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Abstract
Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast for clinical diagnoses and research which underpin 
many recent breakthroughs in medicine and biology. The post-processing of reconstructed MR images is often automated 
for incorporation into MRI scanners by the manufacturers and increasingly plays a critical role in the final image quality 
for clinical reporting and interpretation. For image enhancement and correction, the post-processing steps include noise 
reduction, image artefact correction, and image resolution improvements. With the recent success of deep learning in many 
research fields, there is great potential to apply deep learning for MR image enhancement, and recent publications have 
demonstrated promising results. Motivated by the rapidly growing literature in this area, in this review paper, we provide 
a comprehensive overview of deep learning-based methods for post-processing MR images to enhance image quality and 
correct image artefacts. We aim to provide researchers in MRI or other research fields, including computer vision and image 
processing, a literature survey of deep learning approaches for MR image enhancement. We discuss the current limitations of 
the application of artificial intelligence in MRI and highlight possible directions for future developments. In the era of deep 
learning, we highlight the importance of a critical appraisal of the explanatory information provided and the generalizability 
of deep learning algorithms in medical imaging.

Keywords Magnetic resonance imaging · Post-processing · Image enhancement · Artefact correction · Noise · Super-
resolution

Introduction

Magnetic resonance imaging (MRI) is a non-invasive 
in vivo biomedical imaging modality that underpins many 
recent breakthroughs in biology and medicine. Compared 
with other imaging modalities, MRI is superior in provid-
ing excellent soft-tissue contrast. MRI can be applied to a 

diverse range of clinical and research applications to visu-
alize anatomical structures, measure biophysical functions 
and metabolism, as well as quantify perfusion and diffusion 
weighted microstructures in soft tissues and organs.

With the ever-increasing demand for shorter imaging 
time and higher image resolution, MRI increasingly suffers 
from low signal to noise ratio (SNR) and is prone to image 
artefacts arising from subject motion and image distortion. 
These pose crucial challenges to accurately and efficiently 
post-process MR images. Conventional image enhancement 
and artefact correction techniques have proven to be useful 
for improving image quality in MRI including denoising [1], 
geometric distortion correction [2], and correction of subject 
movement [3]. With the advent of artificial intelligence and 
machine learning, especially deep learning algorithms, there 
is great potential to further improve image quality in MRI, 
and many early works have demonstrated significant gains 
in image quality.

Deep learning has proven to be useful in various steps of 
the clinical imaging workflow including patient scheduling, 
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data acquisition and reconstruction, image enhancement and 
correction, and interpretation of results (see Fig. 1). Signifi-
cant improvements in workflow efficiency, data quality, and 
interpretation efficiency have been reported [4]. For exam-
ple, in the image reconstruction literature, several papers 
have comprehensively reviewed the image reconstruction 
algorithms using deep models for improved image recon-
struction accuracy [5, 6]. For accurate and robust image 
interpretation, Cai and colleagues reviewed deep learning 
for image classification and segmentation tasks [7]. Further-
more, McBee et al. have provided an overview of deep learn-
ing in radiology practice covering topics including disease 
detection, classification, segmentation, and quantification 
[8]. In this review, we particularly focus on post-processing 
algorithms for image quality enhancement and artefact cor-
rection, as many existing research works have demonstrated 
that deep learning models are well suited for image post-
processing tasks in MRI.

In this paper, we will first provide an overview of 
the recent development of deep learning for MRI 
post-processing including (i) image artefact reduc-
tion, (ii) denoising for different MRI contrasts, and 

(iii) improvement for image resolution. We aim to pro-
vide researchers with an overview of deep learning 
approaches for post-processing MR images and discuss 
future perspectives in these applications.

Overview of Deep Learning Models in MRI 
Post‑Processing

Many MR post-processing tasks can be formulated as 
image-to-image transformation problems where deep 
learning models are used to capture the nonlinear rela-
tionships between image inputs and outputs. In both rigid 
and non-rigid motion correction tasks, motion-corrupted 
images are fed into deep neural networks (DNNs) which 
produce the corresponding motion-free images. To cor-
rect other artefacts, such as Gibbs ringing, image bias due 
to B0 inhomogeneity, ghosting, and distortion artefacts, 
DNNs take images with artefacts as the inputs and output 
artefact-free images. Similarly, various neural networks are 
implemented to reduce noise or enhance image resolution 
in MRI images with supervised or unsupervised training.

Fig. 1  Overview of the scope of the review paper which focuses on the post-processing steps after image reconstruction and includes MRI arte-
fact correction, noise reduction, and resolution enhancement
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Network Architectures

Among various types of deep neural networks, convolu-
tional neural networks (CNNs) are the most commonly 
used neural network architecture in medical image pro-
cessing [9]. The convolution operations or kernels are 
the major building blocks of any deep CNN architecture, 
which are specialized linear operations that are capable 
of detecting translation invariant features from images, 
including 1D, 2D, and 3D Conv layers, while several 
works use long short-term memory (LSTM) and multi-
level perception (MLP), as illustrated in Table 1.

CNN architectures, such as U-Net and its exten-
sions, are the widely used models for MR image quality 
enhancement and artefact correction. Table 1 includes the 
model architecture types covered in this survey and shows 
that U-Net is one of the most popular network architec-
tures for mapping from source images to target images, 
among a variety of customized CNN networks. The 2D 
U-Net model was first designed for image segmentation 
tasks [10] as a fully convolutional neural network (FCN) 
architecture (Fig. 2a). It consists of an encoder that con-
tracts spatial information to latent feature maps with 
convolution operations and a decoder that expansively 
performs up-sampling step propagating spatial informa-
tion from the input to deep layers of the network, in order 
to preserve spatial features from the input image that are 
relevant to the output image. Since the first introduction 
of the U-Net model, variations to the initial architecture 
to handle fully 3D data [11–13] have also been imple-
mented (Table 1).

Similar to U-Net architecture, some works applied 
autoencoders (AE) with residual connections to enhance 
medical images [14, 15]. As shown in Fig. 2b, an autoen-
coder architecture is generally the composition of two 
parts: an encoder which maps an input image to latent 
space features in lower dimensions and a decoder which 
predicts an output from the latent space. Dimensional-
ity reduction forces the neural network to give priority 
to learning those features which most significantly con-
tribute to minimizing the loss, thus reducing undesirable 
features such as noise and artefacts [16]. Variational 
autoencoder (VAE) was applied for applications includ-
ing correcting motion artefacts [17] and normalizing 
multi-site image data [18]. With the recent success in 
self-attention-based transformers, there have been several 
attempts to study the effectiveness of these networks on 
MRI post-processing tasks, especially on noise reduction. 
The transformers consist of fully connected layers and 
operate on image patch embedding in order to exploit 
long-range dependencies between visual MR features.

Network Training

Training a neural network is the process of optimizing its 
parameters to minimize the loss between the predicted and 
target images or patches. Loss functions determine which 
image characteristics will be used by the neural network to 
match with the ground truth data. In the scope of MR image 
enhancement and artefact correction, the mean absolute 
error (MAE) using L1 norm and mean square error (MSE) 
using L2 norm are the two most widely used to compute 
the pixel-wise residual component between neural network 
outputs and ground truth images or patches [13, 19–21]. 
Some works incorporated multiple losses, e.g., MAE or 
MSE, and Structural Similarity Index (SSIM) to improve 
perceptual quality of output images [22–24], where the 
SSIM loss measured the similarity of the output and tar-
get images [25]. Different from the above hand-crafted loss 
functions, perceptual loss was proposed to measure the high-
level perceptual and semantic between the neural network 
generated images and target image in feature space, instead 
of computing the pixel differences [26]. It was originally 
designed for image style transfer problems, later applied to 
MRI image processing with pre-trained VGG networks as 
the loss network, such as motion correction [17], contrast 
synthesis [27], and noise reduction [28].

