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Abstract
Novel coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world; however, it is difficult for clinicians 
to make early diagnoses. This study is to evaluate the feasibility of using deep learning (DL) models to identify asympto-
matic COVID-19 patients based on chest CT images. In this retrospective study, six DL models (Xception, NASNet, ResNet, 
EfficientNet, ViT, and Swin), based on convolutional neural networks (CNNs) or transformer architectures, were trained to 
identify asymptomatic patients with COVID-19 on chest CT images. Data from Yangzhou were randomly split into a training 
set (n = 2140) and an internal-validation set (n = 360). Data from Suzhou was the external-test set (n = 200). Model perfor-
mance was assessed by the metrics accuracy, recall, and specificity and was compared with the assessments of two radiolo-
gists. A total of 2700 chest CT images were collected in this study. In the validation dataset, the Swin model achieved the 
highest accuracy of 0.994, followed by the EfficientNet model (0.954). The recall and the precision of the Swin model were 
0.989 and 1.000, respectively. In the test dataset, the Swin model was still the best and achieved the highest accuracy (0.980). 
All the DL models performed remarkably better than the two experts. Last, the time on the test set diagnosis spent by two 
experts—42 min, 17 s (junior); and 29 min, 43 s (senior)—was significantly higher than those of the DL models (all below 
2 min). This study evaluated the feasibility of multiple DL models in distinguishing asymptomatic patients with COVID-19 
from healthy subjects on chest CT images. It found that a transformer-based model, the Swin model, performed best.

Keywords Asymptomatic coronavirus-disease-2019 patients · Chest CT images · Convolutional neural networks · 
Transformer · Deep learning · Transfer learning

Background

The novel coronavirus disease 2019 (COVID-19) caused 
by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) has rapidly spread throughout the world, 

posing a serious danger to global health. Patients with 
COVID-19 may experience a variety of symptoms, rang-
ing from asymptomatic infection to acute upper respiratory 
illness, and even severe respiratory failure [1].

Early detection of COVID-19 is aided by a combina-
tion of clinical, laboratory, and imaging findings [2]. For 
example, Ozdemir et al. [3] proposed a novel method for 
automatic COVID-19 diagnosis using ECG data, with a Minyue Yin, Xiaolong Liang, and Zilan Wang contributed equally 
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high accuracy of 96.20%. However, the limited application 
of ECG tests among patients with COVID-19, as well as 
variations in the ECG images, makes it less effective and 
popular than CT examinations. Additionally, Togacar et al. 
[4] utilized MobileNetV2 and SqueezeNet deep learning 
(DL) models with SVM classification for differentiating 
between COVID-19, pneumonia, and normal chest X-ray 
images. Although they achieved the 99.27% accuracy, the 
training dataset was greatly limited, and the image pre-
processing needed to be normalized and standardized. 
Furthermore, X-ray cannot visualize the lung lobes at 
multiple layers, such as with chest computed tomography 
(CT), which might result in the missed diagnosis. There-
fore, chest computed tomography (CT) scans, which are 
noninvasive and have rapid acquisition speed and excellent 
sensitivity, are widely used. Previous studies have reported 
chest CT characteristics in COVID-19–infected individu-
als, including ground-glass opacities, focal unilateral or 
bilateral involvement, diffuse and peripheral distribution, 
and consolidations [5–9]. Furthermore, abnormal chest 
CT findings compatible with COVID-19 can occur days 
before detecting SARS-CoV-2 RNA [2, 10]. Thus, the use 
of chest CT scans, as a rapid supplementary diagnostic 
measure, may help physicians make a presumptive diag-
nosis of COVID-19 [2, 11].

Despite its advantages, it is difficult and time-consuming 
for radiologists to recognize these subtle radiological varia-
tions between COVID-19 and pneumonia caused by other eti-
ologies. Due to the enormous number of radiologic tests during 
the pandemic, this can lead to misdiagnosis, and COVID-19 
diagnoses being missed. The usual approach for diagnosing 
COVID-19 infection is a real-time reverse-transcriptase poly-
merase chain reaction (RT-PCR) [12]. However, some patients 
with RT-PCR confirmed SARS-CoV-2 infection may present 
normal CT features according to radiologists’ interpretations. 
The RT-PCR was positive, but the lung CT diagnosis was nor-
mal, which was referred to be the asymptomatic [12]. This 
made it difficult for radiologists to detect COVID-19 patients 
who were asymptomatic [13, 14].

