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Abstract
This study demonstrates the high performance of deep learning in identification of body regions covering the entire human 
body from magnetic resonance (MR) and computed tomography (CT) axial images across diverse acquisition protocols and 
modality manufacturers. Pixel-based analysis of anatomy contained in image sets can provide accurate anatomic labeling. For 
this purpose, a convolutional neural network (CNN)–based classifier was developed to identify body regions in CT and MRI 
studies. Seventeen CT (18 MRI) body regions covering the entire human body were defined for the classification task. Three 
retrospective datasets were built for the AI model training, validation, and testing, with a balanced distribution of studies per 
body region. The test datasets originated from a different healthcare network than the train and validation datasets. Sensitivity 
and specificity of the classifier was evaluated for patient age, patient sex, institution, scanner manufacturer, contrast, slice 
thickness, MRI sequence, and CT kernel. The data included a retrospective cohort of 2891 anonymized CT cases (training, 
1804 studies; validation, 602 studies; test, 485 studies) and 3339 anonymized MRI cases (training, 1911 studies; validation, 
636 studies; test, 792 studies). Twenty-seven institutions from primary care hospitals, community hospitals, and imaging 
centers contributed to the test datasets. The data included cases of all sexes in equal proportions and subjects aged from 
18 years old to + 90 years old. Image-level weighted sensitivity of 92.5% (92.1–92.8) for CT and 92.3% (92.0–92.5) for MRI 
and weighted specificity of 99.4% (99.4–99.5) for CT and 99.2% (99.1–99.2) for MRI were achieved. Deep learning models 
can classify CT and MR images by body region including lower and upper extremities with high accuracy.
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Introduction

Accurate anatomic region labeling of medical images is 
required for classification of body parts included in medical 
imaging studies. Body part study labels contain key informa-
tion used to search, sort, transfer, and display medical imag-
ing datasets across clinical and research healthcare systems 
[1]. Unfortunately, with the increase in multisystem imaging 
techniques and consolidation or sharing of Picture Archiv-
ing and Communication System (PACS) datasets, currently 
implemented body part image labeling methods can fall 
short resulting in incomplete selection and presentation of 
important relevant imaging studies in clinical viewers. Addi-
tionally, the increased demand for automated image-based 
post-processing workflows, automated selection of studies 
for clinical AI analysis, and automated anatomical-based 
study selection for development of AI research datasets has 
accelerated the need for improved efficiency and reliability 
of anatomical image labeling techniques.

Key Points 
•   An off-the-shelf deep learning model can achieve the state-of-

the-art anatomic classification results of over 90% sensitivity  
on CT and MRI sets completely disjoint of training sets.

•   Classification results cover the entire human body, in particular 
extremities that have been excluded in previous CT studies.

•   Image-based analysis has the potential to provide accurate 
metadata about the image composition of a given CT or MRI 
study.
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Ideally, labeling of cross-sectional medical images should 
accurately reflect the anatomy contained in the individual 
image and identify all body regions included in a study. 
Currently, for MR and CT, applied body region labels at 
the image, series, and study level are often limited to one 
predominant body region (e.g., chest or abdomen) and do 
not indicate other body regions included in the scan or 
do not define a body region (e.g., PET CT or whole-body 
MR). Furthermore, the lack of standardization of anatomic 
labels between institutions and human data entry errors both 
contribute to unreliable anatomy-based labeling of imag-
ing studies. These labeling limitations can adversely affect 
imaging workflows. They have the potential to adversely 
affect image interpretation if they result in automated hang-
ing protocols failing to display all information relevant to 
accurate image interpretation or fail to correctly select data 
for automated post-processing, including clinical AI work-
flows. The limitations result in the use of manual search 
strategies for procurement of anatomically based dataset for 
AI research, which are prohibitive to rapid developments.

We describe two pixel-based models to automati-
cally identify 17 body regions in CT (CT model) and 18 
body regions in MRI studies (MRI model). Our approach 
improves on some of the limitations of previous attempts 
to tackle this classification problem using supervised and 
unsupervised deep learning techniques. Previous publica-
tions have shown accuracy results ranging from 72 to 92% 
[2–6] but were limited to CT only. Several other limitations 
of the previous publications include the study design (lack of 
independent test dataset, repeat studies, lack of information 
about image inclusion/exclusion criteria), the neural net-
work architecture (legacy neural nets), the size of the dataset 
(< 1700 total patients, ≤ 100,000 total images), the number 
of body region classes (≤ 12, no upper extremities), and the 
extent of clinical protocols covered (mostly thin slice CT 
acquisitions, no contrast medium). To our knowledge, this 
represent the first description of an anatomical classifier that 
can reach state-of-the-art accuracy or weighted sensitivity 
greater than 90% in CT and MRI across a large spectrum of 
body regions, patient demographics, patient comorbidities, 
and clinical imaging protocols.

