule layers. The convolutional 
layers are exploited using a new feature extractor to obtain 
richer feature representation. The capsule layers consist of 
primary and class capsule layers. They are connected with 
an element-wise multiplication method instead of matrix 
multiplication conversion or routing algorithm, thus reduc-
ing computational complexity. The advantage of this frame-
work is that the convolutional layers extract the local feature 
and global feature of COVID-19 from the input chest X-ray 
image. The extracted features are fed into the capsule lay-
ers to instantiate different objects, thereby improving the 
model’s discriminative ability.

Convolutional Layer

Adam Jacobi et  al. [26] pointed the lung consolidation 
and ground glass opacities features of COVID-19 tend to 
be diffuse (e.g., bilateral lower lung) or localized (e.g., left 
upper lung) on chest X-ray images, and the diffuse trend is 
strengthened with increasing degree of infection. Therefore, 
it is crucial to capture the local and global dependencies 
of its pathological features. So this paper explores a new 
feature extraction architecture to implement this function. 
CNNs [27, 28] and Vision Transformers (ViTs) [29, 30] have 
become two mainstream frameworks in computer vision. 
Recently, some studies have combined CNN and ViTs to 
design new feature extraction backbones, aiming to subtly 
incorporate the advantages of both [31–34] to reduce image 
local redundancy (CNNs) while capturing long-range cor-
relations (ViTs). However, such models have not yet fully 
escaped from the “data starvation” paradigm, especially in 

(a) (b) (c)

Fig. 1   Comparison of the proposed model (DPDH-CapNet) and the state-of-the-art capsule networks on different evaluation metrics. a Convolu-
tional capsnet. b COVID-CAPS. c MHA-CoroCapsule
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the medical field. By contrast, the proposed feature extractor 
can effectively break through this limitation and combine the 
advantages of CNN+ViTs. It consists of depthwise convolu-
tion, point convolution, and dilated convolution.

In depthwise convolution, one filter corresponds to one 
channel, which can be used to extract the channel features 
of COVID-19 chest X-ray images. The size of the point con-
volution kernel is 1 × 1 ×M , and M represents channels cor-
responding to the previous layer. It weights and combines 
the features obtained by depthwise convolution. Assuming 
that W and H represent the width and height of the convolu-
tion kernel, respectively. Cin and Cout are the number of input 
channels and output channels, respectively, then the param-
eters of standard convolution can be expressed as:

For combined depth wise convolution and point convolu-
tion, its parameters are:

So,

It can be seen that compared with standard convolution, 
depthwise convolution and point convolution can significantly 
reduce parameters. In addition, we introduce injection holes 
based on the depthwise convolution to construct a dilated 

(1)Pst = W × H × Cin × Cout

(2)Pdp = W × H × Cin + 1 × 1 × Cin × Cout

(3)Pdp∕Pst = 1∕Cout + 1∕(H ×W) < 1

convolution, aiming to capture global information of feature 
maps. Assuming its kernel size is k and the number of holes 
is d, and d = 3 in this paper, then its equivalent standard con-
volution kernel size k′ is:

Moreover, let RFi+1 , RFi respectively be the receptive field 
of the current layer and the previous layer, then:

where Si represents the product of the stride of all previous 
layers (excluding this layer), it is calculated as follows:

Equations (4) and (5) indicate that, compared to standard 
convolution, dilated convolution can acquire a larger recep-
tive field with the same kernel size, thus effectively cap-
turing contextual information. To conclude, our feature 
extractor has a more robust performance than standard con-
volution in capturing the local and long-range dependencies 
of COVID-19 pathological features. Further, we design 4 
sets of such feature extractors, each group sets the size of all 
convolution kernels to 7 × 7 . In addition, all strides of con-
volution operations are all set to 1. The batch normalization 
(BN) process and LeakyReLU activation function follow 

(4)k� = k + (k − 1) × (d − 1) > k

(5)RFi+1 = RFi +
(
k� − 1

)
× Si

(6)Si =

i∏

i=1

Stridei

Fig. 2   Schematic representation of the overall architecture of DPDH-CapNet. N (equal to 1, 2, 3, 4) represents the number of convolutional lay-
ers. BN is batch normalization. HVCs denotes homogeneous vector capsules



992	 Journal of Digital Imaging (2023) 36:988–1000

1 3

each group of feature extractors. Finally, after each group of 
feature extractors, the number of channels of the obtained 
feature maps is 16, 32, 64, and 128 in turn.