One of the most important duties in reducing the spread 
of the virus is early detection [12, 15]. However, the increas-
ing number of asymptomatic patients, as well as the possibility 
of transmission from asymptomatic carriers of SARS-CoV-2, 
makes it difficult to curtail the spread of this pandemic [16, 17].

Artificial intelligence (AI) has been proved to help in the 
detection of COVID-19 and to distinguish the difference 
between COVID-19 and pneumonia caused by other etiolo-
gies [18]. To date, various AI-aided diagnostic systems based 
on X-ray or CT scans have been found to be very promising for 
diagnosing COVID-19 [18–25]. Harmon et al. [18] proposed 
a series of DL algorithms for the classification of COVID-19 
pneumonia, with high accuracy of 90.8%. Li et al. [19] devel-
oped an automated AI system for segmenting and quantifying 

the COVID-19-infected lung regions on chest CT images, using 
the UNet structure. Sedik et al. [20] presented two models, 
based on convolutional neural networks (CNNs) and convo-
lutional long short-term memory, for boosting the accuracy of 
COVID-19 detection. As we know, however, the research on 
using AI to help identify the asymptomatic patients is limited. 
Therefore, this study aims to develop various DL models, based 
on CNNs or transformer architectures, for detecting asympto-
matic COVID-19 patients on chest CT images.

Materials and Methods

Chest CT Images

CT images were obtained from Yangzhou Third People’s 
Hospital (center #1) from August 2020 to June 2021 and 
from the First Affiliated Hospital of Soochow University 
(center #2) in 2020; the images were from COVID-19 
patients and healthy individuals. All the patients enrolled in 
this study were confirmed to be positive for COVID-19 by 
RT-PCR 48 h before or after taking a chest CT exam. The 
asymptomatic patients were defined as having no evident 
symptoms. Each CT dataset was reviewed by two radiolo-
gists with rich experience, with more than 10 years of chest 
CT experience in consensus. The images from center #1 
(n = 2500) were used for training and internally validating 
models, while the images from center #2 (n = 200) were used 
for externally validating the models. This retrospective study 
was approved by the ethics and review board of the First 
Affiliated Hospital of Soochow University. Informed con-
sent was waived. The details are presented in Fig. 1.

Image Preprocessing

The CT images were downloaded from a medical image 
cloud platform (www. ftima ge. cn). The integrated CT data-
base was saved in PNG format, using a lung window with 
5-mm thickness, a 1500 ± 100 Hounsfield unit (HU) window 
width and a – 600 ± 50 HU window level. All the images 
were rescaled to 331 × 331 pixels, and then the pixel values 
were normalized from a range between 0 and 255 to between 
0 and 1. To ensure the loss of image information related to 
pulmonary lesions, a senior radiologist confirmed the PNG 
format images. No other preprocessing such as image seg-
mentation was carried out.

Implementation of Pretrained CNN‑Based 
Architectures

We explored four pretrained CNNs, including Xception 
[26], NASNet-Large [27], ResNet-50V2 [28], and Effi-
cientNet [29], for the classification task. These models were 

http://www.ftimage.cn
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pretrained on the ImageNet database (www. image- net. org). 
Transfer learning was applied by combining the existing 
CNN layers with additional activation layers for the learn-
ing of the target classification.

Input Layer

Each image was normalized as 331 × 331 pixels, padded if 
necessary and then fed into the pretrained CNN layers.

Pretrained CNN Layers

A typical CNN was composed of a convolutional layer, a 
pooling layer, and a fully connected layer (dense layer), with 
rectified linear unit (ReLU) activation function. In this study, 
we selected four CNNs and retained the convolutional lay-
ers, each followed by average pooling layers, to extract fea-
ture maps from input images by using 2-dimensional filters. 
Additionally, the ReLU activation function was required to 

evaluate the output of each layer. All the layers of these 
pretrained CNN models were frozen.

Additional Layers

Subsequent to the pretrained CNN layers, three dense lay-
ers with a Sigmoid activation function replaced the original 
fully connected layers, which acted as a classifier. The out-
put sizes for the pretrained Xception model, the NASNet-
Large model, the ResNet-50V2 model, and the Efficient-
Net model are 2048 × 2048, 4032 × 4032, 2048 × 2048, and 
1280 × 1280, respectively. The output sizes for the subse-
quent three layers are 1024 × 1024, 512 × 512, and 2 × 2.