In the context of MRI image quality enhancement, the 
process of optimizing model parameters is mostly formed 
as a fully supervised or adversarial training framework. In a 
fully supervised setup, the models are trained with explicitly 
defined pairs of input and output. For example, to correct 
artefacts, models are optimized by using the loss functions 
between network outputs and artefact-free ground truth 
images or patches as the supervisory signals, through the 
process of gradient descent. The fully supervised learning 
framework was widely used for motion correction [19, 29], 
noise reduction [30–32], instrumental, and sequence arte-
fact correction [33–36]. For super-resolution tasks, similar 
setups were adopted, where the target images or patches 
were in high resolution and the inputs were low-resolution 
counterparts.

In contrast to fully supervised learning frameworks, some 
methods applied unsupervised learning techniques to train 
neural network models without explicitly labelled training 
pairs. Among those, generative models such as the generative 
adversarial network (GAN) framework, as shown in Fig. 2c, 
are popular techniques. GAN operates two networks, a genera-
tor and a discriminator, which are updated in an alternating 
fashion and converged to a state where the generator output is 
indistinguishable from the ground truth images according to 
the discriminator. GANs have demonstrated good performance 
in natural image processing tasks such as image synthesis [37, 
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38] and image enhancement [39, 40]. Other established meth-
ods include AE, VAE, or using self-supervised learning algo-
rithms which have also been applied for MRI post-processing 
tasks. Furthermore, some works utilize the mutual information 
between multi-modality contrasts for rigid motion correction 
where a neural network is trained in an unsupervised way to 
align T1, T2, and FLAIR images by minimizing the normal-
ized cross-correlation measurement [79] and correct suscep-
tibility artefacts in images acquired with echo planar imaging 
(EPI) sequence with pairs of reversed phase-encoding images 
without the need of artefact-free images [53]. Similarly, pseudo 
labels can also be simulated to form as a self-supervision 
framework [144, 166]. Moreover, instead of being formulated 
as learning problems, deep image prior (DIP)-based methods 
use CNNs as a regularizer and form as an optimization prob-
lem at inference time [190]. In MRI, DIP has been success-
fully applied to image denoising of structural images [103] and 
diffusion-weighted images [130].

Performance Evaluation

To quantitatively evaluate the model performance, multi-
ple metrics are used to measure the similarity between the 
enhanced images by the DNNs and the ground-truth ref-
erence images. Mean squared error (MSE) and root mean 
square error (RMSE) measures the pixel-wise difference 

between the artefact-free reference images and the artefact-
corrected network output images [18, 24, 41] or between 
the high-resolution ground-truth images and the synthesized 
super-resolution images [42, 43], where lower values indicate 
better model performance. Similarly, peak signal-to-noise 
ratio (PSNR) is another objective metric which is inversely 
proportional to the logarithm of the pixel-wise MSE between 
the generated image and the reference image. SSIM is 
a widely used metric for the level of similarity between 
images, especially image edges. PSNR and SSIM are the two 
most widely used metrics in validating MRI image quality 
enhancement models [20, 44–46]. Besides, high frequency 
error norm (HFEN) [33], dice coefficients [12, 47], percent 
volume difference (PVD) [47], and ghost-to-signal ratio 
(GSR) [34, 35] are also used by some researchers, as well 
as mutual information-based metrics, including information 
fidelity criterion (IFC) [48] and normalized mutual informa-
tion (NMI) [17].

MR Image Artefact and Bias Correction

Artefacts in MR images emerge from different sources such 
as human physiology and instruments. In this section, we 
have categorized common MR imaging artefacts as shown 
in Fig. 1.

Fig. 2  (a) Unet consists of a fully convolutional encoder and decoder 
interconnected by concatenating feature maps which assists in 
propagating spatial information to deep network layers. (b) Autoen-
coder consists of an encoder which maps images to a latent space of 
reduced dimensionality and a decoder which maps the latent space 
vector to image space. The dimensionality reduction mitigates ran-
dom variations in the input while preserving image features necessary 

for image reconstruction. (c) Generative adversarial network consists 
of a generator network which produces an estimate of a ground-truth 
image and a discriminator which attempts to discern between synthe-
sized images and ground truth images. Parameters for each network 
are updated in an alternating fashion resulting in generator outputs 
which are indistinguishable from ground truth images from the per-
spective of the discriminator.
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Patient Motion Artefact

Patient motion during MRI acquisition frequently occurs 
due to either involuntary motion of the patient or physio-
logically related tissue movements. Motion during the scan 
has been a long-lasting issue in MR imaging [49, 50] and 
can manifest as image artefacts including ringing, ghost-
ing, blurring, or a combination thereof [49, 50]. The type of 
image artefact depends on both the severity of the motion 
as well as the time point at which motion occurred during 
the scan [19]. For instance, motion occurring during the 
acquisition of high-frequency components will manifest as 
ringing and blurring, while motion during the acquisition of 
low-frequency components will result in ghosting. The two 
broad approaches to correct motion artefacts apply either (i) 
prospective or (ii) retrospective motion correction methods. 
Prospective motion correction [51–55] involves detection of 
patient motion in real-time and modification of the scanner 
gradients to maintain the relative position of the patient in 
the field of view (FOV). In principle, prospective motion 
correction is an efficient method to correct motion artefacts 
as it can compensate for a patient’s motion at the source. 
However, in practice, it is difficult to accurately estimate a 
patient’s motion in real time. Retrospective motion correc-
tion [56–58] methods do not compensate for patient motion 
at source but instead correct the image artefacts that result 
from the motion.

Motion types can be separated into rigid motion (e.g., 
head motion) and non-rigid motion (e.g., whole-body 
motion).

Rigid Motion Correction

The use of deep learning to correct motion artefacts was first 
explored by Sood et al. [59], Godenschweger et al. [60] and 
Zaitsev [61]. Several methods [19, 23, 29, 41, 62–65] used sim-
ulated motion artefacts to generate paired datasets for training 
DL models. Pawar et al. [19] and Sood et al. [59] simulated 
motion artefact for 3D MPRAGE images using randomly gener-
ated motion parameters with six degrees of freedom and trained 
an encoder-decoder Unet to map motion-corrupted images to 
the motion-free images. The authors compared the DL motion 
correction results with a method based on the entropy mini-
mization [66] technique and demonstrated that the DL-trained 
model had superior performance in comparison to the entropy 
motion correction method. Godenschweger et al. [60] simulated 
motion for the 2D images using a patch-based CNN approach to 
remove artefact from each small patch of image and assembled 
the patches to generate a motion-corrected image. Gallichan 
et al. [67] used an end-to-end training to generate a full 2D 
image. Recently, Ghodrati et al. [68] used a conditional genera-
tive adversarial network which uses 3D patches instead of 2D 
patches and demonstrated that the use of 3D patches improves 

the motion correction accuracy compared to using 2D slices. In 
a separate work, Johnson et al. [69] proposed MC2-Net, which 
uses multi-contrast T1, T2, and flair images simultaneously to 
first align the T1, T1, and flair images using an unsupervised 
alignment DL network and subsequently process the aligned 
multi-contrast images through a separate DL motion correction 
encoder-decoder network. They demonstrated that using multi-
contrast MR images improves the reconstruction quality of the 
images compared to using a single contrast image.

Motion simulation is an important aspect to develop DL 
motion correction models. Pawar et al. [70] developed a 
motion simulator that generates realistic motion trajecto-
ries and corresponding motion corrupted images. Although 
acquiring in vivo pair training data is a complex experimen-
tal task, a study by Küstner et al. [17] attempted to use the 
paired data from 18 subjects, one acquired with the subject 
moving and another with the subject still. They used the 
motion paired data to compare two different motion correc-
tion DL models including autoencoders (AE) and generative 
adversarial networks (GAN) for head, abdomen, and pelvis 
imaging.