Homogeneous Vector Capsules

The primary capsule layer is created by constructing capsule 
vectors using each different x and y coordinate of the feature 
maps, which fully considers meaningful feature combina-
tions. The aim is to obtain different feature vector formations 
to instantiate the capsules. After this operation, the obtained 
primary capsule layer can be described as P16,8 , where n = 16 
and d = 8 represent the number of primary capsules and their 
respective dimensions, respectively.

To avoid the problem of the overdetermined system caused 
by traditional matrix multiplication and expensive routing cal-
culation overhead. A new approach is applied to map primary 
capsules to class capsules, namely element-wise multiplica-
tion. This operation can be described as the Eq. (7):

where i = 0, ..., 16 . Wi represents the learnable weight corre-
sponding to the primary capsule Pi , both have equal dimen-
sionality. Cj (j=1, 2, 3) represents the class capsule. The pri-
mary capsule layer and the class capsule layer have the same  
dimensions, so they are called homogeneous vector capsules, 
and their visualization form can be referred to as the HVCs  
in Fig. 2. This method has the following advantages. On the 
one hand, the training weight parameters are few. The training  
weight parameters of each capsule are equal to the dimension-
ality of the capsule. However, they are the square of the dimen-
sion of the capsule for the dynamic routing method proposed  
by Sabour et al. [18]. On the other hand, the primary and class  
capsule layers have the same dimensions, which makes it flexi-
ble to model feature vectors. While the dimension of the vector  
must meet the perfect square in paper [20], which dramatically  
limits its application in COVID-19 detection.

After homogeneous operations, the class capsule layer C3,8 
has 3 capsules with 8 dimensions, where the length of the 
activity vector of each capsule represents the probability that 
each class exists, which is used to calculate the classification 
loss. Moreover, they also contain instantiated parameters for 
normal, pneumonia, and COVID-19 chest X-ray images.

Margin Loss

We adopt the margin loss Lc in capsnet as the loss function. 
It is calculated as follows:

(7)Wi ⊙ Pi = Cj

(8)
Lc =

∑

k∈CNum

Tkmax(0,m
+ − ||uk||)2

+ �(1 − Tk)max(0, ||uk|| − m−)2

where Tk is the sample class label. If k class exists, Tk = 1 . 
� = 0.5 is the balance coefficient, which lowers the weights 
of the loss for non-existing classes. These two parameters can 
prevent the initial learning from shrinking the length of the 
activity vector of all class capsules. CNum and k represent the 
number of classes in the dataset and the sequence number of 
classes, respectively. m+ = 0.9 and m− = 0.4 are class predic-
tion thresholds used to control the class response value of the 
actual computed output. In particular, Lc = 0 when the predic-
tion vector uk of the class capsule layer is consistent with Tk.

Experiments and Analysis

Experimental Preparation

Datasets

The datasets as shown in Table 1. Each dataset contains three 
types of CXR images with normal, pneumonia, and COVID-
19 labeled, its example images are shown in Fig. 3. COVID-19 
images in dataset-1 come from the database created by Cohen 
[35], for a total of 294 positive chest X-ray images, each from 
a different patient. In addition, we also obtain 350 normal and 
non-COVID-19 pneumonia chest X-ray images from Mooney 
[36]. Dataset-2 is from the COVID-19 radiography database 
[37], mainly consisting of 1200 COVID-19 positive images, 
1341 normal images, and 1345 viral pneumonia images. The 
original labeled normal, pneumonia, and COVID-19 X-ray 
images have varying length and width sizes. Moreover, they 
are all high-resolution. In such a case, all images in dataset-1 
and dataset-2 are rescaled to 128 × 128 pixels. Furthermore, we 
employ a normalization strategy to scale the pixel values of the 
images from [0, 255] to [0, 1].

Table 1   Chest X-ray image’s distribution for normal, pneumonia, and 
COVID-19

Dataset Normal Pneumonia COVID-19 Total

dataset-1 350 350 294 994
dataset-2 1341 1345 1200 3886

(a) (b) (c)

Fig. 3   Example images from datasets with three categories: a  Nor-
mal, b Pneumonia, and c COVID-19
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Model Training and Testing

Firstly, with the Google Colab cloud experimental environ-
ment, experiments are executed using Python 3.7, Keras 
2.4.3, and TensorFlow-GPU 2.8.0. Second, the proposed 
model and all the compared models are implemented using 
the graphical processing unit (GPU) Tesla-P100-PCIE with 
16 GB. In addition, the training set and test set are divided 
according to the ratio of 3:1. Model optimization uses the 
Adam with an initial learning rate of 0.001. Besides, we also 
apply an exponential decay function with the decay rate of 
0.5 and the decay step of 15 to lower the learning rate. The 
batch size and epoch are set to 16 and 100, respectively.