Implementation

We implemented the CNNs based on transfer learning using 
Keras, where the TensorFlow framework as a backbone 
provided a Python application programming interface. The 

Fig. 1  A flowchart of this study

http://www.image-net.org
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Adam optimizer and the binary cross-entropy cost function, 
with a learning rate of 0.0001 and a batch size of 16, were 
used to train the models. Firstly, the dataset from center 
#1 was randomly split into two subsets (85% as a training 
set, 15% as a validation set) and was fed into the Xception, 
NASNet-Large, ResNet-50V2, and EfficientNet architec-
tures. Early-stop was applied to determine how many epochs 
were needed for training a model via callback function for 
the lowest validation cost. The validation set was used to 
fine tune the hyperparameters of the models. Lastly, the per-
formance of the models was externally tested by the center 
#2 dataset.

Implementation of Transformer‑Based Architectures

Compared with the sequential input of CNNs, the trans-
former architecture is characterized by synchronous input 
based on the self-attention mechanism. This study selected 
shifted window transformer (Swin) [30] and vision trans-
former (ViT) [31] models with the encoder and decoder 
parts of the transformer. The transformer encoder consists of 
three main components: input embedding, multihead atten-
tion, and feed-forward neural networks.

Input Embedding

Due to synchronization, we used sine and cosine func-
tions for position encoding so that two architectures could 
identify the sequential order. Then, the position encoding 
matrix was combined with the input images for training 
the models.

Self‑Attention Mechanism

Multihead self-attention applied multiple self-attention 
mechanism to calculate the attention score of the input 
vectors, which were first separately mapped to query, key, 
and value vectors. The scaled dot-product attention func-
tion was used to calculate scores based on queries, keys, 
and values, and then a sum of the scores was computed for 
the self-attention layer’s output. Additionally, a normalized 
residual connection was added to the output. When training, 
the learning rates of the two algorithms were both 0.001, and 
the epochs were both 100.

Output Embedding

A feed-forward neural network, followed by layer normali-
zation, was applied to generate feature-embedding vectors. 
This fully connected network contained a ReLU activation 
function. The Sigmoid function converted these vector val-
ues into predictive probability values.

Comparison Between Deep Learning Models 
and Experts

To compare the performance of the models and medical 
experts, images from the test dataset were identified by two 
experts, one with 5 years of experience (junior) and the other 
one with more than 10 years of experiences (senior) in the 
field of radiology.

Statistical Analysis

We established DL models using Python software (version: 
3.9). We assessed model performance by calculating accu-
racy, recall, and precision using R software (version: 4.1.0, 
The R Foundation). More specifically, matrices, consisting 
of true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN), were enumerated to measure 
the efficiency of the classifier. Additionally, areas under the 
receiver operating characteristic curves (AUCs) were calcu-
lated to evaluate the robustness of our models. The formulas 
were as follows: accuracy = (TP + TN)/(TP + FP + FN + TN); 
precision = TP/(TP + FP); recall = TP/(TP + FN).

Results

A total of 2700 chest CT images were obtained in this study, 
consisting of 1400 images of the COVID-19 group and 1300 
images of the normal group. Data from center #1 was ran-
domly split into the training set and validation set at a ratio 
of 8.5:1.5 (2140 vs. 360). The images from center #2 were 
regarded as the test set (n = 200). According to the aforemen-
tioned methods, these CT images were fed into the models 
based on four pretrained CNNs and two transformer archi-
tectures for binary classification. The performance of our 
proposed models is listed in Fig. 2 and shown in Table 1, 
while the confusion matrix is shown in Fig. 3.

In the validation dataset, the Swin model achieved the 
highest accuracy of 0.994, followed by the EfficientNet 
model (0.954) and Xception (0.947) (Fig. 2A). The recall 
and the precision of the Swin model were 0.989 and 1.000, 
respectively.

In regard to the test dataset, the four CNN models were 
time-friendly and were all less than 10 s. In the two trans-
former models, it cost 30 s in the ViT model and 61 s in 
the swin model. However, the two medical experts spent 
remarkably longer time (1783s by the senior and 2537 s by 
the junior), as shown in Fig. 2B.