Materials and Methods

Study Design

The performance of each AI model (CT, MRI) was evaluated 
in a retrospective standalone study using manually defined 
ground truth data. Unless specified otherwise, the two mod-
els leveraged most of the same processing pipeline including 
the neural network architecture. For each modality, three 
datasets were collected for AI model training and evaluation: 

training, validation, test (holdout set). The selection of body 
regions was established with the goal of covering the entire 
human body. Seventeen CT (18 MRI) body regions were 
considered for the classification task: head, neck, chest, 
breast (MRI only), abdomen, pelvis/hip, thigh/upper leg, 
knee, calf/lower leg, foot, shoulder, humerus/arm, elbow, 
forearm, hand, spine cervical, spine thoracic, spine lum-
bar. Non-contrast scans were collected for all body regions 
and complemented with MRI and CT contrast datasets for 
the head, neck, chest, and abdomen. The studies with con-
trast included a spectrum of contrast phases, such as portal 
venous phase, arterial phase, and delayed phase imaging.

Data

Both training/validation and testing data came from private 
sources of pre-existing cases through master agreements 
with external partners detailing de-identification, scope of 
use, and selection criteria. As this is a low privacy risk 
retrospective study using de-identified data from a large 
cohort of patients for which contact information is not 
available, the IRB waived authorization requirements as 
per HIPAA privacy rule. Partners arranged for the collec-
tion and de-identification of data to comply with HIPAA 
requirements, and the industry authors controlled the data. 
The de-identification schema followed the one used in the 
Cancer Imaging Archive initiative [7].

The data used for training and validation originated from 
a large cohort of 63,699 de-identified studies (CT, 28,211 
patients; MRI, 35,488 patients) from one healthcare system 
and its affiliates (University of Wisconsin Health). Patients 
underwent contrast or non-contrast imaging between 1997 
and 2020 (median: 2017) and came from a tertiary care hos-
pital as well as a smaller affiliated hospital and several out-
patient imaging centers. A well-controlled selection process 
was used to build the training and validation datasets. In 
the first phase, the data was selected from this large pool to 
ensure a representative distribution of body regions. In the 
second phase, several iterations of active learning, which 
consist of inferring results on unlabeled data, computing an 
uncertainty score, and labeling the top 200 most uncertain 
studies, [8, 9] were applied to the large cohort of unlabeled 
data until the accuracy goal was reached. This step was 
added to enrich the datasets with more complex anatomical 
cases.

The test datasets were collected from a different source, 
e.g., United Point Health system (UPH) and its affiliates. 
Because of the over-representation of datasets acquired with 
a GE scanner in the training and validation datasets, the 
instruction was given to focus on collecting primarily test 
datasets acquired on scanner vendors other than GE scanner. 
The same attention to collecting a balanced representation 
of all the body parts was given. The CT and MR imaging 
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data from 3003 patients scanned between 2016 and 2020 
(median: 2020) was collected and served as a pool of data 
to build the test datasets. These patients came from primary 
care hospitals, critical care hospitals, and imaging centers.

This all-comers study was designed with the intent 
to be as inclusive as possible and clinically relevant 
(Tables 2 and 3, and Supplemental Materials – Inclusion and 
exclusion criteria). All selected patients were included in the 
study irrespective of their demographic (e.g., ethnicity) or 
comorbidities. Due to the under-representation of pediatric 
cases, test datasets were only composed of adult patients. 
The same inclusive approach was followed for acquisition 
protocols, orientations (supine, prone, lateral), CT kernels, 
and MRI sequences. The only exclusions were applied to 
protocols where the structural information was insufficient 
such as flow protocols and MRI elastography (Supplemental 
Materials – Inclusion and exclusion criteria). Models were 
trained on 2D transversal slices. Axial images with an angle 
up to 45° were included to cover oblique acquisitions. Mul-
tiplanar CT reformatted series such as coronal and sagittal 
series as well as series used to aid planning of the acquisition 
such as scout, calibration, and quality control series were 
excluded. Similarly, all post-processed series such as perfu-
sion maps, reformat, 3D reconstruction, secondary capture, 
CAD, CINE, and movies were not considered. Image exclu-
sion criteria were image stored in a format 8 bits or lower, 
image with multiple channels (RGB or other not grayscale), 
no pixel data, very limited amount of pixel data (< 1000 
pixels), and no compatible codec (anything not JPEG loss-
less, Raw RLE).

Ground Truth

The ground truth was labeled based on clearly defined ana-
tomical landmarks (Table 1) using an in-house annotation 
software (Fig. 1). To avoid the effect of inter-reader vari-
ability, all the datasets were labeled by one image annotator 
with a long-time experience of developing CAD solutions 
(PR). Pediatric patients under 10 years old were reviewed 
and edited independently by an experienced pediatric radi-
ologist (RAC) but were left out of the final analysis because 
of insufficient number of samples. To evaluate the accuracy 
and consistency of the ground truth, an independent review 
of a random subset of the labeled dataset was conducted by 
an experienced radiologist (JWP) and the results compared 
with the initial annotator. Consistent with peer review prac-
tices [10], 2.5% of the labeled data was reviewed with an 
equal number of studies assigned for all body regions.