Model Evaluation

Since some of the comparison experiments are carried out 
on small samples, we use the 4-fold cross-validation method 
on dataset-1, thus guaranteeing the reliability of the experi-
mental results. Furthermore, we employ accuracy, precision, 
recall, and F-measure as evaluation metrics for all models. 
The calculation formulas are as follows: 

1.	 Accuracy = (TP + TN)/(TP + FP + TN + FN)
2.	 Precision = TP/(TP + FP)
3.	 Recall = TP/(TP + FN)
4.	 F-measure = 2TP/(2TP + FP + FN)

where TP, FP, TN, and FN denote true positive, false posi-
tive, true negative, and false negative, respectively. In addi-
tion, AUC, macro avg, and weighted avg are adopted as 
another three evaluation metrics in our experiment. AUC 
represents the area under the ROC. Macro avg and weighted 
avg are calculated as the average and weighted average of 
all categories corresponding to precision, recall, F-measure, 
and AUC, respectively.

Model Performance Test

We first use the 4-fold cross-validation to test the perfor-
mance of the proposed model on dataset-1. The experiment 
takes COVID-19 images as positive samples. To make the 
experimental results more accurate, we divide dataset 1 into 
5 different 4-fold data, and show the average results and std 

of different indicators in Table 2. In all folds, the average 
value of all evaluation indexes is not less than 95.65%, and 
the fluctuation is slight according to std. The best detection 
performance is obtained in fold-1, with accuracy, precision, 
recall, F-measure, and AUC of 97.59%, 97.67%, 97.59%, 
97.61%, and 99.41%, respectively. Based on the above 
results, it is persuasive that the overall performance of the 
proposed model is excellent. More importantly, it has a pow-
erful detection ability for COVID-19 based on the evaluation 
indexes precision, recall, and F-measure. In addition, Table 3 
shows the identification effects for each class in fold-1. The 
precision of the COVID-19 class is 100.00%, which illus-
trates the proposed network does not misclassify normal and 
pneumonia samples as COVID-19 in the dataset-1. This is 
crucial for epidemic prevention and control of the COVID-
19, because it can identify asymptomatic infected persons to 
the greatest extent possible. The visualizations of the confu-
sion matrix of our model in each fold are presented in Fig. 4.

Figure 5 shows the ROC of the proposed capsule network 
in fold-1. The AUC of COVID-19 classification is as high 
as 0.9992, significantly higher than that of normal, pneu-
monia, which indicates that our model is highly competitive 
for COVID-19 classification. Moreover, we further explore 
its misclassification images and their prediction scores, as 
displayed in Fig. 6. In fact, DPDH-CapNet utilizes the length 
of the class capsule layer output vector (i.e., the probability 
of the existence of each class.) to predict the class scores. 
Furthermore, the length also represents the probability of 
the presence of each class. For the misclassified images in 
fold-1, we can see from the blue bars that even though the 
COVID-19 symptoms are not obvious, the proposed model 
can still learn most of the instantiated features of COVID-19.

Routing mechanisms play an essential role in connecting 
low-level capsules and high-level capsules. It is necessary 
to conduct a series of exploratory experiments to analyze 

Table 2   Performance for 
different folds on the proposed 
capsnet. Dataset-1 is partitioned 
into 5 different 4-fold data

Folds Accuracy(%) Precision(%) Recall(%) F-measure(%) AUC(%)

Fold-1 97.59 ± 0.56 97.67 ± 0.58 97.59 ± 0.55 97.61 ± 0.55 99.41 ± 0.07
Fold-2 97.03 ± 1.82 97.10 ± 1.80 97.11 ± 1.76 97.07 ± 1.83 99.43 ± 0.06
Fold-3 95.89 ± 0.36 95.97 ± 0.36 95.99 ± 0.44 95.95 ± 0.38 98.94 ± 0.03
Fold-4 95.65 ± 0.60 95.82 ± 0.56 95.73 ± 0.60 95.74 ± 0.57 98.95 ± 0.15

Table 3   Performance obtained from the proposed model in fold-1

Precision(%) Recall(%) F-measure(%) AUC(%)