Bilgic et al. and Brown et al. [41, 62] further developed 
the DL motion correction model to integrate data consistency 
during the motion correction step to ensure that the motion-
corrected image was consistent with the acquired data. Motion 
correction using iterative optimisation algorithms to estimate 
both motion parameters and motion-corrected images has 
been explored in [66] without the use of deep learning. How-
ever, a major limitation of methods that use iterative optimi-
sation algorithms is their computational complexity and their 
failure to converge due to the large search space. Integration 
of DL models [71] in order to regularize the iterative methods 
has enabled minimization of the cost function in a reasonable 
computing time.

Many works [19, 21, 23, 29, 31, 41, 49, 70–75] have dem-
onstrated that motion can be corrected using DL approaches 
and simulated data, with some studies validating the proof 
of concept using few volunteer scans. However, the per-
formance of these methods in the clinical setting has been 
largely unexplored. Figure 3 shows an example of the motion 
correction comparing two retrospective motion correction 
methods, one DL-based (MocoNet) and another iterative 
regularization-based entropy minimization method (taken 
from [72]). The authors demonstrated improved image qual-
ity after motion correction using MocoNet.

Non‑rigid Motion Correction

Modelling non-rigid motion such as respiratory- or cardiac-
related movements is more challenging than rigid motion. 
Tamada et al. [23] developed a motion correction model 
to correct for the respiratory artefacts in liver imaging. 
Although the task was to model non-rigid motion, they 
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approximated chest movement as rigid motion based on the 
assumption that the chest moved in only one direction dur-
ing breathing. They modelled periodic motion with random 
phase and frequency to simulate breathing and simulated 
random motion to simulate a break in the breath-hold. A 
patch-based approach was used to remove the motion arte-
fact using a seven-layer CNN without any downsampling 
layers. In a separate study, Zhao et al. [57] approximated 
respiratory motion as rigid motion to generate respiratory 
motion corrupted cardiac cine data and then used an autoen-
coder network with adversarial training in an unsupervised 
manner.

Evaluation of Deep Learning‑Based Motion Correction

Although most of the current literature focuses on the devel-
opment of novel methods for motion correction in MRI, sev-
eral methods have evaluated the effect of DL motion correc-
tion in clinical and research applications.

Two studies [29, 72] validated the effect of motion correc-
tion in the clinical setting. In both studies, a visual grading 
score (VGS) was assessed by multiple trained radiologists 
for the quality of images. Johnson et al. [72] performed 
5-point VGS on brain images for nine neuroanatomical 
regions, while Kromrey et al. [29] performed a VGS study 

on the liver using a 4-point scale. They both concluded that 
the visual appearance of the motion-corrected images was 
improved compared to the motion-corrupted images. Pawar 
et al. also concluded that 13% of the repeated scans can 
be avoided and 90% of the motion degraded scans can be 
improved using motion correction.

To evaluate motion correction for segmentation tasks, 
Maclaren et al. [64] compared two approaches for motion 
correction, namely, (i) image motion corrected with a DL 
model and then used in a segmentation algorithm and (ii) 
motion-corrupted images included as training examples in a 
DL segmentation model. They demonstrated that the second 
approach that included motion corrupted images as training 
examples for DL segmentation models outperformed mod-
els that corrected images corrupted with motion artefacts. 
Johnson et al. [73] performed a similar study for neonatal 
brain segmentation and demonstrated that DL motion cor-
rection improved segmentation accuracy. Shaw et al. [74] 
demonstrated that DL motion correction improved cortical 
surface reconstruction of the brain and that quality control 
failures were reduced from 61 to 38 by the use of a DL 
motion correction algorithm in a Parkinson’s disease study 
of 617 patients.

Diffusion parameter estimation can be affected by 
misalignment of echo planar image (EPI) volumes. 

Fig. 3  Motion degraded (left-hand column) and motion-corrected (right-hand column) images highlighting the image quality improvement for a 
case with a brain tumor. The ringing motion artefacts were removed from the images without degrading the diagnostic image quality [72]
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Conventionally, volumes with motion greater than a prede-
fined threshold are discarded retrospectively to avoid bias in 
estimation of the diffusion parameters. Terpstra et al. [75] 
proposed a 3D patch-based CNN to reduce variability asso-
ciated with residual EPI volume misalignment. The method 
used a separate database to train a 3D patch CNN for each 
subject during the correction stage and demonstrated that the 
method could reduce the variability in diffusion parameter 
estimation due to motion. Table 2 highlights the advantages 
and limitations for popular DL-based motion correction 
methods.

Instrument and Pulse Sequence‑Related Artefacts

A major source of artefacts in MR images stem from the 
choice of acquisition parameters at the MR hardware opera-
tional limit, including at high slew rates and high gradi-
ents, and because of the non-uniform B0 and B1 fields. In 
this section, we categories artefacts based on the hardware 
limitations, choice of acquisition sequence, sequence param-
eters, and scanner non-uniformity.

B0, B1, and Truncation Artefact Correction

Truncation of the high-frequency k-space data is frequently 
employed to reduce scan time and often results in Gibbs 
ringing artefact. Loktyushin et al. [76] and Wang et al. 
[33] proposed a deep learning-based network trained on 
simulated Gibbs ringing data to remove such artefacts. The 
model consisted of a four-layer CNN to reduce ringing arte-
fact in the image domain and ensure data consistency of 
the acquired low-frequency components that successfully 
reduced the ringing artefact for T1 and DWI images. Wang 
et al. [33] developed a small CNN similar to [76] but without 
data consistency for the acquired k-space points. Separately, 
Muckley et al. [20] developed a CNN model-based solely 
on non-MR images (ImageNet natural image dataset) to 
remove Gibbs ringing arising from partial Fourier imaging 
which demonstrated that ringing artefacts can be effectively 
removed using a model trained on different input images.

Magnetic field B0 inhomogeneity results in varying 
Larmor frequency spatially and thus the artefacts. B0 inho-
mogeneities can produce image biases, blurring, shading, 
curved slice profiles, and banding artefacts. B0 inhomoge-
neity artefacts are more pronounced in gradient echo and 
echo planar imaging sequences due to lack of refocusing 
RF pulses and long read out. Another aspect of B0 inhomo-
geneity is poor fat saturation since the difference between 
fat and water frequency is not fixed in the presence of B0 
inhomogeneity. Non-uniform intensity biases can also be 
caused by improper coupling of the receiver coils and non-
uniform B1 due to inhomogeneity of the radiofrequency 
excitation and receive coils. Sommer et al. [77] proposed Ta
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a generative adversarial network with a 3D pixel and his-
togram loss function to remove non-uniform intensity (bias 
field) from MR images. They trained the network on simu-
lated brain datasets and tested the algorithm on real brain 
and abdomen images. Respiratory motion can also introduce 
B0 inhomogeneity artefacts in T2*-weighted images due to 
thoracic cage movement. An et al. [34] proposed DeepResp 
to remove respiratory-induced B0 inhomogeneity artefacts 
that used artefact-free complex-valued images and respira-
tory motion curves to simulate phase errors in k-space. A DL 
network was trained to estimate and remove the phase errors 
in the phase encoding direction from corrupted k-space data 
to recover artefact-free images.

EPI Ghosting and Distortion Artefacts

EPI is a fast-imaging sequence that acquires the whole slice 
in one excitation by traversing the full k-space in a prede-
fined manner. For a rasterized zig-zag trajectory, each con-
secutive phase encode (PE) is acquired by traversing k-space 
in the opposite frequency encoding direction. This can result 
in two major artefacts in EPI images: (i) ghosting in the 
reconstructed images due to eddy currents generated during 
the reversal of frequency encoding direction and (ii) phase 
errors arising from slight B0 inhomogeneities that accumu-
late during the readout time and cause geometric distortions 
in the reconstructed images.