Data Partitions

Test and validation datasets were stratified on patient ID 
so that one patient could not be present in both datasets. 
Labeled datasets were organized according to the main 
body region and sorted according to study size. A 75/25 
split between the training and validation patient datasets was 
performed for each body region. To estimate the size of the 
test datasets, a strict survey study sampling model [11] was 
used with the assumptions of a model at least 90% accurate 
and a 95% confidence interval with a 10% relative error. 
Based on this model, it was determined that at least 7600 

Table 1  Anatomical landmarks 
for all 18 body region classes

Body region Anatomical landmarks (top) Anatomical landmarks (bottom)

Abdomen Diaphragm/lung base Bifurcation of the aorta
Breast (MRI only) Skin surface of upper breast at chest wall Skin surface of lower breast at chest wall
Calf/lower leg Proximal 6th of tibia Distal third of calf
Chest Lung apex Lung base
Elbow Distal 6th of humerus Proximal 6th of radius
Foot Distal third of calf Bottom of the foot
Forearm Proximal 6th of radius Distal 6th of radius
Hand Distal 6th of radius Tip of finger
Head Top of head Bottom of skull base (foramen magnum)
Humerus/arm Proximal 6th of humerus Distal 6th of humerus
Knee Distal 6th of femur Proximal 6th of tibia
Neck Skull base (foramen magnum) Lung apex
Pelvis and hip Aortic bifurcation Lesser trochanter (hip), inferior extent of 

pubis symphysis (pelvis)
Shoulder Top of acromioclavicular (AC) joint Proximal 6th of humerus
Spine cervical Tip of odontoid Bottom of T1
Spine thoracic Top of T1 Bottom of T12
Spine lumbar T11 Mid sacrum (S2, S3)
Thigh/upper leg Lesser trochanter Distal 6th of femur
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images per body region for CT and at least 3600 images per 
body region for MRI were needed.

Model

The classification task is composed of multiple stages that 
are detailed in Fig. 2. As a first step, we used the stand-
ard ResNet50V2 model [12] in a multi-class framework. 

Following the 2D CNN classifier, a few post-processing 
steps at the series level were applied. First, a rule engine 
merged the abdomen-chest class to both the abdomen and 
chest class and classified an entire series as breast if at least 
50% of the images in the series were classified as such. Last, 
a smoothing step was applied to remove labels inconsistent 
with those in the immediate vicinity, increasing the consist-
ency of the labels and decreasing noise.

Fig. 1  Labeling can be done on any cross-section series (axial, sagit-
tal, coronal, oblique). In this example, a rectangle is first drawn on the 
axial plane to indicate the pelvis area and then extended on the coro-
nal viewport to the lesser trochanter. This creates a thin 3D bounding 
box which can be easily manipulated in all dimensions to cover the 
whole anatomy. The 3D bounding box label is automatically carried 
over to all other series within the same frame of reference using the 

patient coordinate system. With this technique, hundreds of images 
can be labeled in few seconds with a handful of clicks. If needed, 
AI body region image inference results can be made available with 
a color code associated with each anatomical class (see bottom color 
bar). For this image, the AI prediction indicates a pelvis (pink) with 
a confidence level of 0.825. Lower in the scan, thigh images (purple) 
are also correctly predicted

Fig. 2  Body region processing steps. To accommodate the model’s 
input, several pre-processing steps were applied at the image level. 
First, pixel values were clipped to fit the interval [mean − 4*std, 
mean + 4*std], where mean and std correspond to the mean value 
and standard deviation of pixels in the image. Second, pixel values 
were normalized using the following transform (pixel value − mean)/
(2*std) to have input values in the range −1 to 1 to match pretrained 
models’ requirements. Third, the grayscale images were converted to 
RGB images by copying pixel data from first channel to the second 
and third channels. Last, each image was resized with zero padding to 
fit the model’s required input size of 224 × 224 pixels. Following the 
2D CNN image classifier, two rules were applied at the series level to 

merge the abdomen-chest class to either the abdomen or chest class 
depending on which body region was predominant. In the absence 
of chest and abdomen predictions, an abdomen-chest prediction was 
classified as the abdomen. A second rule was classified as the breast 
when at least 50% of the images in the series were classified as such. 
This is to eliminate spurious measurements in noisy breast acquisi-
tions. In the last stage of post-processing, we first applied a routine 
at the series level to remove outlier labels. We then applied a moving 
average filter with a window size of three pixels to smooth out results 
so a continuity in classified labels could be observed throughout the 
series
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Hardware and Framework

The ML experimentations took place in a containerized 
cloud environment using TensorFlow 2.3.0. The docker 
images were built with GPU support. Argo was used to man-
age the execution of the data ingestion, training, evaluation, 
and reporting workflows, while MLflow was used to manage 
the experimental results and generated artifacts such as the 
model checkpoints, reports, and figures. An 8 CORE CPU, 
30 GB RAM, NVIDIA V100 GPU cloud instance was used 
for training both models. An 8 CORE CPU, 30 GB RAM, 
NVIDIA T4 GPU cloud instance was used for running the 
TensorFlow Serving inference engine for both models. All 
the pre-processing and post-processing steps were written in 
Python, while the ingestion control, results aggregation, and 
dispatch were implemented using node.js.

