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Abstract
Training deep learning models on medical images heavily depends on experts’ expensive and laborious manual labels. In 
addition, these images, labels, and even models themselves are not widely publicly accessible and suffer from various kinds 
of bias and imbalances. In this paper, chest X-ray pre-trained model via self-supervised contrastive learning (CheSS) was 
proposed to learn models with various representations in chest radiographs (CXRs). Our contribution is a publicly acces-
sible pretrained model trained with a 4.8-M CXR dataset using self-supervised learning with a contrastive learning and 
its validation with various kinds of downstream tasks including classification on the 6-class diseases in internal dataset, 
diseases classification in CheXpert, bone suppression, and nodule generation. When compared to a scratch model, on the 
6-class classification test dataset, we achieved 28.5% increase in accuracy. On the CheXpert dataset, we achieved 1.3% 
increase in mean area under the receiver operating characteristic curve on the full dataset and 11.4% increase only using 
1% data in stress test manner. On bone suppression with perceptual loss, we achieved improvement in peak signal to noise 
ratio from 34.99 to 37.77, structural similarity index measure from 0.976 to 0.977, and root-square-mean error from 4.410 
to 3.301 when compared to ImageNet pretrained model. Finally, on nodule generation, we achieved improvement in Fréchet 
inception distance from 24.06 to 17.07. Our study showed the decent transferability of CheSS weights. CheSS weights can 
help researchers overcome data imbalance, data shortage, and inaccessibility of medical image datasets. CheSS weight is 
available at https://​github.​com/​mi2rl/​CheSS.

Keywords  Chest X-ray · Classification · Contrastive learning · Pretrained weight · Self-supervised learning · Bone 
suppression

Introduction

Training deep learning models with medical images is 
very difficult. Only a few data are accessible due to a vari-
ety of problems. In producing medical data, complicated 

issues such as human rights of patients, copyrights of the 
medical doctor who processed the medical information 
into the usable medical data, and other legal issues are 
entangled. Accordingly, Health Insurance Portability and 
Accountability Act (HIPAA) and General Data Protec-
tion Regulation (GDPR) were enacted in consideration of 
the issues mentioned above [1, 2]. However, these acts Kyungjin Cho, Ki Duk Kim, Yujin Nam, and Jiheon Jeong 
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made the medical data more inaccessible, and even the 
patients themselves could not access their own data [3]. 
Therefore, medical data themselves are difficult to open 
public and relatively small amount of data are opened to 
public. Furthermore, labels of medical images are difficult 
to obtain. Fine labels labeled by a board-certified radiolo-
gist are expensive, and weak labels labeled using previous 
radiologic report could be inaccurate.

Self-supervised learning (SSL) method is one kind of 
unsupervised pretraining method which can utilize unla-
beled data. Several studies have shown that self-supervised 
learning can improve the performance of target tasks without 
using labeled data [4–7]. Similarly, there have been some 
approaches to overcome the expensive label issues with self-
supervised learning. For example, one study could improve 
the target tasks by training pretext tasks training such as 
relative position prediction and local region reconstruction 
[8]. Other study improved performances in dermatology 
and chest radiograph (CXR) image classification tasks by 
adopting self-supervised pretraining [9], and another study 
proposed self-supervised pretraining pipeline to provide 
transferable initialization [10]. Furthermore, they have also 
shown that these approaches can overcome labels not only 
in the pretraining but also in the target tasks.

Some of the large datasets of CXR images has been 
opened to public recently [11–14]. They helped develop 
models by allowing many deep learning researchers to 
access medical images. One research group collected these 
data together and opened pretrained models trained on these 
data for transfer learning [15]. However, the size of these 
datasets (112–372 K) is still small compared to ImageNet, a 
typical deep learning computer vision benchmark of about 
1.2 M size [16]. A recent study reported that they have 
trained self-supervised network on 100 M medical images 
[17]. However, various modalities of medical images are 
used in this study, and 1.3 M X-ray images were used in this 
study. Furthermore, this pretrained model or images are still 
not accessible to peer researchers.

Still many researchers utilize ImageNet pretrained models 
in medical image deep learning tasks. However, regardless 
of the model performances, ImageNet pretrained models in 
medical image might seem unreasonable to medical person-
nel. ImageNet models are usually pretrained on 224 × 224 
resolution images, while medical images have much higher 
resolution. Therefore, several researches used medical image 
pretrained models to improve medical image deep learning 
tasks [10, 18–20].