Ghosting in the phase encoding direction can be corrected 
using two readouts in the opposite frequency encoding direc-
tion that calculate the phase errors due to the fast switching 
gradients. Lee et al. [35] proposed a deep learning-based 
method in the k-space domain to simultaneously correct for 
ghosting artefacts and reconstruct EPI images from under-
sampled data. In [36, 78–80] different DL approaches were 
proposed to correct EPI geometric distortions. Ghaffari et al. 
[78] proposed a 2D Unet approach that used a distorted B0 
image along with a co-registered T1-weighted image to cor-
rect for distortion in the EPI images using only one EPI scan. 
They further improved the method in [80] and implemented 
a 3D Unet to correct for the EPI distortion (Fig. 4). Both 
methods were compared with the TOPUP method from the 
FSL toolkit [81, 82], a popular tool for distortion correction, 
and demonstrated similar performance in distortion correc-
tion without using an extra scan in the opposite direction. 
Separately, Hu et al. [36] proposed a 2D Unet for EPI distor-
tion correction in the context of diffusion MRI. The method 
used distorted diffusion EPI images in seven diffusion direc-
tions and T2-weighted images as input to the patch-based 2D 
Unet to correct for EPI distortion in all seven EPI images 
simultaneously. Lee et al. [79] separately developed a DL 
method for EPI distortion correction with the aim of reduc-
ing the processing time compared to the conventional meth-
ods including TOPUP [81, 82] and TISAC for susceptibility 

distortion correction [83]. They used a 3D Unet to estimate 
the B0 distortion field map using an unsupervised approach, 
and the estimated distortion field maps were used to correct 
the EPI distortion. This approach still required EPI scans 
in two opposite PE directions that mimic the conventional 
approach to remove distortion artefacts to reduce processing 
time. They demonstrated a 369 × and 20 × processing speed 
increase in comparison to TOPUP and TISAC, respectively.

Multi‑site Data Normalization

Variations in scanner configuration and protocol make the 
analysis of data from different imaging sites highly challeng-
ing. Images from a subject scanned at two different sites can 
result in images with highly variable quality. Characteriza-
tion and removal of such variability is of critical clinical and 
research importance that can be done using data normaliza-
tion methods.

Grigorescu et al. [12] proposed a DL method for data nor-
malization of T2-weighted images using an image domain 
adaptation network to harmonize the input T2-weighted 
image for gray/white matter and CSF segmentation. The 
model consisted of two sequential networks, the first 
being a normalization network which processed the input 
image to suppress scanner specific variation, followed by a 

Fig. 4  EPI distortion artefact correction in [80] form three datasets. 
D: distorted image, U: undistorted images formed using distorted and 
T1 weighted as input to a 3D Unet
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segmentation network. The model was trained end-to-end 
with adversarial loss for the normalization network and dice 
loss for the segmentation network and was tested on neonatal 
brain segmentation data. Duffy et al. [84] proposed a similar 
idea on T1-weighted images and used a single network with 
adversarial loss to enforce learning of scanner independent 
features. Gong et al. [85] used adversarial loss to normalize 
data from different scanners and tested the CNN model for 
multiple tasks including segmentation (gray, white, CSF), 
regression (age prediction), and classification (gender pre-
diction). Dewey et al. [47] proposed a Unet-based model for 
T1, T2, FLAIR, and proton density images to modify the 
contrast of the source image to a predefined target image 
contrast, with the target image used for further processing 
such as segmentation.

In [86], Tong et al. proposed a 3D image-to-image trans-
lation network to transform images from multiple sites to 
a reference site. The method required data from the same 
patient at different sites to train such a 3D model and dem-
onstrated reduction in the inter-scanner variation of frac-
tional anisotropy measures. Moyer et al. [18] developed an 
autoencoder DL method for normalization of diffusion MRI 
data that used an autoencoder to extract a latent space rep-
resentation of the image that was independent of the scan-
ner. The encoder part of the network estimated an unbiased 
scanner-independent representation of the input diffusion 
image, while the decoder used the latent representation and 
the scanner protocol representation as inputs to reconstruct 
the diffusion image. The advantage of the autoencoder is 
that it does not require data from the same subject to be 
acquired at multiple sites. The method allows normalization 
of diffusion images from one scanner to another using only 
the representation from the second scanner. Unlike [86], the 
method does not normalize the scans to a reference site but 
converts data from one site to another site using the latent 
representation and scanner representations.

Synthetic MRI is quantitative and free of vendor-specific 
characteristics which is an ideal form of normalization. In 
[27, 87], multiple dynamic multi-echo sequences (MDME) 
were used to acquire raw data and multiple contrasts includ-
ing T1, T2, proton density, and T2-FLAIR images using MR 
physics-based modelling. T2-FLAIR images generated using 
the MDME method are often corrupted with hyperintensi-
ties in brain-CSF and granular hyperintensities in the CSF 
region of the brain. Ryu et al. [27] proposed a supervised DL 
network that used paired images acquired using MDME and 
conventional T2-FLAIR sequences. The paired images were 
first co-registered, contrast matched, and intensity normal-
ized before being processed through the network. Separately, 
Jenkinson et al. [87] proposed a GAN network that used 
multi-channel raw data as an input to the generator network 
and a discriminator to differentiate between true and fake 
T2-FLAIR images. They used adversarial training to obtain 

a generator that could generate realistic T2-FLAIR images 
from the raw data.

Noise Reduction in MRI

Image noise is a long-standing issue in MRI. Improving 
SNR is increasingly challenging because of accelerated 
data acquisition and ill-posed image reconstruction methods. 
Noise in MR magnitude images is Rician distributed [88]. 
For accelerated data acquisitions, image noise can be spa-
tially dependent on the corresponding reconstruction algo-
rithms used, e.g., parallel imaging and compressed sensing. 
This poses particular difficulties for post-processing tech-
niques to successfully denoise MR images.

Conventional post-processing-based denoising methods 
are classified into filtering methods, transform domain meth-
ods, and statistical methods (for detailed reviews, refer to 
[89, 90]). While spatial smoothing filters can be effective 
to remove additive noise, they often blur images especially 
small structures. Edge-preserving filters can mitigate image 
smoothing to a certain degree, and nonlinear filters such 
as anisotropic diffusion filters [91, 92] are useful to pre-
serve anatomical details. Anatomical boundaries can also 
be preserved with non-local mean filters [93, 94] to exploit 
non-local image intensity and structural information while 
estimating and removing noise. The Block Matching 3D 
Filtering (BM3D) method applied a sparse representation 
for noise removal in a transformed domain [95, 96]. Awate 
et al. applied a nonparametric empirical Bayesian approach 
for Rician noise modelling and removal in MR images [97].

From the generic image processing perspective, CNNs 
have been very effective in the reduction of image noise 
(see [44] for an overview) with many MR image denois-
ing techniques influenced by standard CNN models and 
variants. Deep learning denoising techniques for MR image 
post-processing have particularly focused on anatomical 
MRI applications, especially the brain, due to the fine ana-
tomical details. There has also been a considerable amount 
of research on functional, perfusion-weighted, diffusion-
weighted, and flow MRI.

Noise in Anatomical MRI

Many studies have focused on noise removal in brain 
images due to the fine anatomical detail and high resolu-
tion of brain MR images. Most of these studies utilize 
CNNs and its variants for denoising. Several studies have 
incorporated GANs to learn the distributions of denoised 
MR images using the inherent generator-discriminator 
setup. With the recent invasion of transformers in com-
puter vision, there have been several studies incorporating 
self-attention-based methods for denoising. Moreover, one 
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of the recent focuses has been the quality enhancement of 
low-field anatomical MRI due to its innate advantages in 
accessibility and the higher vulnerability to noise.