Training

We enriched our dataset by applying spatial deformations to a 
random set of images in each training epoch. These transforms 
include rotation within an angle of ± π/10, translation, and 
shear with a maximum of 10% in image size in both direc-
tions, scaling with a maximum of 20% in image size in both 
directions and bilinear interpolation. The transformations were 
applied using built in TensorFlow library functions. We used 
the transfer learning approach and model weights from pre-
trained Resnet50V2 model developed for vision benchmark 
ImageNet dataset. The training hyperparameters are listed in 
Supplemental Materials – Training Parameters. The loss func-
tion used is categorical cross entropy which is well-suited for 
the multi-class case. We trained each model with all available 
slices in each series.

Evaluation

We applied the models to the test datasets and evaluated 
them by computing the average weighted values of the 
following performance metrics: F1 score, sensitivity, and 
specificity. Details are provided in the supplemental materi-
als as to the choice of metrics. The choice is also based on 
information found in [13]. Results were derived by body 
region, institution, patient demographics, and acquisition 
parameters (manufacturer, contrast, CT kernel, slice thick-
ness, sequence type). Performance metrics and their cor-
responding confidence intervals were determined using the 
spatial aware bootstrap resampling method [14]. The image 
sampling procedure ensured that no image slices were closer 
than 10 mm based on slice position and slice thickness 
information. This is consistent with the 7.5-mm sampling 
approach reported in [15]. This spatial aware random sam-
pling was performed at the series level to reduce the impact 
of strongly correlated images and provide more realistic 

statistical results. To reduce the inter-series correlation, one 
series per study (randomly selected at each sampling itera-
tion) in the subsampled dataset was kept. The correlation 
and correlation significance between the model’s accuracy 
and each confounding factor was assessed using Cramer’s 
V and Pearson's chi-squared statistical test.

Results

Data

The data consisted of 2891 CT cases (training, 1804 stud-
ies; validation, 602 studies; test, 485 studies) and 3339 MRI 
cases (training, 1911 studies; validation, 636 studies; test, 
792 studies). Flowcharts in the Supplemental Materials 
Inclusion and Exclusion Criteria (Figs. 1–4) show the dis-
tribution of images after the different stages of series and 
image exclusion criteria. The evaluation of the ground truth 
revealed a total of 4 labeling errors out of 1455 CT and 
MRI-labeled studies, which represents an error rate of 0.3%.

Distributions of images and results by confounding factors 
for the test sets can be found in Tables 2 and 3. Twenty-seven 
institutions contributed to each CT and MRI test dataset. For 
CT, 56% of datasets came from primary care hospitals and 
44% from critical access hospitals and imaging centers, while 
for MRI, 55% of the datasets came from primary care hos-
pitals. Sex parity was respected for the CT dataset. A slight 
over-representation of female sex was noticed for the MRI 
dataset (56.1%). The age coverage ranged from 18 years old 
to + 90 years, roughly following the distribution of imaging tests 
in US Healthcare Systems [16]. Compared to the development 
datasets (Supplemental Materials – Distribution Development 
Datasets), the test datasets differed in some key areas. For CT, 
acquisitions mostly originated from Siemens and non-GE 
scanners (87.6%, + 80.1%) with a larger proportion of older 
adults ≥ 65 years (45.6%, + 9.3%), intermediate slice thickness 
(2 mm < slice thickness < 5 mm) (54.8%, + 46.3%), and non-
contrast imaging (76.5%, + 9.1%). For MRI, acquisitions mostly 
originated from Siemens and non-GE scanner (83.5%, + 69%), 
a larger proportion of older adults (31.7%, + 11.7%), cases with 
slice thickness > 2 mm and < 5 mm (68.5%, + 20.3%), and non-
contrast imaging (84.0%, + 6.4%).

Model Performance

An overall body region image-level sensitivity of 92.5% 
(92.1–92.8) was achieved for CT and 92.3% (92.0–95.6) for 
MRI. The post-processing stages contributed to about 1.1% 
(CT) to 1.6% (MRI) improvement in classification accuracy. 
Classification results by body region and confusion matri-
ces by modality are respectively reported in Table 4 and in 
Figs. 3 and 4. Head and breast images have very discernible 
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features, so they tend to be classified more accurately than 
other body regions such as the neck and extremities.