For example, pulmonary nodules on medical images are 
defined as well lesion smaller than 30 mm [21], which can 
be lost in downsizing images into low-resolution such as 
224 × 224. In addition, ImageNet images are 3-channel RGB 
images, while radiologic images are usually 1-channel gray-
scale images. Therefore, ImageNet pretrained models can be 

less reliable in medical image due to the discrepancy in the 
settings between pretraining and target tasks. Furthermore, 
researchers might need more computational resources, such 
as GPU memories, since they typically resize 1-channel 
medical images to 3-channel images when using ImageNet 
pretrained models.

In this study, we propose chest X-ray pre-trained model 
via self-supervised contrastive learning (CheSS), which has 
been pretrained using considerable amount of CXR images 
and is freely accessible to researchers.

Materials and Methods

This retrospective study was conducted according to the 
principles of the Declaration of Helsinki and according 
to current scientific guidelines. The Institutional Review 
Board Committee approved the study protocol. The Insti-
tutional Review Board Committee waived the requirement 
for informed patient consent due to the retrospective nature 
of this study.

Dataset Preparation and Image Pre‑processing

Dataset

For training an upstream method, 4.8 M CXR images were 
obtained retrospectively from a tertiary hospital in South 
Korea. A total of 3.6 M adult CXR images were collected 
from 2011 to 2018. Next, 1.2 M pediatric CXR images were 
collected from 1997 to 2018.

In downstream tasks, CXR images with 6-class diseases 
which were confirmed by near computed tomography (CT) 
scans within 1 month were first collected from the same 
hospital but independently of the upstream method for the 
multi-class classification. CXR images of 2571 healthy 
subjects and 3417 patients were obtained, with the latter 
including 944, 1540, 280, 1364, and 330 patients with “nod-
ule,” “consolidation,” “interstitial opacity,” “pleural effu-
sion,” and “pneumothorax,” respectively. Chest CT images 
were used to confirm the presence of normal and abnormal 
nodules (including masses), or interstitial opacities in the 
dataset, as well as pleural effusion and pneumothorax, were 
determined by the consensus of two thoracic radiologists 
using CXR images and corresponding chest CT images [22].

Second, we used the CheXpert [12] dataset, which con-
tains CXR images for the multi-label classification. Like the 
original CheXpert leaderboard [23, 24], “atelectasis,” “cardi-
omegaly,” “consolidation,” “edema,” and “pleural effusion” 
diseases were selected for validation test. Third, we collected 
4033 adult posterior-anterior pairs of rib-preserved and rib-
suppressed bone suppression images, generated using the 
Bone Suppression™ software (Samsung Electronics Co., 
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Ltd.) [25] for the bone suppression. Finally, we used images 
of patients with “nodule” from the 6-class dataset for the 
nodule generation.

Image Preprocessing

All CXR images were resized into 512 × 512 pixels. Next, 
to alleviate the high intensity of L/R markers in CXR 
images, we limited the CXR images’ maximum pixel value 
to the top 1%-pixel value of each CXR image [26].

Training Visual Representation of CXR 
as an Upstream Method

We trained the self-supervised contrastive pretraining 
method with unlabeled images using MoCo v2 [6] to 
learn visual representations of CXR. The upstream method 
maximizes the similarity between two views of the same 
CXR images (positive pair) and minimizes the similar-
ity between different CXR images (negative pairs). Our 
method is illustrated in Fig. 1.

For upstream training, 8 GPUs (Tesla V100) and a batch 
size of 256 were used. All models were implemented using 
PyTorch framework. In this study, a 50-layer residual net-
work (ResNet) [27], one of the most commonly used net-
works in deep learning, was used. The SGD optimizer with 
a learning rate of 1e − 5, momentum of 0.9, and weight 
decay of 1e − 4 was adopted. Shifting, zooming, rota-
tion, blur, sharpening, Gaussian noise, cutout, and optical 
distortion were used for data augmentation. To train the 
model, we used InfoNCE [6, 28] as an unsupervised objec-
tive function to train the encoder networks that represent 
queries and keys. The loss function is calculated as follow:

where q, k+ , and ki represent a query, a positive key that 
matches the query, and all keys including both positive and 
negative keys, respectively. In addition, we adopted MoCo 
v2 [6], which performs momentum updates by storing a dic-
tionary queue structure of data samples that can efficiently 
use the high resolution’s CXR information. Finally, training 
our model took about 8 weeks.