Kidoh and colleagues reported an experimental study 
of brain MRI scans from five healthy volunteers that com-
pared performance between three deep learning-based 
denoising methods, namely, denoising convolutional 
neural network (DnCNN), a shrinkage convolutional neu-
ral network (SCNN), and deep learning-based reduction 
(dDLR) [98]. The performance of dDLR was higher com-
pared to DnCNN and SCNN with respect to Peak Signal 
to Noise Ratio (PSNR) and Structural Similarity Index 
(SSIM), and the image quality of dDLR was also supe-
rior to DnCNN and SCNN. Several groups have improved 
MR image denoising using deep image priors [99–101] 
and demonstrated improved performance compared with 
conventional filtering methods. Aetesam and colleagues 
proposed a deep CNN to remove Gaussian noise from 
brain MR images [30]. The method was inspired by the 
maximum a posteriori (MAP) with Gaussian noise and 
deep residual learning. Chauhan and colleagues combined 
a fuzzy logic approach with a CNN autoencoder to denoise 
brain MR images that showed improved performance 

compared to stand-alone fuzzy logic methods [14]. Apart 
from these, a ten-layer CNN [102], multi-channel residual 
learning CNN [103], CNN-DMRI [104], HydraNet [105], 
NNDnet [106], CMGDNet [107], 3D-Parallel-RicianNet 
[108], and a patch-based CNN [109] have been developed 
for accurate MRI denoising. Several other recent works 
incorporated CNN-based solutions for brain MRI denois-
ing [110–115].

Furthermore, several works reported the incorporation 
of peripheral deep learning concepts including adversarial 
training and transfer learning to overcome noise in brain 
MRI. Ran et al. used a residual encoder–decoder Wasserstein 
GAN for simultaneous improvement of noise suppression 
and preservation of anatomical details [48] and compared 
deep learning-based and conventional methods (Fig. 5). Tian 
et al. introduced a novel MRI image denoising method using 
a conditional Generative Adversarial Networks (GAN) where 
a CNN is used as the discriminator network [116]. The model 
was trained by an adversarial loss function and tested on syn-
thetic T1-weighted brain MR images with 10% noise level 
and outperformed several other methods in terms of denois-
ing level and preservation of the anatomical structures. Many 
CNN-based methods for brain MRI denoising use squared 

Fig. 5  Comparison of image 
denoising on a T1-weighted 
image [30]: (a) noise-free 
image, (b) noisy image, 
(c) BM4D, (d) PRI-NLM3D, 
(e) CNN3D, and (f) RED-
WGAN [48]



215Journal of Digital Imaging (2023) 36:204–230 

1 3

Euclidean distance for training that produce overly smoothed 
output images. As an alternative, Panda et al. [28] introduced 
a perpetual loss which promoted restoration of visually desir-
able brain image features. This method surpassed the previ-
ous methods for the reduction of Rician noise.

Several groups have applied attention-based mechanisms 
and leveraged long-range dependencies to improve brain 
MR image denoising. Inspired by the attention-guided CNN 
networks, Hong et al. proposed a model to incorporate fea-
ture fusion and attention mechanisms to separate noise from 
observed MRI images [117] and produced competitive results. 
To overcome the limitations of conventional convolution and 
local attention in MR/PET denoising, Yang et al. [118] pro-
posed a self-attention-based transformer model called the 
spatial-adaptive and transformer fusion network (STFNet). 
The STFNet utilizes a Siamese encoder to promote extrac-
tion of more relative and long-range contextual features and a 
transformer fusion encoder to establish local/global dependen-
cies between high-level visual embedding of PET and MRI. Li 
et al. developed a progressively distribution-based neural net-
work [119]. Unlike the conventional MRI denoising methods 
which utilize the spatial information around image patches, 
the method learned the pixel-level distribution information 
in a supervised manner. Through a series of experiments on 
synthetic, complex-valued and clinical MR brain images, 
the authors showed that the approach improved quantitative 
measures including PSNR and SSIM, as well as visual inspec-
tion of edge-like details and anatomical structures. Xu et al. 
aimed to simultaneously address long-range and hierarchical 
information and utilize similarity in 3D brain MR images for 
denoising [120]. They proposed a deep adaptive blending net-
work (DABN) characterized by large receptive field residual 
dense blocks and an adaptive blending method. The overall 
results showed superior performance of DABN over other 
methods in terms of SSIM and PSNR.

In an application to imaging prostate, Hong et  al. 
presented a Bayes shrinkage-based fused wavelet trans-
form (BSbFWT) and Block-based autoencoder network 
(BBAuto-Net) for removal of noise from prostate MR 
images [121]. The method was tested on prostate mp-
MRI data obtained from 1.5-T general electric (GE) and 
3.0-T Siemens scanners with promising results obtained 
in comparison with conventional filters such as aniso-
tropic, bilateral, Gabor, Gaussian, mean, NLM, wave-
let, Wiener, autoencoders, and autoencoders with NLM 
filters. Li et al. [122] carried out a study on clinical 
abdominal MR images where their proposed method 
was based on a cascaded multi-supervision convolu-
tional neural network named CMSNet. CMSNet showed 
superior noise reduction capabilities not only on Rician 
noise in MR images but also on low-dose perfusion 
noise in CT images. Juneja et al. [123] utilized dDLR 
in order to assess the image quality of conventional 

respiratory-triggered 3D magnetic resonance cholan-
giopancreatography (Resp-MRCP) and breath-hold 3D 
MRCP (BH-MRCP). Their experiments were done is 
1.5-T setting using 42 patients, and two radiologists 
rated the visibility of the proximal common bile duct 
(CBD), pancreaticobiliary junction, distal main pancre-
atic duct, cystic duct, and right and left hepatic ducts 
in the final images. The main conclusion of this study 
indicated the feasibility of dDLR for BH-MRCP and 
Resp-MRCP.

Low-field MRI, in particular, has many benefits includ-
ing affordability, compact footprint, and reduced shielding. 
SNR is linearly proportional to the main magnetic field 
(B0); hence, low-field MRI systems (< 1 T) inherently have 
significantly low SNR compared to conventional 1.5–3 T 
MRI scanners. Song et al. [124] proposed a CNN-based 
auto encoder network with a transfer learning approach to 
learn a data-driven transformation from high-field noisy 
data with application to 0.35-T pelvic MR images. Tajima 
et al. [125] studied the utility of a stacked U-Net method to 
reduce noise from the system. Their experiments on phan-
tom as well as human MR images acquired on a 60–67mT 
MR scanner demonstrated improved qualitative and quan-
titative denoising performance. Table 3 summarizes the 
advantages and disadvantages of MRI denoising methods 
in the literature.

Noise in Functional, Perfusion‑Weighted, 
Diffusion‑Weighted, and Flow MRI

Functional MRI (fMRI) is a prominent imaging technique 
for functional brain mapping and identification of func-
tional networks. fMRI data is normally acquired using 
a fast EPI readout with T2*-weighted contrast to capture 
blood oxygenation level-dependent (BOLD) signals. Both 
spatial and temporal noise can hinder accurate identification 
of functional brain maps and function networks. Yang and 
colleagues applied a time-dependent deep neural network 
(DeNN) to denoise fMRI time series in individual brain 
regions [31]. The authors compared DeNN with several nui-
sance noise regression methods and validated the method 
using the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database. DeNN identified unbiased correlations 
between a seed region in the posterior cingulate cortex and 
the default mode network and task-positive networks. The 
DeNN whole brain functional connectivity maps were three 
times as homogeneous as the functional connectivity maps 
obtained from the raw datasets. Zhao et al. introduced a data-
driven deep learning approach based on a 3D convolutional 
long short-term memory (LSTM) network (3DConv-LSTM) 
and an adversarial network to generate noise-free realistic 
fMRI volumes [126]. They tested the method on both task 
and resting-state fMRI (rs-fMRI) data, compared it with 
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state-of-the-art alternative methods, and concluded that for 
HCP and ABIDE datasets, the approach performed compara-
tively better using PSNR, SSIM, and MSE metrics. Le et al. 
[127] proposed a framework to detect noise components for 
rs-fMRI which involved several CNN models that jointly 
learnt spatial and temporal features using a majority voting 
strategy that constituted a faster noise detection process for 
rs-fMRI. Kam et al. [128] proposed a CNN framework for 
automatic rs-fMRI denoising which simultaneously learns 
spatio-temporal features of noise. Their studies further 
depicted visual explanations on how CNNs behave in the 
presence of noise in rs-fMRI, and the proposed framework 
illustrated high performance on multiple datasets including 
infant cohorts.