No formal association was found between classification 
accuracy and CT institution, CT kernel, and MRI contrast. 
However, statistically superior classification results were 
noticed in a few instances with Cramer’s V correlation 
ranging from negligible (V < 0.05) to moderate (V = 0.17). 
For CT, that was the case for datasets with older (≥ 65) age 
(p < 0.001, V = 0.041) with contrast (p < 0.001, V = 0.042) 
and thick (≥ 5 mm) slice (p =  < 0.001, V = 0.048). For MRI, 

imaging centers (p < 0.001, V = 0.064), 44 years and older 
(p < 0.001, V = 0.087), Philips manufacturer (p = 0.001, 
V = 0.076), thin slices (p < 0.001, V = 0.0838), and inversion 
and MRA sequences (p < 0.001, V = 0.179) exhibited better 
classification performance. For some of the classes in the 
test sets, the association between accuracy and factors such 
as manufacturer and MRI sequence could not be reliably 
assessed: Hitachi and Canon scanner manufacturers and In 
and Out of Phase MRI sequences. Despite these limitations, 
the evaluation of accuracy results and confidence intervals 

Fig. 3  Confusion matrix for the 262,326 images in the CT test database with a threshold of 0.5. Rows represent the predictions, and columns 
represent the ground truth
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points to performance robustness across age, manufacturer, 
CT slice thickness, and MRI sequence categories.

When mining the DICOM tags in the test datasets for 
either the “BodyPartExamined” DICOM tag (BP) or “Pro-
cedureType” (PT), the body region information at the study 
level was only 22.3% (BP) and 42.2% (PT) accurate for CT 
and 58.3% (BP) and 47.8% (PT) accurate for MRI. In this 
cohort, the anatomical AI could prove useful to improve the 
search for anatomically matched cases for about 50% of the 
cases.

Discussion

The ability to automate accurate anatomic region labeling of 
medical images using pixel-based AI could address clinical 
and research workflow challenges related to existing limita-
tions that affect body region labeling of medical images. Our 
work demonstrates how a deep learning CNN-based clas-
sifier can achieve overall state-of-the-art accuracy greater 
than 90% in identifying body regions in CT and MR images 
while covering the entire human body and a large spectrum 

Fig. 4  Confusion matrix for the 118,829 images in the MRI test database with a threshold of 0.5. Rows represent the predictions, and columns 
represent the ground truth
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of acquisition protocols obtained from separate institutions. 
This is the first known attempt to (a) provide a solution that 
includes MR and (b) offers a solution that covers numer-
ous body regions, in particular extremities that have been 
excluded in other CT studies.

Our methods achieved an overall body region image-level 
sensitivity of 92.5% which were similar to other publica-
tions restricted to CT image classification [2–6]. In contrast 
to all other studies, this algorithm can label both CT and 
MR images and therefore provides a potential solution for 
improved study labeling to support complex image interpre-
tation workflows that demand evaluation of equivalent body 
regions across several cross-sectional imaging modalities, 
including whole-body MR, PET CT, and PET MR. Addi-
tionally, generalizability of this technique across modality 
vendors and multiple different imaging protocols is also con-
sidered relevant to address the increasing need for standard-
ized anatomic labeling of multi-institutional datasets.

Our results demonstrate that confidence intervals for sen-
sitivity were lower (upper bound did not include 90%) for 
the following specific anatomical regions: CT cervical spine, 
CT forearm, CT pelvis, CT foot, MRI cervical spine, MRI 
forearm, and MRI neck. Concentrations of model misclas-
sifications were observed in the transitions between body 
regions, for example: abdomen label assigned to source of 

truth labeled “pelvis” or chest label assigned to source of 
truth labeled “cervical spine.” The high prevalence of these 
images, related to scan acquisition techniques, contributes to 
the lower model performance and wider confidence interval. 
Examples of erroneous predictions in transition areas can be 
found in the Supplemental Materials Examples of ML Mis-
classifications (Figs. 5–7). Additionally for neck and cervical 
spine, the visual differentiation between a neck and a cervi-
cal spine study on soft tissue reconstructions is sometimes 
minimal resulting in ground truth labeling inconsistencies. 
This may have contributed to lower model performance for 
these body regions.

We observed several challenges that affected accuracy of 
body region classification in extremities. First, extremities 
are sometimes imaged in orientations that are influenced by 
the patient’s oblique positioning in the CT gantry or uncon-
ventional scan angle protocols for MR. Although the training 
dataset was developed to account for a diversity of extremity 
orientations, unconventional orientations may have had an 
adverse effect on model performance. Second, extremities 
are subject to fractures, surgical implants, and amputation, 
which can result in deformities that could potentially cause 
body region misclassification. Third, images of upper and 
lower extremities have structural similarities that resulted in 
misclassification of some images of paired long bones of the 

Table 2  CT image performance metrics by confounding factors. n = number of studies (*series). The p-value for the median chi-square is pro-
vided to determine if a significant difference in accuracy is found for each confounding factor

Category n (%) F1 (95% CI) Sensitivity (95% CI) Specificity (95% CI) p-value

Institution Primary care Hospital 272 (56.1) 92.1 (91.6–92.5) 92.1 (91.7–92.5) 99.5 (99.5–99.5) 0.119
Community Hospital 111 (22.9) 91.5 (90.9–92.2) 91.5 (90.8–92.2) 99.4 (99.3–99.4)
Imaging center 102 (21.0) 93.9 (93.4–94.4) 94.0 (93.6–94.6) 97.1 (96.8–97.4)