Evaluation via Various Downstream Target Tasks

To evaluate our pretrained model, many downstream tasks 
were conducted as follows. First, to compare the effective-
ness of our pretrained weight with ResNet50, which has 
been trained in a supervised manner using ImageNet-1 k 

L∐ = −log
exp

�

q ⋅ k+∕τ
�

∑K

i=0
exp

�

q ⋅ ki∕τ
�

dataset or randomly initialized weight, we conducted fine-
tuning on the CXR 6-class dataset. To simulate various clini-
cal situations, we applied various data imbalanced settings in 
composing the training dataset. The details on the amount of 
data and the settings are summarized in Table 1.

Second, the CheXpert dataset [12] was used to evalu-
ate the generalizability of our method. This task was also 
compared among three models with the randomly initial-
ized weight, ImageNet pretrained weight, and our pretrained 
weight. Furthermore, stress tests using data fractions of 1%, 
10%, and 50% were also conducted to demonstrate that data 
shortage can be supplemented using our pretrained weight.

Finally, since the perceptual loss from task-specific fea-
ture extractor has been used recently [29–31], image-to-
image translation tasks were conducted to suggest potential 
usage of our pretrained model for perceptual loss [32]. Bone 
suppression and nodule generation were conducted to dem-
onstrate that our pretrained model can be used for percep-
tual loss. Details of the downstream training strategy can be 
found in the Supplementary materials.

Results

CXR 6‑Class Classification

Various data settings were assumed to consider the actual data 
distribution in the real clinical environment. Severe data imbal-
ance was established in the initial setting, with maximum 1540 
and minimum 280 images. The validation and test datasets 
were made common for all experiments, for a fair comparison.

Table 2 shows the result of all experiments conducted. 
CheSS showed statistically significant better compared to 
those of the ImageNet pretrained model (P-value < 0.001) 
and randomly initialized model (P-value < 0.001) in Stuart-
Maxwell test.

A full dataset was set up to compare the capabilities to 
overcome the data imbalance of each pretrained weight. An 
undersampled dataset was set up to compare the model per-
formances in the fair but scarce amount of data. Finally, the 
modified dataset was set, in which the amount of data was 
set according to the difficulties of each class in the dataset. 
Because ImageNet can sometimes have worse performance 
than scratch depending on image size and dataset size [33], 
it is not surprising that ImageNet can perform slightly worse 
in some settings.

CheXpert Multi‑Label Classification

Stress tests of multiple data fractions were conducted con-
sidering the data shortage in an actual research environment. 
Data fractions of 1%, 10%, 50%, and 100% were estab-
lished to compare each pretrained weight’s capabilities for 
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evaluating overcoming performances in data shortage. For 
the stability and the reproducibility of the data stress test 
results, fine-tuning experiments on small data fractions were 

repeated multiple times with different random samples and 
averaged. Common unseen test datasets in all experiments 
were fixed for a fair comparison.

Fig. 1   Overall workflow of our method consisting of upstream and 
downstream methods. In the upstream method, a model in MoCo v2 
manner was trained. In downstream tasks, the transfer learning with 

pretrained weights of upstream model was used to train multi-class 
classification, multi-label classification, and image-to-image translation

Table 1   Dataset settings used in CXR 6-class classification. The 
same number of images for each class was sampled for the undersam-
pled dataset. Normal, nodule, and consolidation images were addi-

tionally sampled for the modified dataset, while the interstitial opacity 
images were simply duplicated because there was no additional data 
for interstitial opacity

Normal Nodule Consolidation Interstitial opacity Pleural effusion Pneumothorax

Full 2,515 888 1,484 224 1,308 274
Undersampled 224 224 224 224 224 224
Modified 336 560 560 448 224 224
Validation 28 28 28 28 28 28
Test 28 28 28 28 28 28
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Figure 2 depicts the results of the full dataset experi-
ment and data stress tests of multiple data fractions. In 
the full dataset, CheSS showed the best mean area under 
receiver operating characteristics curve (AUC) of 0.808, 
while the ImageNet pretrained model showed 0.795, and 
the scratch model showed 0.794. The detailed results of 
the full dataset experiment are summarized in Supple-
mentary Table 1. Furthermore, in the 1% data fraction 
test, CheSS, ImageNet pretrained model, and scratch 
achieved a mean AUC of 0.638 ± 0.023, 0.616 ± 0.015, 
and 0.524 ± 0.020, respectively. Paired t-tests were con-
ducted to compare the results. Quantitative results are 
summarized in Table 3.

