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Abstract
Deep learning algorithms can be used to classify medical images. In distal radius fracture treatment, fracture detection and 
radiographic assessment of fracture displacement are critical steps. The aim of this study was to use pixel-level annota-
tions of fractures to develop a deep learning model for precise distal radius fracture detection. We randomly divided 3785 
consecutive emergency wrist radiograph examinations from six hospitals to a training set (3399 examinations) and test set 
(386 examinations). The training set was used to develop the deep learning model and the test set to assess its validity. The  
consensus of three hand surgeons was used as the gold standard for the test set. The area under the ROC curve was  
0.97 (CI 0.95–0.98) and 0.95 (CI 0.92–0.98) for examinations without a cast. Fractures were identified with higher accuracy 
in the postero-anterior radiographs than in the lateral radiographs. Our deep learning model performed well in our multi-
hospital and multi-radiograph system manufacturer settings. Thus, segmentation-based deep learning models may provide 
additional benefit. Further research is needed with algorithm comparison and external validation.
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Introduction

Distal radius fractures (DRFs) account for up to 20% of all 
fractures in a typical emergency department [1, 2]. Diag-
nosis and treatment are based on clinical examination and 
correct interpretation of radiographs. Misinterpretation of 
radiographs is common [3–5] and is also a reason for litiga-
tion [6]. A reliable deep learning (DL) model would be an 

invaluable aid in urgent emergency department conditions 
to reduce misdiagnosis.

During the last decade, machine learning and its subclass 
deep convolutional neural networks (CNN) have excelled in 
image recognition and segmentation tasks [7]. Images can be 
analyzed using object detection and semantic segmentation 
techniques, which differ in features [8]. The selection of an 
optimal approach and CNN can be difficult and is dependent 
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on the task and usable data. A wide range of orthopedic 
trauma radiographs have already been investigated in several 
studies but mainly using object detection [9–12].

For this study, we developed a segmentation-based U-net 
[13], which uses the pixel-level annotations of fractures 
rather than a box annotation, DL model to detect DRF from 
radiographs. The proposed segmentation approach allows 
the network to precisely indicate which features (at the pixel 
level) it uses for fracture detection without resorting to class 
activation mapping or other indirect model interpretation 
techniques. This has a benefit of providing higher levels of 
confidence in the predictions, which is essential for medical 
applications.

The aim of this study was to validate this DL model and 
to test the feasibility of this approach.

Materials and Methods

Data Acquisition

A cohort of consecutive adult (≥ 18 years) wrist trauma 
patient radiographs from six hospital emergency rooms from 
2016 was acquired from the Helsinki University Hospital’s 
Picture Archiving and Communication System (PACS). 
Radiographs were subsequently stored in the hospital elec-
tronic database (HUS Datalake).

The radiographs were acquired using radiograph systems 
from nine different manufacturers, namely, Samsung Elec-
tronics (49%), Fujifilm Corporation (22%), Philips Medical 
Systems (16%), Canon Inc. (10%), Agfa (2%), GE Health-
care (1%), Carestream Health (0.2%), Siemens (0.1%), and 
Kodak (0.05%). The percentages indicate the proportion of 

images taken with the respective manufacturer’s systems. 
The DICOM files were converted to NIFTI files with lossless 
conversion and pseudonymized.

In case of multiple projections, a hand surgery (subspeci-
ality) resident (T.A.) identified and included two projections 
of radiographs that were closest to the true postero-anterior 
and lateral projections. Radiographs focused on hand or 
forearm and wrists with previous wrist arthrodesis, severe 
wrist osteoarthritis, or open physis were also excluded. Radi-
ographs with casts were included.

To develop and test the performance of an algorithm, the 
radiographs were randomly split patient-wise into training 
and test sets (10% for the test set). Data selection details 
and the overall workflow of the conducted study are shown 
in Fig. 1.

Annotation

An in-house engineered image annotation software was 
developed to enable clinicians’ efficient annotation of the 
radiographs (see Fig. 2). The tool was developed as stan-
dalone MATLAB application with a graphical user interface 
(The MathWorks. Matlab version 9.4. Natick, Massachusetts: 
The MathWorks, Inc., USA; 2018).