Compared with anatomical MRI, diffusion-weighted 
imaging suffers from low signal to noise ratio due to the 
application of diffusion gradients and fast EPI data readout. 
CNNs and deep image prior-based denoising methods have 
been developed in order to improve SNR in diffusion MRI. 
Lin et al. used a deep image prior (DIP) to simultaneously 
denoise all diffusion-weighted images. The method demon-
strated superior performance when compared with the local 
principal component analysis method using both simulated 
and in vivo datasets [129]. Kawamura et al. evaluated the 
application of CNN-based denoising for multi-shot EPI DWI 
and compared the deep denoiser with other methods includ-
ing block-matching and 3D filtering [130]. Zormpas-Petridis 
et al. developed a model to improve the image quality of 
whole-body diffusion-weighted imaging [24]. The study 
was conducted on both retrospective and prospective patient 
cohorts to optimize a denoising image filter (DNIF) deep 
learning model. Kaye and colleagues investigated the fea-
sibility of accelerating prostate diffusion-weighted imaging 
using a novel guided denoising convolutional neural net-
work (guided DnCNN) [32]. They carried out experiments 
on prostate DWI scans gathered from six single-vendor MRI 
scanners and produced images guided by the DnCNN with 
improved PSNR in comparison to the original DnCNN. The 
conventional deep learning techniques often require addi-
tional high-SNR data for supervising training. However, 
Tian et al. developed a self-supervised deep learning-based 
method referred to as “SDnDTI” for denoising diffusion 
tensor MRI data [131], which does not require additional 
high-SNR data, and the experiments carried out on DWI 
volumes provided by the Human Connectome Project (HCP) 
illustrated results with image sharpness and textural details.

Perfusion-weighted MRI images acquired using the arte-
rial spin labelling (ASL) protocols are also based on an EPI 
sequence and suffer from low SNR. Xie et al. applied CNNs 
with dilated convolution kernels and wide activation residual 
blocks to preserve image resolution while suppressing noise 
[132]. The results suggested potentially 75% faster ASL 
acquisition without sacrificing accuracy in the estimation of 

cerebral blood flow. An unsupervised network to improve the 
SNR in ASL images [13] used each subject’s corresponding 
T1-weighted image as input to the network with noisy ASL 
images as labels. Hales et al. evaluated the performance of a 
denoising autoencoder (DAE) [15] for denoising ALS data-
sets. The work used 131 pediatric neuro-oncology patients to 
train the network and test the model performance for eleven 
healthy adult subjects. They compared the autoencoder with 
both Gaussian and non-local filters and reported a 62% SNR 
increase in the raw ASL images. The DAE denoised images 
demonstrated best fit to the Buxton kinetic model with a 75% 
reduction in the fit errors in comparison with the raw images. 
Several other recent works have proposed deep learning 
solutions for ASL MRI denoising [133–137].

MRI flow measurements are vulnerable to acquisition 
noise, velocity aliasing, and phase offset artefacts in clinical 
applications. These complications represent significant chal-
lenges for the analysis of small vascular structures including 
identification of intracranial aneurysms and treatment for 
near-wall regions. Several studies have attempted to use deep 
learning to reduce noise in flow MRI. Sun and co-workers 
proposed a physics-constrained deep learning approach 
that effectively reduced the measurement noise [138]. The 
method was verified using multiple test cases with synthetic 
vascular flow data. Similar studies were conducted by Fathi 
and colleagues who proposed a purely data-driven method 
to denoise 4D-flow MRI data [139].

Image Resolution Enhancement

Spatial resolution is a key data acquisition parameter that 
impacts diagnostic accuracy and decision of subsequent 
clinical workflows. However, scans with higher spatial 
resolution often leads to longer data acquisition time and 
poorer signal to noise ratio and can be prone to motion arte-
facts. Post-processing resolution enhancement algorithms, 
such as zero-padding to increase the matrix size of the final 
image, have been widely applied in medical imaging. Fur-
ther, methods such as B-splines and cubic interpolation 
can provide image resolution improvements without the 
use of prior models. Van Reeth and colleagues reviewed a 
general forward model for MR image resolution including 
geometric transformation, instrument point spread function, 
and downsampling during data acquisition [140] as well as 
conventional image super-resolution algorithms to solve the 
forward model, including iterative back-projection and regu-
larization methods using priors.

For the past decade, deep learning-based image resolu-
tion enhancement has been widely adopted in the computer 
vision literature [141]. Dong et al. provided a detailed survey 
of deep learning methods for image super-resolution applica-
tions in computer vision and noted limitations in real-world 
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scenarios [142]. These advances have inspired deep learning 
based super-resolution methods in MRI applications with 
promising results.

Partial volume effect (PVE) is key consideration in MRI 
super resolution, especially in volumetric and multi-slice 
MRI acquisitions where multiple tissue types are present in a 
single voxel. In such a scenario, the intensity of the resultant 
image depends on the collective contribution of each tissue. 
As a result, with high section thickness (usually 2.5 to 4 mm) 
and slice gaps, the risk of missing subtle anatomical features 
and lesions is high. To overcome this, Chaudhari et al. [164] 
proposed DeepResolve, a deep learning-based solution to 
resolve high-resolution thin slices from considerably thicker 
slices. The authors compared their deep learning solution 
with other through-plane interpolation techniques such as 
tricubic interpolation, Fourier interpolation, and sparse-
coding super-resolution; however, DeepResolve illustrated 
significant superiority over other methods in terms of struc-
tural SSIM, PSNR, and RMS error scores.

Spatial Resolution in Anatomical MRI

Anatomical MR scans with high in-plane resolution and 
minimal through-plane resolution can successfully reduce 
imaging time and improve image SNR. However, the result-
ant images have poor through-plane resolution and large 
partial volume errors. To address this problem, Zhao et al. 
exploited a deep learning approach called Synthetic Multi-
Orientation Resolution Enhancement (SMORE) [143] for 
both anti-aliasing and super-resolution imaging. The method 
consists of a self-supervised anti-aliasing deep network fol-
lowed by a super-resolution deep network, with applica-
tion along different orientations within an image. SMORE 
demonstrated improvement in visualization and quantifica-
tion for both brain and cardiac imaging applications. While 
most deep learning-based MR super-resolution methods 
report experiments using brain data, there is a considerable 
literature also focused on cardiac, fetal, and knee imaging 
applications.

Brain

The brain has fine anatomical structures and often suffers 
from partial volume errors from low resolution data acquisi-
tions. Compared with conventional MRI resolution enhance-
ment methods, deep learning models have shown superior 
performance.

Pham and colleagues studied multiscale trained 3D net-
works with knowledge transferred from different acquisition 
protocols to improve spatial resolution of brain images [144]. 
Chen et al. proposed a lightweight CNN model which oper-
ates on 3D patches of single channel inputs [145], and Sui 

et al. introduced a novel gradient-guided super-resolution 
method for enhancing isotropic images from anisotropic 
acquisitions [42]. Recently, Xue et al. developed a progres-
sive sub-band residual learning super-resolution network 
(PSR-SRN) [146]. Li et al. used 305 paired brain MR images 
to train a two-step learning architecture called DeepVolume 
that combined CNNs with RNNs [45]. The two-step archi-
tecture consisted of a brain structure-aware network, in which 
the axial and sagittal MR images were fused by a multitask 
3D U-net, and a spatial connection-aware network in which 
the resolution of the image was further enhanced by a LSTM 
block on a 2D (slice by slice) basis. The incorporation of 
RNNs enabled the DeepVolume architecture to achieve state 
of the art results in MRI super resolution.