In terms of the performance on the test dataset, the swin 
model was still the best. The accuracy was 0.980, followed 
by ResNet (0.975) and EfficientNet (0.960). Furthermore, 
the junior expert presented an accuracy of 0.680, a recall 
of 0.690, and a precision of 0.676, while the senior expert 
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showed an accuracy of 0.755, a recall of 0.740, and a pre-
cision of 0.763, as shown in Fig. 2C. Additionally, the 
swin model achieved the highest AUC (0.998) among all 
the models and the two experts, as shown in Table 1 and 
Fig. 4.

Moreover, the two cases misclassified by the swin 
model are shown in Fig. 5; one was misdiagnosed as a 
normal image with a probability of 0.682 and another was 
misdiagnosed as a COVID-19 image with a probability 
of 0.505.

Discussion

In this study, we developed four DL models based on 
CNNs and two transformer architectures to distinguish 
asymptomatic COVID-19 patients from healthy individuals  
based on chest CT images. It showed that the transformer-
architecture-based model, namely, the swin model, presented  
the best performance. Furthermore, all the DL models  
produced better performance than the two experts and spent  
significantly less time.

Fig. 2  The performance of six 
models and two experts. A The 
six models’ performance in the 
validation dataset; B the times 
spent on the test dataset; C the 
six models’ and two experts’ 
performance in the test dataset

Table 1  The performance of six models and two experts

Convolutional neural networks Transformer Human

Xception NasNet-Large ResNet-50V2 EfficientNet ViT Swin Junior Senior

Training set Recall 0.969 1.000 0.996 0.984 0.999 0.970 - -
Specificity 0.967 1.000 0.996 0.991 1.000 0.900 - -
Accuracy 0.968 1.000 0.996 0.988 1.000 0.935 - -
AUC 0.995 1.000 1.000 0.999 1.000 0.948 - -
F1-score 0.968 1.000 0.996 0.988 1.000 0.937 - -

Validation set Recall 0.947 0.933 0.938 0.950 0.972 0.989 - -
Specificity 0.947 0.933 0.938 0.959 0.789 1.000 - -
Accuracy 0.947 0.933 0.938 0.954 0.881 0.994 - -
AUC 0.978 0.968 0.974 0.987 0.881 0.947 - -
F1-score 0.947 0.933 0.938 0.954 0.891 0.994 - -

Test set Recall 0.950 0.940 0.970 0.950 0.990 0.980 0.690 0.740
Specificity 0.950 0.930 0.980 0.970 0.900 0.980 0.670 0.770
Accuracy 0.950 0.935 0.975 0.960 0.945 0.980 0.680 0.755
AUC 0.987 0.983 0.996 0.991 0.997 0.998 0.680 0.755
F1-score 0.950 0.935 0.975 0.960 0.947 0.980 0.683 0.751
Time (s) 6.7 21 4.2 5.6 30.1 61.2 2537 1783
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Currently, methods for diagnosing COVID-19 are not 
limited to conventional techniques such as RT-PCR and 
Chest-CT. Some new modern detection methods have been 
developed including loop-mediated isothermal amplification 

(LAMP), droplet digital PCR (dd-PCR), and microarrays 
for COVID-19 detection [32]. Although these new meth-
ods showed high sensitivity and specificity in recent stud-
ies, they have not yet been widely used due to the specific 

Fig. 3  A confusion matrix of 
two experts and six models. 
True positives, TP; true nega-
tives, TN; false positives, FP; 
false negatives, FN
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environment or the high expenditure [33–35]. Thus, on most 
occasions, RT-PCR is still the gold standard for diagnosing 
COVID-19 infection, despite its lack of accuracy and high 
time consumption [36]. In addition, Chest-CT is also widely 
adopted clinically as an auxiliary diagnostic method for 
COVID-19 diagnosis due to its rapid acquisition speed and 
high sensitivity [8]. However, when compared to RT-PCR 
tests, Chest-CT has its own advantages, including celerity 
and convenience. Specifically, it often took at least 6 h for 
RT-PCR tests to show results, while CT reports could be 
issued immediately. If COVID-19 spreads widely, large-
scale PCR tests will consume more time, human resources, 
materials, and funds than CT examinations. Furthermore, 
a chest CT scan can sometimes detect COVID-19 infection 
based on common CT findings alone even if the RT-PCR 
test is negative [37–41]. However, in regard to patients who 
display no clinical symptoms and false-negative RT-PCR 
results, it may be difficult for radiologists to distinguish 
between healthy people and asymptomatic infections based 
on CT features, especially when the newer more modern 
methods are not accessible. As the number of asymptomatic 

patients increases, undocumented infections will accelerate 
the rapid spread of SARS-CoV-2 around the world [16], pos-
ing a threat to outbreak control [42].