Qualitative Results on Classification Results

Saliency maps acquired using gradient-weighted class 
activation map (Grad-CAM) [34] were used to compare 
the qualitative results. Figure  3 depicts the results of 
Grad-CAM of each model. The red text in Fig. 3 is the 
logit value for each model (scratch, ImageNet, CheSS) 
of (a) 6-class classification and (b) multi-label classifica-
tion, respectively. In Fig. 3a, the logit value for the con-
solidation label in the image was the highest in our model 
at 0.981. Also, in Fig. 3b, the logit values of our model 
were high at 0.901, 0.538, and 0.775 for the cardiomegaly, 
edema, and pleural effusion labels.

Image‑to‑Image Translation using Perceptual Loss

Bone suppression and nodule generation tasks were con-
ducted to evaluate the potential usage of CheSS for percep-
tual loss. Dilated U-Net [35, 36] was used for bone suppres-
sion. Structural similarity index measure (SSIM) [37], peak 
signal to noise ratio (PSNR), and root-mean-square error 
(RMSE) were used for the quantitative evaluation. Moreo-
ver, dilated U-net without perceptual loss was additionally 
compared. SPADE [38, 39] with perceptual loss was used in 
the nodule generation task. Fréchet inception distance (FID) 

Table 2   Accuracies of 6-class classification model with multiple data 
imbalance simulations

Stuart-Maxwell test was conducted to compare scratch (randomly 
initialized), ImageNet, and our (CheSS) pretrained models. The bold 
text indicates the best performance
*p < 0.05; **p < 0.01; ***p < 0.001

Full Undersampled Modified

Scratch 0.375*** 0.464*** 0.369***
ImageNet 0.554** 0.405** 0.398***
Ours (CheSS) 0.631 0.554 0.654

Fig. 2   Mean area under receiver 
operating characteristics curve 
(AUCs) and standard deviations 
(SDs) on multiple data fraction 
fine-tuning with the weights 
of scratch, ImageNet, and 
CheSS pretrained models. Data 
fractions of 1%, 10%, and 50% 
were experimented on 10 times 
with different random samples. 
The result of the full dataset is 
presented only with AUC​
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[40] was used for the quantitative results. CheSS pretrained 
and ImageNet pretrained ResNet [27] encoders for percep-
tual loss were mainly compared in this section.

Table 4 shows the quantitative results of two-generation 
downstream tasks with perceptual loss. In bone suppression, 
CheSS showed statistically significant results in terms of 
PSNR, SSIM, and RMSE when compared with the Ima-
geNet pretrained model and no perceptual loss. The per-
ceptual loss of CheSS also showed better results in terms 
of FID in nodule generation compared with the ImageNet 
pretrained model.

The qualitative results for bone suppression are shown 
in Fig. 4, and the results for nodule generation are shown in 
Supplementary Fig. 1.

Discussion

We trained CheSS using a SSL method on a large-scale data-
set of 4.8 M CXR images. In this study, we evaluated CheSS 
with many downstream tasks. CheSS showed better perfor-
mance than scratch and the ImageNet pretrained model in 
many downstream tasks. CheSS showed decent transferabil-
ity in multiple datasets and data settings in multi-class and 
multi-label classification. Data imbalance and data shortage 
can be supplemented with our CheSS pretrained weight. Fur-
thermore, CheSS does not need a strict preprocessing prin-
ciple as mentioned in “Image preprocessing” section. The 
same preprocessing in the upstream method might be opti-
mal for using CheSS. Still, it showed good transferability on 

Table 3   Mean AUCs and SDs on 1%, 10%, and 50% data fraction that were experimented on 10 times with the weights of CheSS, ImageNet, 
and scratch. The result of the full dataset was presented only with AUC​