Using residual learning, Shi and colleagues developed two 
algorithms for brain MR images. Their multi-scale residual 
learning network for image super resolution combined both 
multi-scale global residual learning (GRL) and shallow net-
work block-based local residual learning (LRL) [147]. The 
LRL module effectively captured high-frequency details by 
learning local residuals, while the conventional GRL module 
enabled learning of high-resolution image details. They pro-
posed a progressive wide residual network with a fixed skip 
connection (named FSCWRN) to combine global residual 
learning and shallow network-based local residual learning 
[148] and reported superior performance compared to the 
SRCNN [141], SRF [149], and VDSR [150].

By leveraging high-resolution images from 7 T MRI, 
Zhang et al. developed a parameter-efficient butterfly net-
work that employed a dual spatial and frequency domain DL 
model for mapping between 3 and 7 T image pairs that pro-
duced improved image resolution at 3 T [151]. The results 
demonstrated superior performance over conventional 
methods both qualitatively and quantitatively. Several other 
groups have also shown promising results using deep learn-
ing models for brain MRI [152, 153].

Since their introduction [154], GANs have been utilized 
in many applications related to natural image processing 
as well as medical imaging applications including super-
resolution MRI [152, 155–157]. The application of GANs 
in super-resolution MRI has generated high-resolution 
output images that are barely distinguishable from the 
original high-resolution images. Lyu et al. introduced the 
GAN-CIRCLE (constrained by the identical, residual, cycle 
learning ensemble) which realized super resolution in both 
MRI and CT [158]. The model achieved two-fold resolu-
tion improvement on brain images. Chen et al. introduced 
a 3D neural network design with a multi-level densely con-
nected super-resolution network (mDCSRN) with genera-
tive adversarial network (GAN)-guided training [159]. The 
mDCSRN architecture outperformed other deep learning 
methods with four times higher resolution for T1-weighted 
images in a sixth of the computational time.
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Other Anatomical Regions

Localization of pathology is extremely challenging when 
data acquisition is constrained due to physiological motion 
and other practical limitations. Cardiac MRI is often 
acquired with a small data matrix that results in low spatial 
resolution. Masutani and co-workers evaluated the applica-
tion of a CNN to enhance anatomical detail in comparison 
with zero padding and bicubic interpolation methods. In an 
evaluation of 400 MRI scans, the DL model significantly 
outperformed zero padding and bicubic interpolation meth-
ods in 99.2% of the image slices [160]. Mahapatra and col-
leagues developed a method using progressive adversarial 
networks (P-GANs) to improve image resolution [161]. They 
used a triplet loss function to optimize their model, and the 
results on cardiac and retinal images demonstrated improved 
quality.

The low resolution in knee MR scans adversely affects 
the diagnosis of conditions such as knee osteoarthritis. 
To address this problem, Qiu et al. [162] used an efficient 
medical image super-resolution (EMISR) method by com-
bining SRCNN with an efficient sub-pixel CNN (ESPCN). 
The authors demonstrated that EMISR outperformed both 
SRCNN and ESPCN alone using knee images from the IDI 
dataset, with the resultant images from the method having 
clearer anatomical boundary details. Chaudhari et al. applied 
a 3D CNN called DeepResolve to learn a model between 
low-resolution and high-resolution image. The trained model 
was applied to 17 knee patient datasets and compared with 
existing methods including clinically utilized tricubic inter-
polation (TCI), Fourier interpolation (FI), as well as the 
single image sparse-coding super-resolution (ScSR) method 
(Fig. 6). The results demonstrated the superior performance 
of DeepResolve with respect to SSIM, PSNR, and root-
mean-square-errors (RMSE) as well as radiology assess-
ment [163]. In a following study, Chaudhari and co-workers 
quantitatively demonstrated that super resolution minimally 
affects perceived global image blur and qualitatively that it 
minimally biases cartilage and osteophyte biomarkers and 
image quality. The study concluded that super resolution is 
more effective than naïve interpolation for accelerated image 
acquisition [43] (Fig. 6).

Fetal MR images are generally acquired with low reso-
lution to avoid motion artefacts. McDonagh et al. applied 
a context-sensitive super-resolution method on 145 fetal 
MRI scans [164]. The model semantically adopted to 
input data by learning organ-specific features and gen-
erated high-resolution images with sharp edges and fine 
details that yielded an increased PSNR of 1.73 dB when 
applied on motion corrupted fetal data. McDonagh et al. 
[165] proposed a self-supervised super-resolution frame-
work dynamic fetal MRI where low- and high-resolution 
samples are taken from simulated interleaved acquisitions. 

This framework also considers temporal information of the 
scan data during the self-supervised training process and 
is able to improve image quality and recover more image 
visual details.

Park et al. [21] introduced an autoencoder-inspired con-
volutional network super-resolution (ACNS) method which 
extrapolated missing spatial information using a nonlinear 
mapping between low-resolution and high-resolution fea-
tures. The experiments were carried out on virtual phan-
tom images and thoracic MRIs from four volunteers. The 
ACNS method produced results comparable with popular 
SRCNN, FSRCNN, and DRCN methods but with compara-
tively shorter computational times enabling real-time resolu-
tion enhancement of 4D imaging in MRI-guided radiation 
therapy.

Imaging the abdomen is important for many oncology 
applications such as prostate cancer. Thus, SR in prostate 
MR can facilitate early diagnosis and thereby influence the 
commencement of early treatments. Xu et al. [166] proposed 
an SR framework based on MSG-GAN and CapsGAN to 
produce high-quality MR images. Their experiments were 
based on the PROSTATEx database, and they were able to 
achieve a PSNR of 19.77 for SR of 8X. Similarly, the works 
of Molahasani et al. [167] applied an SRGAN to enhance 
prostate MR images and improve the in-plane resolution by 
a factor of 8. Table 4 summarizes the advantages and dis-
advantages of MRI resolution enhancement methods in the 
literature.

Fig. 6  Example of a horizontal tear in the body of the lateral menis-
cus can beidentified with the hyperintense double echo in steady-state 
signal. Firstcolumn, high-resolution ground-truth; second column, 
DeepResolve; and thirdcolumn, tricubic interpolation (TCI). Com-
pared with the Ground-Truth, theDeepResolve image shows consider-
ably less blurring to TCI images [163]
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Resolution in Diffusion‑Weighted, Flow, 
and Spectroscopic MRI

While diffusion-weighted MRI allows high-resolution imag-
ing at high magnetic fields and high gradient strength for 
long scan times, the image spatial resolution and number 
of diffusion directions are restricted. Several deep learning 
models have been developed to enhance the quality of diffu-
sion images. Qin et al. developed a super-resolution q-space 
deep learning method [46] to estimate high-resolution tissue 
microstructure based on under-sampled q-space signals. The 
work extended the earlier q-space DL methods [168, 169] 
that used super-resolution models. The authors evaluated the 
methods using the two Human Connectome Project data-
sets [170, 171] to produce accurate tissue parameters. Albay 
et al. presented a novel GAN-based deep neural network 
model to obtain high-resolution images from low-resolution 
diffusion images [172]. The work provided a proof of princi-
ple for the effectiveness of GAN to increase the spatial reso-
lution by twofold for diffusion MRI. Chatterjee et al. [173] 
introduced the ShuffleUNet, a single image SR technique 
which involved pixel shuffle operations for improved down- 
and up-sampling capabilities. Their experiments on the IXI 
dataset achieved very high SSIM values such up to 0.913.