The past decade has witnessed the emergence of AI as 
a practicable tool in clinical management [20]. Preliminary 
studies have confirmed that AI-aided chest CTs had good sen-
sitivities for detecting COVID-19 lung pathologies [43–45]. 
Sen et al. proposed a model to extract features from chest CT 
images via CNN and then accurately screened out the most 
significant COVID-19 characteristics—from the patients’ 
chest CT images [46]. Bai et al. established an AI model that 
could differentiate COVID-19 from other pneumonia effec-
tively on chest CTs (accuracy, 96%; and specificity, 96%) and 
found that AI helped radiologists perform better [47]. In our 
study, the CT images of asymptomatic patients showed no 
obvious symptoms, making it difficult to differentiate healthy 
people from asymptomatic patients. Thus, we adopted four 
CNN- and two transformer-architecture-based models to 
evaluate the feasibility of DL in identifying the CT images 
of asymptomatic COVID-19 patients. On the one hand, we 
found that the models’ performance was superior to that of 

Fig. 4  ROC curves of six models with AUCs. ROC, receiver operating characteristic; AUC, area under ROC
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the experts, the main reason being that DL algorithms can 
capture or calculate the subtle differences between images that 
radiologists cannot detect or understand. DL algorithms are 
data driven for feature extraction and can automatically obtain 
deep and specific feature representations based on learning 
from numerous samples. Moreover, an end-to-end approach 
allows these algorithms to adapt to the specific medical task 
requirements [48]. Additionally, DL algorithms can solve 
with high-dimensional data due to multiple techniques such 
as the loss function, optimizer, and hidden layers. On the other 
hand, the results showed that some DL models performed 
better than others, which we think is because of the differ-
ent architectures and hyperparameters. CNNs focus on local 
modeling by convolution kernels, while transformer focuses 
on global modeling by a self-attention mechanism. Moreover, 
model accuracy varies with the size of parameters and the 
throughput. Previous studies suggest that neither CNN nor 
transformer is completely suitable for all model sizes [49]. 
Therefore, the model performance of different DL algorithms 
varies. In addition, these DL models were pretrained on the 
ImageNet [50], making the process time-saving and less com-
plicated [25], which was easy to use for clinicians.

The novelty of this study is that computer-aided systems 
are used for processing and analyzing medical images, which 
greatly improves the value of medical image utilization and 
the accuracy of clinical diagnosis. Moreover, in the context 
of AI, the noninvasive diagnosis of CT images of asympto-
matic-infected patients provides an important solution to the 
current challenges to some extent.

However, this study had several limitations. Our data vol-
ume was limited, and more datasets from other regions or 
countries are needed for further verification. Furthermore, 
these models were trained and tested in retrospective data-
sets, which might affect the performance in the prospective 
research. Additionally, the lack of the included patients’ 
details, such as demographic information, medical history, 
and even laboratory tests, is another limitation. Multimodal 
fusion is a potential future trend that could greatly improve 
model performance, and we will pay more attention to this 
research direction.

Conclusions

In conclusion, it was feasible and effective to use DL models 
for differentiating asymptomatic COVID-19 patients from 
healthy people on chest CT images. Our study might offer 
insights into the further application of AI for asymptomatic 
COVID-19 clinical diagnoses.

Abbreviations COVID-19: Coronavirus disease 2019; CNNs: Convo-
lutional neural networks; DL: Deep learning; ViT: Vision transformer; 
Swim: Shifted window transformer; ROC: The receiver operating 
characteristic; AUCs: Areas under the receiver operating character-
istic curve; SARS-CoV-2: Severe acute respiratory syndrome coro-
navirus 2; RT-PCR: Reverse-transcriptase polymerase chain reaction; 
CT: Computed tomography; TP: True positives; TF: True negatives; 
FP: False positives; FN: False negatives; LAMP: Loop-mediated iso-
thermal amplification; RT-LAMP: Reverse transcription-LAMP; dd-
PCR: Droplet digital PCR

Fig. 5  Two misclassified cases predicted by the Swin model. Swin, shifted window transformer. A Misdiagnosed as normal image with a prob-
ability of 0.682; B misdiagnosed as COVID-19 image with a probability of 0.505
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