Normal 96.67 100.00 98.31 99.65
Pneumonia 98.86 98.86 98.86 99.65
COVID-19 100.00 95.95 97.93 99.92
Macro avg 98.51 98.27 98.37 99.74
Weighted avg 98.43 98.39 98.39 99.72
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the performance of different routings and our method in 
COVID-19 detection. The experiment selects the current 
typical routing designs, including the dynamic routing, 
attention routing, and multi-head attention routing. In the 
experiment, the iterations of dynamic routing are set to 3, 
5, and 7. The headers of multi-head attention routing take 
2, 4, 8, and 16, respectively. The performance comparisons 
are in Table 4. Our method has great performance improve-
ment over dynamic routing, attention routing, and multi-
head attention routing. Moreover, the parameters of our rout-
ing are nearly 9x lower than other routings, which further 
demonstrates that our routing design can better quantify the 
correlation between capsules. Finally, we can conclude that 
our routing method can effectively instantiate COVID-19 
features.

Model transparency is essential when DL models are 
used for life-threatening COVID-19 disease detection. 
To confirm that the proposed DPDH-CapNet can provide 
the contributing regions in X-ray images, we adopt three 
class activation techniques to achieve the interpretation and 
behavioral understanding of the DPDH-CapNet, including 
GradCAM++ [38], LayerCAM [39], and ScoreCAM [40]. 
According to Fig. 7, even though the proposed model only 

obtains image-level labels, it can detect COVID-19 lesions, 
which can greatly assist doctors in fast screening and diag-
nosing COVID-19.

Comparison with the State‑of‑the‑Art Networks

We compare performance of the proposed model and the 
state-of-the-art capsule networks and transfer learning meth-
ods. They are all designed for detecting COVID-19. Evalua-
tion indicators are all taken from the average of 4-fold cross-
validation on dataset-1. They are all designed for detecting 
COVID-19. It needs to note that experimental settings are 
kept the same, i.e., initial learning rate = 0.001, decay rate 
= 0.5, decay step = 15, batch size = 16, and epochs = 100. 
We first discuss the comparison results between the pro-
posed model and the capsule networks (COVID-CAPS, 
Convolutional capsnet, and MHA-CoroCapsule). Accord-
ing to Table 5, it is obvious that our network has the lowest 
parameters, only 11.46% of COVID-CAPS (second-lowest 
parameters). Simultaneously, it performs best on the accu-
racy, precision, recall, and F-measure evaluation metrics. 
Further analysis reveals that convolutional capsnet uses 
additional reconstruction losses to encourage the capsule 

Table 4   Performance comparison for different routing algorithms. The evaluation metrics are obtained from the average values on the 4-fold 
cross-validation. The best results are bolded

Routing Algorithm Accuracy(%) Precision(%) Recall(%) F-measure(%) AUC(%) Parameters

Dynamic routing (r=3) 96.88 ± 0.86 96.94 ± 0.88 96.96 ± 0.86 96.93 ± 0.87 99.55 ± 0.14 304,528
Dynamic routing (r=5) 96.98 ± 0.93 97.06 ± 0.93 97.05 ± 0.92 97.04 ± 0.93 99.58 ± 0.10 304,528
Dynamic routing (r=7) 96.88 ± 0.88 96.94 ± 0.88 96.96 ± 0.86 96.93 ± 0.87 99.55 ± 0.14 304,528
MHA routing (h=2) 96.38 ± 0.50 96.46 ± 0.48 96.48 ± 0.43 96.45 ± 0.45 99.41 ± 0.13 329,520
MHA routing (h=4) 95.98 ± 1.02 96.17 ± 0.99 96.01 ± 1.10 96.05 ± 1.05 99.40 ± 0.14 329,712
MHA routing (h=8) 96.58 ± 0.35 96.63 ± 0.39 96.64 ± 0.33 96.61 ± 0.36 99.42 ± 0.08 330,096
MHA routing (h=16) 96.38 ± 0.76 96.43 ± 0.78 96.48 ± 0.70 96.43 ± 0.74 99.14 ± 0.11 330,864
Attention Routing 96.98 ± 0.45 97.09 ± 0.48 97.04 ± 0.40 97.04 ± 0.43 99.52 ± 0.20 320,896
Ours ��.�� ± �.�� ��.�� ± �.�� ��.�� ± �.�� ��.�� ± �.�� 99.27 ± 0.17 29,750

Table 5   Performance comparison between our model and other state-of-the-art networks used to identify COVID-19 from X-ray images. The 
results come from datasets-1