Age 18–44 years 103 (21.2) 91.0 (90.3–91.8 91.0 (90.3–91.8) 99.4 (99.4–99.5) 6.7e − 7
45–64 years 161 (33.2) 91.4 (90.9–92.0) 91.5 (91.0–92.1) 99.4 (99.3–99.4)
 ≥ 65 years 221 (45.6) 93.7 (93.3–94.1) 93.7 (93.3–94.1) 99.5 (99.5–94.5)

Sex Female 245 (50.5) 91.8 (91.4–92.3) 91.8 (91.4–92.3) 99.4 (99.4–99.4) 0.004
Male 240 (49.5) 93.0 (92.6–93.4) 93.1 (92.7–93.5) 99.5 (99.5–99.5)

Manufacturer Canon 2 (0.4) NA NA NA 0.003
GE 62 (12.4) 93.4 (92.7–94.2) 93.6 (92.7–94.4) 99.5 (99.4–99.5)
Hitachi 4 (0.8) NA NA NA
Philips 23 (4.6) 92.9 (91.4–94.4) 93.0 (91.6–94.5) 99.3 (99.1–99.5)
Siemens 343 (68.5) 92.3 (91.9–92.6) 92.3 (92.0–92.7) 99.3 (99.3–99.4)
Toshiba 50 (10.0) 91.5 (90.5–92.5) 91.3 (90.2–92.4) 99.4 (99.3–99.5)
Vital images 17 (3.4) 100.00 (91.4–100.0) 100.0 (90.0–100.0) 100.0 (98.1–100.0)

Contrast* With contrast 305 (26.1) 94.9 (94.4–95.3) 94.9 (94.5–95.4) 98.8 (98.7–99.0) 7.0e − 8
Without contrast 865 (73.9) 91.5 (91.1–91.8) 91.4 (91.1–91.8) 99.5 (99.5–99.5)

Slice thickness*  ≤ 2 mm 464 (39.7) 92.7 (92.3–93.1) 92.7 (92.3–93.1) 99.6 (99.5–99.6) 7.7e − 9
 > 2 mm and < 5 mm 641 (54.8) 91.8 (91.4–92.3) 91.9 (91.5–92.3) 99.1 (99.1–99.2)
 ≥ 5 mm 64 (5.5) 96.2 (95.3–97.1) 96.3 (95.4–97.1) 98.3 (97.6–99.0)

CT kernel* Bone 268 (22.9) 92.1 (91.5–92.7) 92.0 (91.4–92.6) 99.5 (99.4–99.5) 0.623
Soft tissue 901 (77.1) 92.6 (92.2–92.9) 92.6 (92.3–93.0) 99.3 (99.3–99.4)
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lower leg and forearm, single long bones of the thigh and 
arm, and knee and elbow. Fourth, the landmarks’ positions 
between the defined body regions for the upper and lower 
extremities are more subjective when bones are not fully pre-
sent in the images (example: proximal 6th of the humerus) 
than between other body regions resulting in some model 
misclassifications in the transition zones.

Our study has some limitations. First, the multi-class 
framework is, by design, not well suited to identify multi-
ple regions in an image. This is a limitation when dealing 
with whole-body studies (the shoulders, arms, elbows, fore-
arms, and hands are sometimes included in chest, abdomen, 
and pelvis images) and images that often include two body 
regions, for example, shoulders included in chest images. 
Second, there is under-representation of several classes in 
the datasets, for example, Hitachi and Canon scanner manu-
facturers and In and Out of Phase MRI sequences. Addi-
tional data and analysis is needed to complete the evaluation 
for these classes.

As stated in a joint paper by HIMSS and SIIM, the impli-
cations of our work are multiple [1]. An improved method 
for anatomic labeling of imaging studies has the poten-
tial to improve interoperability across healthcare records 
and systems, address radiology workflow challenges such 
as labeling discrepancies for studies shared within and 
between facilities [17], improve accurate retrieval of ana-
tomically relevant comparison images from image archives, 
and potentially reduce bandwidth-related latency and costs 
associated with unnecessary data retrieval from cloud-based 
image archives. Application of our body region labeling has 
the potential to improve display protocols, image synchro-
nization, and relevant prior functions in PACS, leading to 
improvements in image-based diagnosis and treatments, 
especially in complex patients. When applied to increas-
ingly large volumes of radiology exams per year (millions), 
even small improvements in image based workflows have 
the potential for large and safety quality impacts. Beyond 
image interpretation, this technique could enable body 

Table 3  MR image performance metrics by confounding factors. 
n = number of studies (*series). The p-value for the median chi-
square is provided to determine if a significant difference in accu-
racy is found for each confounding factor. **124 studies did not have 

institution information. ***137 series did not have any of the preset 
sequence tags. Due to the small number of cases, the performance 
metrics and confidence interval are not reliable for “In and Out of 
Phase”