The annotation process was performed in a setting where 
background information about the patient or diagnosis his-
tory was not available to the annotator. The developed tool 
allowed the annotator to adapt the following contrast set-
tings: dynamic range (scale from black to white), window 
size, and center point to optimize a visual inspection.

A total of 3785 examinations, each comprising one postero-
anterior and lateral projection, were included in the study. In 
the annotation process, the fracture location (when present) 

Fig. 1   Data retrieval, annotation, and analysis process. PACS = picture archiving and communication systems; p-a = postero-anterior; 
CNN = convolutional neural network; DL model = deep learning model
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was annotated on the radiographs in both projections. The 
presence of a cast was also annotated (yes/no). One hand sur-
gery resident (T.A.) with 5 years of training annotated the 
radiographs for the training set (90%). Three consultant hand 
surgeons (E.W., N.L., and J.R.) with an average experience of 
18 years independently annotated the test set (10%). In case of 
disagreement, consensus was reached through a live adjudica-
tion session.

To assess the reliability of annotation, the kappa coef-
ficient for interrater reliability was calculated between the 
resident’s and three hand surgeons’ consensus test set assess-
ment. The resident and the three consultants assessed a set 
of 30 examinations again 6 weeks after primary annotation.

The inter-observer reliability between the resident (T.A.) 
and consensus of three consultants was 0.98. There was a 
disagreement between the consultant’s independent assess-
ment in 27/386 (7%) of examinations of 18/249 patients. The 

intra-observer reliability was 1.0 for the resident and 1.0 for 
the consultants.

The positive and negative likelihood ratios were calcu-
lated for the internal test set radiographs without a cast. To 
calculate the post-test probabilities, a pre-test probability of 
0.47 was used based on the incidence in the set.

The training and test set demographics are shown in 
Table 1. In the test set, four radiographs taken with cast did 
not have a fracture.

Data Preprocessing

The radiographs were first resized to 0.1 × 0.1 mm2 reso-
lution and underwent contrast-limited adaptive histogram 
equalization [14], an approach similar to the study by Pan 
et al. [15]. Finally, the image intensities were normalized to 
a 0–1 range prior to feeding to the CNN.

Fig. 2   An example of the annotation software. The red outline sur-
rounding the fracture area was used for DL model development. 
“Annotation process info” box texts in English: inklinaatio = incli-

nation; ulnar = ulnar variance; kallistus = articular tilt; esineet = for-
eign objects; muut = other remarks; luokittelu = classification; alat-
yypit = subtypes/drawings

Table 1   Training and test set 
demographics

*Gender data not available for 15 patients
a Gender data not available for 1 patient

Patients Examinations Gender 
female (%)

Cast (%) Fracture (%) Age, years, 
median 
(range)

Training set 2388 3399 61* 44% 69 60 (18–100)
Test set 249 386 67a 46% 70 61 (18–90)
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CNN Architecture

We chose a segmentation-based approach for the DRF detec-
tion. We trained a variant of the extensively adopted U-net 
architecture with 25 layers using manually drawn fracture 
locations as training targets [16]. A single postero-anterior or 
lateral view was fed into the network, and a confidence value 
(probability) for the presence of a fracture was produced 
for each pixel (see detailed description in the Supplement).

Testing

The model produced fracture confidence values for each 
image pixel. We recorded the maximum confidences in each 
radiograph and compared these against the ground truth of 
fracture present in the radiograph or not. We chose the final 
decision threshold used in the performance metric calcula-
tions by maximizing the fracture detection accuracy in the 
validation data; the optimal cutoff for the network output 
confidence was ≥ 0.61. The CNN was implemented in Keras 
and Tensorflow version 2.0 [17, 18].

Model Evaluation

For the test set, we used the three consultants’ consensus 
as the ground truth and calculated the sensitivity, specific-
ity, accuracy, negative predictive value (NPV), and positive 
predictive value (PPV) with 95% confidence intervals (CI). 
To assess test discrimination, we used receiver operating 
characteristic (ROC) curve analysis and calculated the area 
under the curve with 95% CI bootstrapping 105 samples. 
We calculated the ROC curves by varying the segmentation 
network’s confidence threshold. The postero-anterior and 
lateral views were evaluated both separate and in unison.