Method Accuracy(%) Precision(%) Recall(%) F-measure(%) AUC(%) Parameters

Convolutional capsnet 90.54 ± 1.98 91.51 ± 1.74 91.40 ± 1.98 91.37 ± 1.87 96.45 ± 1.12 57,002,640
COVID-CAPS 94.06 ± 1.01 94.36 ± 1.15 94.18 ± 0.92 94.17 ± 1.00 97.87 ± 0.30 295,616
MHA-CoroCapsule 96.58 ± 0.35 96.63 ± 0.39 96.64 ± 0.33 96.61 ± 0.36 99.42 ± 0.08 330,096
Vgg16 92.86 ± 0.99 93.17 ± 1.06 93.13 ± 0.87 92.99 ± 0.97 98.53 ± 0.22 65,066,819
ResNet50 89.33 ± 0.94 89.91 ± 0.78 89.59 ± 0.92 89.61 ± 0.87 96.98 ± 0.22 23,593,859
InceptionV3 95.07 ± 1.48 95.29 ± 1.44 95.10 ± 1.47 95.16 ± 1.45 99.09 ± 0.27 21,808,931
DenseNet121 90.04 ± 1.33 90.60 ± 1.40 90.34 ± 1.24 90.24 ± 1.41 97.99 ± 0.37 7,040,579
MobileNet 92.66 ± 1.14 92.81 ± 1.20 92.83 ± 1.07 92.77 ± 1.13 98.35 ± 0.15 3,231,939
Ours 97.08 ± 0.78 97.15 ± 0.83 97.16 ± 0.72 97.14 ± 0.77 99.27 ± 0.17 29,750
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classes to encode the instantiated parameters of chest X-ray 
images, which dramatically increases the complexity of the 
model. This makes the performance of the model rely on the 
amount of data to some extent. COVID-CAPS and MHA-
CoroCapsule respectively adopt an agreement process and 
a multi-head attention design routing. These two methods 
can efficiently capture the relationship between the bottom 
capsule and the top capsule. Nevertheless, our approach is 
still more efficient and conducive to detecting COVID-19. 
This is because our network can adaptively capture the local 
and global dependencies of COVID-19 pathology features, 
which makes it more sensitive to discriminate normal, 
pneumonia, or COVID-19 chest X-ray images, even for 
asymptomatic infected persons. We also display the train-
ing process of MHA-Corocapsule and DHDP-CapNet to 
analyze the convergence. According to Fig. 8, it is evident 
that the proposed model has faster convergence and better 
stability. Moreover, when the epochs are over 20, the loss 
and accuracy on the training and test sets are closer than 
other models, which fully proves that our model has better 
generalization.

According to Table 5, the proposed DPDH-CapNet and 
MHA-CoroCapsule models are superior to other models 
in various indexes on small sample dataset-1. The better 
capsule structure design of these two models makes it bet-
ter at capturing fine-grained information and feature spa-
tial relationships of COVID-19, so as to detect COVID-19 
more effectively. However, the MHA-CoroCapsule detection 
performance is inferior than DPDH-CapNet. The proposed 
DPDH-CapNet, possibly because it has more parameters 

that make its performance dependent on more training data-
set. So we carry out comparative experiments on dataset-1 
and record the results in Table 6. Obviously, the proposed 
network still achieves the best effects. This fully demon-
strates that global information interaction design and non-
routing architecture of our model are effective in COVID-19 
detection.

Additionally, due to the extremely high complexity of 
current state-of-the-art deep learning models, large-scale 
datasets are required to train the models for accurate feature 
extraction. However, the existing COVID-19 database is 
small, which seriously limits their applications in COVID-
19 recognition. To address this problem, many researchers 
have used transfer learning strategies, i.e., pre-training on 
ImageNet or other large-scale datasets first and then fine-
tuning the weights of the model on the training sets. Typical 
methods include VGG [41], ResNet [42], DenseNet [43], 
Inception [44], and MobileNet [45]. We compare these mod-
els with the proposed model. The aim is to further high-
light the advantages of our model in identifying COVID-19. 
The source and target tasks of the transfer learning models 
involved in the experiment are similar: image classification. 
Theoretically, the deep learning frameworks used for com-
parison have a better capability of feature transfer repre-
sentation after being fine-tuned by weights. Nevertheless, 
according to experimental results of Table 5, the proposed 
model still obtains the best performance.