Fathi and co-workers developed a DL approach for super 
resolution and denoising of 4D-flow MRI. They used flow 
physics to regularize a DNN model to improve its conver-
gence properties with limited training data [139]. Flow 
velocities, pressure, and the MR image magnitude were 
modelled as a patient-specific DNN. Experiments on numer-
ical phantoms demonstrated increased spatial resolution by 
a factor of 100 and increased temporal resolution by a factor 
of 5 in comparison to simulated 4D-Flow MRI.

MR spectroscopy (MRS) aims to quantify tissue metabo-
lism. However, due to the low concentration of most metabo-
lites, their identification in proton MR spectra is a difficult 
task. Iqbal et al. [174] proposed a densely connected UNet 
(D-UNet) architecture capable of producing super-resolution 
MRS images. The model was trained using inputs from both 
T1-weighted images and low-resolution MRS images, and 
the labelled output super-resolution MRS images were simu-
lated by combination with segmented white matter and gray 
matter images [160].

Challenges and Future Perspectives

Deep learning models have shown promising results for the 
reduction of image artefacts and noise and the improvement 
of image resolution. Compared with conventional machine 
learning methods, deep learning models show consist-
ently better performance in these post-processing tasks. 

Furthermore, deep learning methods are also computation-
ally efficient during inference in comparison with many con-
ventional iterative algorithms. Significantly, the promising 
initial results have motivated imaging device manufacturers 
to increase the range of deep learning-based solutions in 
their product portfolios [175]. However, while there is an 
overall consensus that deep learning methods are playing 
a critical role in the future of medical imaging, there are a 
number of major challenges yet to be addressed.

Data Availability and Open Datasets

Most deep learning models require a large amount of train-
ing data to avoid model over-fitting. However, good quality 
training sets of medical images in general are difficult to 
obtain due to privacy or other availability issues. Further-
more, MR image quality and contrasts are varied and highly 
dependent on anatomical regions, sequence parameters, and 
hardware configurations [176]. These factors make it chal-
lenging to collect a large cohort of good quality datasets 
with sufficiently diverse MRI contrast parameters and ana-
tomical regions. The lack of training data can lead to signifi-
cant bias in the performance of deep learning models [177].

Existing open MRI datasets that are available in the lit-
erature can add significant value in the development of deep 
learning methods. Example datasets include the IXI dataset 
(brain-development.org/ixi-dataset), fastMRI [178], mri-
data (mridata.org), AOMIC [179], OCMR (registry.open-
data.aws/ocmr_data), HCP (humanconnectomeproject.
org), and the UK Biobank (ukbiobank.ac.uk). There are a 
number of open datasets hosted in OpenNeuro such as the 
Monash fMRI-fPET data [180], and disease-specific datasets 
including ADNI (adni.loni.usc.edu), and the ENIGMA study 
data (enigma.ini.usc.edu). Bento et al. [181] have provided 
a comprehensive review of multi-site structural brain MRI 
datasets.

Simulated datasets can help to mitigate the lack of in vivo 
training datasets. For example, simulated head motion data-
sets can be used to train a network for application in clinical 
datasets with head motion [19, 182]. During the evolution of 
MRI technology, physics-based MRI simulators have been 
an active research area that has added significant value to the 
development of deep learning models. For example, Xanthis 
and colleagues developed a GPU-based realistic motion simu-
lation [183], JEMRIS is a widely used MRI simulator [184], 
and the FSL toolkit includes the POSSUM MRI simulator 
[185].

Generalizability

Out-of-distribution (OOD) data refers to inputs that are 
drawn from a distribution different to that of the training 
dataset. OOD data is to be expected in medical imaging 
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applications of deep learning models due to limited train-
ing datasets, scanning protocol variation, and the potential 
for an image to include uncommon or rare disease features. 
The performance of a deep learning model to OOD input 
is an important consideration for the assessment of its gen-
eralizability. To date, there is only a limited literature that 
assesses the reliability of deep learning models on clinical 
OOD data [186].

Modelling data and parameter uncertainties can provide 
significant insight and assess risks for dealing with unseen 
datasets. Tanno and colleagues investigated uncertainty 
modelling for diffusion MRI super-resolution and sought 
to provide a high-level explanation of deep learning models 
with respect to variation in input datasets [187]. A number 
of similar works applied explicit uncertainty models dur-
ing model training and inference in order to assess model 
robustness and uncertainties associated with input data [46, 
188, 189]. Hallucinations are false image features introduced 
when an imperfect or inaccurate model prior is used during 
image processing and typically occur when training and test-
ing have different data distributions. Hallucinations heavily 
related to the stability of a model especially when model-
ling an inverse problem. An estimate of hallucinations is of 
significant interest in image reconstruction as well as image 
super-resolution.

Unsupervised training using unpaired datasets can learn 
to disentangle data and artefact representations in a latent 
space [190] to improve model generalizability to new data-
sets. Deep image prior is a self-learning technique for regu-
larized inverse problems without the need to pre-train the 
model [191] that successfully demonstrated greater gener-
alizability to new inputs.

Clinical Validation

An important observation from the current literature is that 
most current deep learning methods have only been demon-
strated in a small cohort of datasets at a single imaging site. 
A thorough evaluation of AI algorithms is essential before 
their full clinical utilization. In an opinion paper, Kelly 
and colleagues argued that clinical validation of artificial 
intelligence should be carefully considered in different test 
scenarios to gain insight for potential biases and variations 
[192]. Furthermore, the current medical device regulatory 
processes are not designed for continuous evaluation of AI 
algorithms capable of transfer learning and domain adapta-
tion. Improvement in these guidelines can provide clearer 
pathways to enable the clinical utility of deep learning 
models.

Prospective and multi-site evaluation of deep learn-
ing models is important to identify unknown variations 
from datasets and models applied in real-world environ-
ments. In a prospective study, Rudie and colleagues have 

evaluated DL-based brain MRI enhancement for increase 
in SNR, anatomic conspicuity, overall image quality, 
imaging artefacts, and diagnostic confidence, assessed by 
four board-certified neuroradiologists [193]. Similarly, 
Bash et al. [194] have conducted prospective evaluation 
of DL-based denoising using five scanners across five 
sites in 61 patients undergoing spinal MRI scans. They 
have compared standard clinical care images with images 
obtained from DL enhancement. In [195], Chaudhari et al. 
have outlined the challenges for prospective deployment of 
MRI in clinical practice and emphasized the importance 
for reproducibility of research studies through the shar-
ing of datasets and software. Currently, most of validation 
studies are still performed with carefully defined clinical 
protocols using a limited number of subjects. We antici-
pate that increasingly more studies will be performed due 
to the importance of validation of AI in the real world.

The drive to develop explainable deep learning models 
is another important step for building trust in AI algo-
rithms. The instability issue demonstrated during imag-
ing and other potential bias during development are key 
aspects to address during clinical validation. Domain 
knowledge can be incorporated into deep learning models 
to improve their overall performance and reliability [196]. 
Specifically, for MRI, domain knowledge can be derived 
from either physics knowledge of MRI instruments, physi-
ological information from patient studies, and from gen-
eral clinical knowledge. Domain knowledge not only pro-
vides a way to augment deep learning models to improve 
model performance, but also offers guidance to deep learn-
ing models when dealing with uncertain scenarios during 
clinical evaluation and utilization.

Conclusion

In this review paper, we have provided an overview of deep 
learning methods for post-processing MR images including 
reduction of image artefacts, suppression of image noise, 
and enhancement of image resolution. Throughout the lit-
erature, there is consistent evidence that improved image 
quality can be achieved using deep learning methods in 
comparison with conventional techniques. However, the 
current challenges and future perspectives for data availabil-
ity, generalizability, and clinical validation of deep learning 
algorithms highlight the requirement for a concerted and 
ongoing research effort in this rapidly evolving discipline.
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