Results

We detected 262 out of 271 examinations with a DRF from 
a total of 386 examinations in the test set. The area under the 
ROC curve was 0.97 (CI 0.95–0.98) and 0.95 (CI 0.92–0.98) 
for examinations without a cast.

For DRF detection from individual radiographs, the area 
under the ROC curve was 0.96 (CI 0.94–0.97) and 0.94 (CI 
0.91–0.96) for radiographs without a cast. Fractures were iden-
tified with higher accuracy in the postero-anterior radiographs 
than in the lateral radiographs. For radiographs without a cast (a 
typical clinical scenario where the model is applied), the accu-
racy for fracture detection in the lateral and postero-anterior 
radiographs was 0.85 and 0.90, respectively. The ROC curve is 
presented in Fig. 3. Figure 4 shows examples of a correct DRF 
detection and an incorrect assessment by the DL model.

See Table 2 for confusion matrices for individual radio-
graphs and for examinations separately. In Table 3 are pre-
sented the results of the test set for radiographs with and 
without a cast separately.

For images with a cast but without a fracture, the 
model correctly assessed two out of the four examinations 
(eight images). For the remaining two examinations (four 
images), the DL model assessed one postero-anterior and 
one lateral radiograph as abnormal despite the absence of 
fracture (i.e., 6/8 images assessed correctly).

The model’s agreement on the lateral and postero-anterior 
views of the same wrist was 87%. The error rate for both 
lateral and postero-anterior predictions being incorrect was 
3%. Figure 5 shows the output values for the lateral and pos-
teroanterior views.

The intermediate CNN models’ performances were also 
tested to estimate how much the auxiliary network and 
the shift-and-average schemes affected the results. In the 
test set, the former improved the maximum test accuracy 
from 0.92 to 0.93. The latter improved the accuracy from 
0.93 to 0.94.

Different radiograph system manufacturers performed 
similarly in our data as shown in Table 4, although a small 
number of radiographs taken with Carestream Health and 
GE Healthcare devices limit the generalizability of the 
results.

Fig. 3   Receiver operating characteristic curves showing the algo-
rithm’s discrimination performance on the test set. The pre-determined 
operating point (×) is close to the upper-left corner, which shows that 
the model performs well in the test set data and is well balanced
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Discussion

Our results show that segmentation-based neural networks 
can be beneficial when assessing musculoskeletal trauma 
imaging. After training with 3399 images, the DL model 
could correctly identify 262 (96,7%) fractures and missed 
9 (3,3%) fractures in a sample of 271 fractures.

Diagnostic errors in emergency rooms have been 
shown to cause patient harm and malpractice claims [4]. 
The overcrowding in emergency rooms may predispose 
patients to errors even more [19]. Thus, there is a demand 
for diagnostic aid and our model seems to perform well 
also with different scanner brands.

Previous studies have shown the feasibility of CNN in frac-
ture detection. Olczak et al. reported results from hand, wrist, 
and ankle radiographs with the highest accuracy of 83% [20]. 
Gan et al. has also developed an AI model for fracture detec-
tion in wrist postero-anterior projections with a detection rate 
of AUC 0.96 [11]. Kim and MacKinnon reached a fracture 
detection of AUC 0.954 in lateral projection [21]. Thian et al. 
reported results for radius and ulna fractures reaching an AUC 
of 0.933 in lateral images and 0.918 in ap images with similar 
results also for fracture detection in radiographs with cast [12]. 
Lindsey et al. reported also on DRF detection and achieved 
AUC of 0.98 and showed increased clinician accuracy [22]. 
Our test set results are in line with the other publications.