Mean AUCs were compared using paired t-tests. The bold text indicates the best performance
*p < 0.05; **p < 0.005; ***p < 0.001

1% 10% 50% 100%

Scratch 0.524 ± 0.020*** 0.592 ± 0.017*** 0.759 ± 0.013*** 0.794
ImageNet 0.616 ± 0.015* 0.700 ± 0.027** 0.774 ± 0.022* 0.795
Ours (CheSS) 0.638 ± 0.023 0.746 ± 0.010 0.790 ± 0.012 0.807

Fig. 3   Grad-CAM acquired from a 3.1 6-class classification in CXR and b 3.2 CheXpert multi-label classification. Ground truth label for a is 
consolidation, and labels for b are atelectasis, cardiomegaly, edema, and pleural effusion
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CheXpert, which has a different preprocessing principle from 
our method, as shown in Supplementary Fig. 2. The potential 
usage of an CheSS pretrained encoder for perceptual loss was 
also demonstrated in this study. We have shown that multiple 
data issues, such as data imbalance and data shortage, can be 
supplemented with our open pretrained weight.

Many researchers utilize ImageNet pretrained models in 
medical image deep learning tasks. However, regardless of 
the model performances, ImageNet pretrained models might 
seem unreasonable to medical personnel. The first reason for 
that is ImageNet models are usually pretrained on 224 × 224 
resolution images, while medical images have much higher 
resolution. Second, pulmonary nodules on medical images 
are defined as lesions smaller than 30 mm [21], which can 
be lost while downsizing images to low resolutions such 

as 224 × 224. Third, ImageNet images are 3-channel (RGB) 
images, while radiologic images are usually 1-channel (gray-
scale) images. Thus, ImageNet pretrained models can be less 
reliable for medical images owing to the large discrepancy 
between pretraining and target tasks. In addition, research-
ers might need more computational resources, such as GPU 
memories, since they typically resize 1-channel (grayscale) 
medical images to 3-channel (RGB) images when using Ima-
geNet pretrained models.

Our study has several limitations. First, external valida-
tion in the classification method was performed with only 
one dataset owing to limited time and resources. A further 
study is required to confirm the universal transferability of 
CheSS. Second, we did not use dense prediction methods such 
as object detection and semantic image segmentation. How-
ever, the qualitative results show acceptable localizing perfor-
mances. A further study of dense prediction is also needed to 
verify our method’s capabilities of localizing a region of inter-
est. Third, more ablation studies, stress tests, and parameter 
searching are needed to evaluate the performance of CheSS 
weights. Finally, several studies [6, 7, 28] have shown that 
using a batch size of more than 1000 in the upstream task leads 
to good performance. However, the size of the images used in 
these papers was set to 224 × 224, while ours was 512 × 512 
in consideration of the characteristic of medical imaging with 
high resolution [21]. Due to limitations on resources and time, 
we were unable to experiment with various batch sizes. In the 
further studies, we will include the ablations study of various 
batch sizes on a self-supervised network for high-resolution 
medical image analysis.

Table 4   Quantitative results of image-to-image translation

SSIM structural similarity index measure, PSNR peak signal to noise 
ratio, RMSE root-mean-square error, FID Fréchet inception distance. The 
bold text indicates the best performance
*p < 0.05; **p < 0.005; ***p < 0.001
a Paired t-test was conducted to compare perceptual loss of each model

Bone suppressiona Nodule 
generation

PSNR↑ SSIM↓ RMSE↓ FID↓

No perceptual 32.01*** 0.946*** 5.544*** -
ImageNet 34.99*** 0.976*** 4.410*** 24.06
Ours (CheSS) 37.77 0.977 3.301 17.07

Fig. 4   Example bone suppression images with perceptual loss, with-
out perceptual loss of ImageNet pretrained encoder, and with percep-
tual loss of CheSS pretrained encoder. Bone suppression images are 

shown in a, and the residual maps (subtraction between the original 
image and the bone suppression image) are shown in b 
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Conclusion

This study showed the decent transferability of CheSS weights. 
This open model can help researchers overcome data imbal-
ance, data shortage, and inaccessibility of medical image data-
sets. CheSS can also be used for perceptual loss in image-to-
image translation.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10278-​023-​00782-4.
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