Analysis for Model Generalization

To further validate model generalization of different 
models in migrating applications, we pre-train them on 
dataset-1 and then migrate them directly to dataset-2 for 
COVID-19 prediction. Experimental results are shown in 
Table 7. The proposed model also obtains the best effect, 
which strongly confirms excellent generalization of our 
model in COVID-19 detection. In addition, we also dis-
play the ROC of suboptimal network MHA-Corocapsule 
and the proposed model for 3-class classification in 
Fig. 9, from which we can see that our model is the most 
competitive for normal, pneumonia, and COVID-19 clas-
sification. Based on the above comparison results, we 
can conclude that the design of the proposed model is 
more efficient in identifying COVID-19 compared with 
the capsule networks designed by routing and transfer 
learning models. It utilizes depthwise convolution, point  
convolution, and dilated convolution to design feature 

Table 6   Performance 
comparison between the 
proposed DPDH-CapNet and 
MHA-CoroCapsule on dataset-2

Method Accuracy(%) Precision(%) Recall(%) F-measure(%) AUC(%)

MHA-CoroCapsule 97.02 96.43 96.72 96.57 99.69
DPDH-CapNet 97.43 97.01 97.01 97.01 99.41

Fig. 4   ROC of the proposed capsnet for 3-class classification in fold-1
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Table 7   Generalization 
comparison between the 
proposed network and capsule 
networks, pre-trained CNN 
models. All models are 
previously trained on dataset-1, 
then directly migrated to 
dataset-2 for COVID-19 
classification

Method Accuracy(%) Precision(%) Recall(%) F-measure(%) AUC(%)

Convolutional capsnet 93.81 93.81 94.67 94.23 99.27
COVID-CAPS 93.90 95.86 96.58 96.22 98.85
MHA-CoroCapsule 94.39 97.43 94.75 96.07 99.59
Vgg16 90.09 94.48 98.42 96.41 99.68
ResNet50 89.94 96.17 90.08 93.02 99.10
InceptionV3 93.46 96.88 95.67 96.27 99.46
DenseNet121 92.07 94.75 94.75 94.75 99.33
MobileNet 90.07 93.46 95.33 94.39 99.20
Ours 94.42 96.46 97.75 97.10 99.68

Fig. 5   Examples of the DPDH-CapNet misclassified images in fold-1. Blue bars represent correct labels and their corresponding capsule length

Fig. 6   4-fold confusion matrices of the multi-class classification task. From left to right are fold-1, fold-2, fold-3, and fold-4
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extractors, which can effectively capture the local depend-
ency and global dependency of COVID-19 features. We 
also construct homogeneous vector capsules to build the 
classification layer. Such a design significantly reduces 

the complexity of the model and achieves the best per-
formance simultaneously. To conclude, our network is 
simple and efficient and plays a crucial role in preventing 
and controlling COVID-19.

(a) (b)

Fig. 7   Visualization of the training process on different capsnets in fold-1. a MHA-CoroCapsule. b Proposed model

Fig. 8   ROC for 3-class classification on dataset-2 using trained capsule networks on dataset-1. a MHA-CoroCapsule. b Proposed model.
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Conclusions and Future Work

Mainstream DL frameworks mainly use deep feature 
extraction approaches or transfer learning to detect 
COVID-19. However, their performance often depends 
on massive labeled samples. This paper proposes a more 
lightweight capsule network, called DPDH-CapNet, which 
mainly consists of convolutional layers and capsule lay-
ers. The convolutional layer uses depthwise convolution, 
point convolution, and dilated convolution as a set of fea-
ture extractors, which can effectively capture local and 
long-range dependencies for the pathological features of 
COVID-19. The capsule layer is constructed with homo-
geneous vector capsules. It can effectively avoid the tradi-
tional matrix multiplication and expensive computational 
routing mechanisms dealing with the capsule dimensional 
entanglement between capsule layers. At the same time, 
it obtains competitive results in comparison with differ-
ent routing mechanisms. In comparison with the state-of-
the-art capsule networks, the parameters of our model are 
reduced by 9x, and it achieves the best performance. More-
over, it has faster convergence and better generalization. In 
addition, the proposed model also shows great advantages 
for COVID-19 recognition compared to current state-of-
the-art transfer learning methods, and it does not require 
any pre-training. Extensive experiments also indicate that 

our model can achieve an accurate diagnosis for COVID-
19 even under limited samples, with a lower computational 
overhead. Despite the encouraging results, the proposed 
model still requires clinical research and testing. Due to 
its higher accuracy and sensitivity for COVID-19 cases, 
the DPDH-CapNet contributes to a deeper understanding 
of critical aspects of COVID-19 cases for radiologists and 
health professionals.
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