Fig. 4   The top two images (A, 
B) show an example of the 
algorithm’s true positive fracture 
predictions, where the white 
outline shows the free drawn 
manual labeling considered the 
ground truth. In the bottom two 
images (C, D), no fracture is 
detected in the lateral view (C) 
but the proximal radial styloid 
process is incorrectly indicated as 
fractured in the postero-anterior 
view (D). The color overlay is 
produced automatically by the 
segmentation tail of the network, 
precisely describing which part 
of the image the model predicts 
having a fracture

Table 2   Confusion matrices for individual radiographs where postero-
anterior and lateral views were considered separately (on the left) and 
for examinations (1 postero-anterior and 1 lateral view) where the 

decision was based on the mean neural network confidence of the two 
views (right). Abbreviations: p-a = postero-anterior; lat = lateral

Single radiographs Predicted Examination (1 p-a and lat) Predicted

Actual Fracture Normal Actual Fracture Normal
Fracture 499 43 542 Fracture 262 9 271
Normal 27 203 230 Normal 23 92 115

526 246 772 285 101 386
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A limitation of our study is the possibility of misla-
beled ground truth and gold standard radiographs due to 
fractures not visible in wrist radiographs. These fractures 
are in an exact position and can only be reliably diagnosed 
with computed tomography (CT) or magnetic resonance 

imaging (MRI). While CT or MRI images were not avail-
able for this data set, the clinical importance of these frac-
tures can be disputed and detecting them may not be useful 
at all.

Our study’s strengths were the representative sample of 
patients, expertise of test-set annotators, training data from 
six different hospitals, radiographs taken with systems from 
several different manufacturers, and the novel use of direct 
semantic segmentation as a basis for fracture detection.

In conclusion, our segmentation-based neural network 
performed well in our multi-hospital and multi-radiograph 
system manufacturer setting. Further research should include 
comparison of different algorithms and external validation. 
In the future, we think that meticulously developed and vali-
dated AI models will be able to assess the alignment and 
fragmentation of DRFs. Fracture detection is just the first, 
but necessary, step to aid clinicians improve the treatment 
of DRF patients.

Supplement

In this supplement is described in more detail the CNN 
architecture and training.

Model Training

The segmentation model was based on U-Net and con-
sisted of 25 layers with seven max-pooling/up-sampling 
layers with skip-connections between encoding and 

Table 3   Results for the test set with 95% confidence intervals

p-a postero-anterior, AUC​ area under the curve, no cast examinations in the test set without a cast (47% fracture), PPV positive predictive value, 
NPV negative predictive value, LR+ positive likelihood ratio, LR− negative likelihood ratio

All radiographs Lateral projection only Postero-anterior 
projection only

Either lateral or postero-
anterior above threshold

Lateral and postero-
anterior confidence 
average

772 radiographs 386 lateral 386 p-a 386 examinations 386 examinations
AUC​ 0.96 (0.94–0.97) 0.95 (0.93–0.97) 0.97 (0.95–0.98) 0.97 (0.95–0.98) 0.98 (0.96–0.99)
AUC, no cast 0.94 (0.91–0.96) 0.93 (0.89–0.96) 0.94 (0.91–0.97) 0.95 (0.92–0.98) 0.96 (0.93–0.98)
Sensitivity 0.92 (0.90–0.94) 0.90 (0.86–0.93) 0.94 (0.91–0.97) 0.97 (0.94–0.99) 0.95 (0.92–0.97)
Sensitivity, no cast 0.86 (0.81–0.91) 0.83 (0.75–0.90) 0.90 (0.84–0.95) 0.94 (0.89–0.98) 0.90 (0.84–0.95)
Specificity 0.88 (0.84–0.92) 0.87 (0.81–0.93) 0.90 (0.84–0.95) 0.80 (0.73–0.87) 0.91 (0.86–0.96)
Specificity, no cast 0.89 (0.84–0.93) 0.87 (0.81–0.93) 0.90 (0.84–0.95) 0.81 (0.74–0.88) 0.92 (0.86–0.97)
Accuracy 0.91 (0.89–0.93) 0.89 (0.86–0.92) 0.93 (0.90–0.95) 0.92 (0.89–0.94) 0.94 (0.91–0.96)
Accuracy, no cast 0.88 (0.85–0.91) 0.85 (0.80–0.90) 0.90 (0.86–0.94) 0.87 (0.82–0.91) 0.91 (0.87–0.95)
PPV 0.95 (0.93–0.97) 0.94 (0.91–0.97) 0.96 (0.93–0.98) 0.92 (0.89–0.95) 0.96 (0.94–0.98)
PPV, no cast 0.87 (0.82–0.92) 0.85 (0.78–0.92) 0.89 (0.83–0.95) 0.82 (0.74–0.88) 0.91 (0.85–0.96)
NPV 0.83 (0.78–0.87) 0.79 (0.72–0.86) 0.87 (0.80–0.92) 0.91 (0.85–0.96) 0.88 (0.82–0.94)
NPV, no cast 0.88 (0.84–0.92) 0.85 (0.78–0.91) 0.91 (0.85–0.96) 0.94 (0.88–0.98) 0.91 (0.85–0.96)
LR+ , no cast 7.8 (5.35–11) 6.38 (3.91–10) 9.0 (5.12–16) 4.95 (3.35–7.3) 11 (5.95–21)
LR–, no cast 0.16 (0.11–0.22) 0.20 (0.13–0.30) 0.11 (0.06–0.20) 0.07 (0.03–0.16) 0.11 (0.06–0.20)