Category n (%) F1 (95% CI) Sensitivity (95% CI) Specificity (95% CI) p-value

Institution Primary care hospital 435 (54.9) 92.4 (92.0–92.) 92.4 (92.1–92.8) 99.2 (99.1–99.2) 9.7e − 16
Community hospital 164 (20.7) 90.9 (90.3–91.5) 91.0 (90.4–91.5) 98.5 (98.4–98.7)
Imaging center 69 (8.7) 93.8 (92.8–94.8) 93.9 (92.8–94.8) 99.6 (99.6–99.7)
Unknown** 124 (15.7) 94.6 (93.6–95.5) 94.4 (93.5–95.4) 99.3 (99.1–99.5)

Age 18–44 years 207 (26.1) 95.7 (95.3–96.2) 95.8 (95.3–96.2) 99.6 (99.6–99.7) 2.1e − 29
45–64 years 334 (42.2) 91.3 (90.9–91.8) 91.4 (90.9–91.8) 99.2 (99.2–99.3)
 ≥ 65 years 251 (31.7) 90.9 (90.5–91.4) 90.9 (90.5–91.4) 98.7 (98.6–98.8)

Sex Female 434 (56.1) 92.0 (91.6–92.3) 92.0 (91.6–92.3) 99.1 (99.0–99.1) 0.014
Male 339 (43.9) 92.5 (92.1–93.0) 92.6 (92.2–93.0) 99.3 (99.2–99.3)

Manufacturer GE 131 (16.5) 90.3 (89.7–91.0) 90.3 (89.7–91.0) 98.1 (97.9–98.3) 6.4e − 21
Hitachi 6 (0.8) NA NA NA
Philips 40 (5.0) 95.1 (94.3–95.8) 95.1 (94.3–95.8) 98.7 (98.5––99.0)
Siemens 565 (71.2) 93.0 (92.7–93.3) 93.0 (92.7–93.3) 99.4 (99.4–99.4)
Toshiba 50 (6.3) 93.4 (92.1–94.7) 93.4 (92.1–94.7) 99.6 (99.4–99.7)

Contrast* With contrast 343 (16.0) 91.9 (91.3–92.6) 91.9 (91.3–92.6) 98.8 (98.7–98.9) 0.115
Without contrast 1805 (84.0) 92.3 (92.0–92.5) 92.3 (92.0–92.6) 99.2 (99.2–99.3)

Slice thickness*  ≤ 2 mm 114 (5.3) 98.7 (98.1–99.1) 98.7 (98.2–99.1) 99.9 (99.9–100.0) 2.4e − 27
 > 2 mm and < 5 mm 1472 (68.5) 91.9 (91.5–92.3) 91.9 (91.6–92.3) 99.2 (99.2–99.3)
 ≥ 5 mm 562 (26.2) 91.5 (91.0–92.0) 91.5 (91.0–92.0) 98.7 (98.6–98.8)

MRI Sequence* Image weighting 1499 (69.8) 93.1 (92.8–93.5) 93.1 (92.8–93.5) 99.6 (99.6–99.6) 5.0e − 116
Spin echo 63 (2.9) 92.0 (90.3–93.5) 92.0 (90.3–93.6) 96.2 (95.2–97.2)
Gradient echo 246 (11.5) 90.2 (89.6–91.0) 90.3 (89.7–91.0) 97.0 (96.8–97.3)
Inversion recovery 116 (5.4) 94.5 (93.3–95.7) 94.5 (93.3–95.7) 99.6 (99.5–99.7)
MRA 39 (1.8) 94.9 (92.9–96.7) 94.8 (92.8–96.6) 97.2 (96.0–98.2)
In and Out of Phase 14 (0.7) NA NA NA
Diffusion 34 (1.6) 82.2 (79.3–83.6) 82.3 (80.2–84.3) 90.1 (88.7–91.4)
Unknown*** 137 (6.4) 94.2 (93.6–94.8) 94.1 (93.5–94.7) 97.9 (97.6–98.2)
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region-dependent AI-driven population health initiatives 
across institutions.

Further research is suggested to investigate the effects 
of merging overlapping classes, for example, the neck and 
cervical spine, and consider exclusion methods to address 
labeling issues related to transitional anatomy and image 
obliquity. Other opportunities include development of a 
multi-label classification approach and extending the appli-
cation and evaluation of this technique to other imaging data 
sources. Additionally, observational studies are required to 
assess the clinical value of this technique, specifically for 
complex clinical image interpretation workflows.

Reliable selection and presentation of comparison of 
images matched by body parts is an essential function of 
image interpretation systems. Accurate and standardized 
body region labeling challenges, resulting from consolida-
tion of services and development of large multi-institutional 
imaging datasets, can adversely affect accurate image-based 
diagnosis and management of complex patients.