Fig. 5   Deep learning model output values (confidences) for lateral 
and postero-anterior views for the test data set. The decision thresh-
old (output confidence ≥ 0.61 operating point) based on validation 
data during training is indicated with the dotted lines
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decoding pathways (Fig. 6) [13]. Training and inference 
were performed in a patch-based manner. An image was 
split into 130 × 130 pixel-sized sub-images and with 
appropriate overlapping extension at the edges (a larger 
input was required by the valid padding in the convolu-
tional layers) and fed into the network. The outputs were 
stitched together at the end to produce the fracture confi-
dence map for the whole image. We used Adam optimizer 
with a learning rate of 0.001 and binary cross entropy 

loss function in training. We performed validation on a 
randomly sampled 10% of the training data. Validation 
accuracy did not improve after five epochs (with or with-
out lowering the learning rate).

At this point, we created an auxiliary network to encour-
age alternative decision pathways by applying global max 
and average pooling to the outputs of the bottom most and 
the succeeding convolutional layers. This was followed by 
concatenation and flattening and four fully connected layers, 

Table 4   Showing the results by 
radiograph system manufacturer

Manufacturer True positive False positive True negative False negative

Agfa 6 1 2 0
Carestream Health 1 0 1 0
Canon Inc 27 0 20 2
Fujifilm Corporation 47 0 20 5
GE Healthcare 4 0 0 0
Philips Medical Systems 35 1 11 1
Samsung Electronics 137 8 51 6
In total 257 10 105 14

Fig. 6   U-Net based convolutional neural network model consisted of 
25 layers, seven max-pooling/up-sampling steps, and skip-connections 
between the matching resolution levels. Valid padding, 3 × 3 filters, 
batch normalization (BN), and rectified linear unit (ReLU) activation 
were used in the convolutional layers. Dropout layers were used prior 
to the three final convolutional layers. After five epochs, an auxiliary 
network was included in the training; global average and max pool-

ing were applied to the outputs of the fully connected (FC) and the 
up-sampling pathway convolutional layers. Only the first three connec-
tions are shown in the figure (curved dashed arrow). The pooling layer 
outputs were concatenated and flattened and followed by five FC lay-
ers. The auxiliary network was used only during the second phase of 
the training. The output from the auxiliary network was not used in the 
inference (testing)
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and a single output neuron with sigmoid activation. The 
combined model was further trained with a learning rate 
of 0.0025 and using the sum of the binary cross-entropy 
loss from the segmentation network output and the auxiliary 
network output. The training target for the auxiliary network 
was the binary choices if fracture drawing is present or is 
not present in the patch. After an additional three epochs, 
the validation (segmentation) accuracy did not further 
improve, and the resulting model was chosen for testing.

By utilizing the auxiliary network after initial train-
ing, we observed improved segmentation learning during 
the training phase. The second approach to improve accu-
racy was to repeat the inference with 26 pixel shifts in 
the horizontal and vertical directions and averaging the 
resulting 25 outputs. We chose this approach regardless of 
the increased processing time, as it resulted in improved 
validation accuracy.
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