Automatic identification of body regions in CT and MR 
studies in a general population is a challenging task due 
to the diverse spectrum of demographics, comorbidities, 
acquisition protocols, and imaging artifacts. Our research 
demonstrates that our anatomical AI technique can pro-
vide state-of-the-art image-level classification for CT and 
MR with an accuracy greater than 90% and performance 

metrics robust across all body regions and confounding 
factors such as institution, sex, contrast, manufacturer, 
slice thickness, CT kernel, and MRI sequences.
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Table 4  CT and MR image classification sensitivity and specificity by body region. n = number of images

CT MRI

Body Region n F1 (95% CI) Sensitivity 
(95% CI)

Specificity 
(95% CI)

n F1 (95% CI) Sensitivity 
(95% CI)

Specificity (95% 
CI)

Overall 262,326 92.5 (92.2–92.8) 92.5 (92.1–92.8) 99.4 (99.4–99.5) 118,829 92.2 (91.9–92.5) 92.3 (92.0–92.5) 99.2 (99.1–99.2)
Abdomen 22,302 96.2 (93.1–98.6) 96.7 (96.1–97.3) 98.7 (98.6–98.8) 17,517 90.1 (89.6–90.6) 92.4 (91.7–93.0) 97.5 (97.3–97.6)
Arm 14,430 93.9 (89.1–97.5) 94.1 (92.9–95.3) 99.2 (99.1–99.3) 3815 91.6 (90.5–92.7) 88.8 (87.1–90.5) 99.8 (99.8–99.8)
Breast - - - - 20,501 100.0 (100.0–

100.0)
100.0 (100.0–

100.0)
100.0 (100.0–

100.0)
Calf 12,308 94.7 (91.9–97.0) 93.0 (91.7–94.3) 99.7 (99.6–99.7) 3299 93.2 (92.2–94.3) 95.7 (94.5–96.9) 99.6 (99.6–99.7)
Chest 27,968 96.4 (93.5–98.7) 96.9 (96.3–97.6) 98.9 (98.8–99.0) 13,010 89.6 (88.9–90.2) 89.2 (88.4–90.1) 98.5 (98.4–98.7)
Cervical spine 11,993 87.1 (85.4–88.8) 78.0 (76.0–80.0) 99.9 (99.9–99.9) 3607 75.0 (72.6–77.5) 62.3 (59.3–65.5) 99.9 (99.9–99.9)
Elbow 11,288 91.6 (87.5–94.6) 88.0 (86.0–90.0) 99.6 (99.6–99.7) 4615 91.8 (90.7–92.9) 91.2 (89.6–92.7) 99.7 (99.6–99.7)
Foot 13,137 92.0 (90.2–93.6) 86.5 (84.8–88.2) 99.9 (99.8–99.9) 3178 95.3 (94.2–96.4) 94.8 (93.3–96.4) 99.9 (99.9–99.9)
Forearm 8232 89.3 (83.9–93.8) 86.6 (84.3–88.8) 99.5 (99.5–99.6) 3546 88.8 (87.4–90.1) 86.0 (84.1–87.9) 99.7 (99.7–99.8)
Hand 11,321 95.0 (91.4–97.9) 94.9 (93.7–96.2) 99.6 (99.5–99.6) 6699 95.9 (95.2–96.6) 96.3 (95.4–97.3) 99.8 (99.7–99.8)
Head 29,066 99.1 (98.7–99.5) 98.7 (98.3–99.1) 99.9 (99.9–99.9) 7633 97.3 (96.7–97.9) 99.3 (98.8–99.7) 99.7 (99.7–99.8)
Knee 10,721 93.7 (89.0–97.5) 94.0 (92.7–95.3) 99.4 (99.3–99.4) 3649 95.2 (94.3–96.2) 95.8 (94.5–97.0) 99.8 (99.8–99.9)
Lumbar spine 16,100 95.9 (94.4–97.2) 93.6 (92.4–94.8) 99.8 (99.8–99.9) 4556 96.5 (95.7–97.2) 97.0 (96.0–98.0) 98.8 (99.8–99.9)
Neck 19,292 93.4 (88.1–97.6) 94.4 (93.3–95.5) 98.9 (98.8–99.0) 4363 77.5 (75.5–79.3) 86.1 (83.7–88.6) 98.9 (98.8–99.0)
Pelvis 13,886 90.9 (89.0–92.6) 84.9 (83.2–86.6) 99.8 (99.7–99.8) 11,632 92.3 (91.6–92.9) 90.3 (89.4–91.3) 99.4 (99.3–99.5)
Shoulder 13,266 92.7 (90.3–94.7) 88.6 (86.9–90.2) 99.8 (99.7–99.8) 5599 95.4 (94.7–96.2) 98.6 (98.0–99.2) 99.6 (99.6–99.7)
Thigh 14,409 94.0 (92.8–95.1) 89.4 (88.0–90.8) 99.9 (99.9–99.9) 4485 93.4 (92.4–94.3) 88.9 (87.3–90.5) 99.9 (99.9–100.0)
Thoracic spine 21,378 94.4 (92.5–96.0) 91.4 (90.3–92.5) 99.5 (99.5–99.6) 3952 93.0 (91.9–94.1) 93.4 (91.9–94.8) 99.7 (99.7–99.8)
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otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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