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Abstract
Low-dose computed tomography (LDCT) has been widely used for various clinic applications to reduce the X-ray dose 
absorbed by patients. However, LDCT is usually degraded by severe noise over the image space. The image quality of LDCT 
has attracted aroused attentions of scholars. In this study, we propose the bilateral weighted relative total variation (BRTV) 
used for image restoration to simultaneously maintain edges and further reduce noise, then propose the BRTV-regularized 
projections onto convex sets (POCS-BRTV) model for LDCT reconstruction. Referring to the spacial closeness and the 
similarity of gray value between two pixels in a local rectangle, POCS-BRTV can adaptively extract sharp edges and minor 
details during the iterative reconstruction process. Evaluation indexes and visual effects are used to measure the performances 
among different algorithms. Experimental results indicate that the proposed POCS-BRTV model can achieve superior  
image quality than the compared algorithms in terms of the structure and texture preservation.

Keywords  Low-dose computed tomography (LDCT) · Image reconstruction · Relative total variation · Structure 
preservation

Introduction

Computed tomography (CT) is a technique based on X-ray 
attenuation to reconstruct tomographic images of an object 
[1]. As one of the greatest scientific and technological 
achievements at the end of twentieth century, CT have had a 
revolutionary impact on clinical screening, diagnosis, image-
guided surgery, image-guided radiotherapy, and other aspects 
[2, 3]. However, the widespread use of CT has aroused peo-
ple’s concern about causing cancer or genetic abnormalities 

[4, 5]. Therefore, strategies were proposed to lower X-ray dose 
in CT scanning [6], such as reducing tube current or peak volt-
age, decreasing the number of projections, and improving the 
hardware of CT system. All of the above methods can reduce 
the X-ray dose absorbed by patients, while this paper mainly 
studies low-dose CT acquired by reducing the radiation tube 
current or tube voltage. CT imaging artifacts brought by these 
methods are not too serious. However, due to the low signal-
to-noise ratio of the obtained projection data, images recon-
structed by traditional methods are usually severely degraded 
by noise, which might affect radiologists’ diagnosis [7]. In 
order to reconstruct high-quality images from low-dose com-
puted tomography (LDCT) projection data, methods including 
projection domain preprocessing, iterative reconstruction, and 
post-processing have been proposed.

Operations on sinogram, called projection preprocess-
ing method, aim to reduce noise in raw data. Projection 
data could be considered a noisy image. Denoising filters 
are usually designed according to the noise characteristics 
or structure information of the sinogram. Compared with 
other methods, projection preprocessing takes the statisti-
cal properties of noise as prior information. In recent years, 
models like penalized likelihood [8] and sparsity-based sino-
gram denoising [9] have been proposed to suppress noise 
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and avoid edge blurring in sinogram. Liu et al. developed 
a well-designed composite dictionary with discriminative 
features in sinogram domain [10]. Xie et al. made full use of 
the prior knowledge and statistical properties of LDCT sino-
gram to formulate the preprocessing as a standard maximum 
a posteriori estimation [11]. Karimi et al. proposed simul-
taneous sparse representation (SSR) method [12], which is 
similar to sparse representation-based dictionary learning 
[13, 14] and non-local means algorithm [15, 16]. Hu et al. 
developed an improved Wasserstein generative adversarial 
network (WGAN) framework for sinogram to enhance the 
reconstructed image quality [17].

Post-processing method is not limited by CT supplier. 
Some outstanding filters and networks have been presented 
to tackle LDCT restoration, such as BM3D [18, 19], con-
veying path-based convolutional encoder-decoder network 
(CPCE) [20], and joint bilateral filter net (JBFnet) [21]. Post-
processing methods can be directly applied to the recon-
structed CT images and easily integrated into the current CT 
workflow. Based on the statistical property of CT images, 
Choi et al. proposed a deep learning approach to statistical 
image restoration for LDCT [22]. Shiri et al. applied a resid-
ual convolutional neural network to cope with ultralow-dose 
CT images of COVID-19 patients [23]. Gholizadeh-Ansari 
et al. used dilated convolutions with different dilation rates 
to capture more contextual information in fewer layers for 
LDCT [24].

Iterative reconstruction methods can also be used to 
enhance image quality of LDCT by taking advantages of 
the measured data information and some prior knowledge. 
Gao et al. proposed a prior-based machine learning model 
for Bayesian reconstruction of ultralow-dose CT images 
[25]. He et  al. developed a noise suppression-guided 
image filtering reconstruction (NSGIFR) algorithm [26] 
for LDCT reconstruction. They introduced guided image 
filtering (GIF) [27] and block-matching and 3D filtering 
(BM3D) [18, 19] to achieve an outstanding performance 
on noise suppression and texture preservation. As a com-
monly used regularization method, total variation (TV) 
[28, 29] uses L1-norm of the image gradient to decrease 
noise in LDCT image reconstruction. However, TV-based 
reconstruction results are weak in retaining image struc-
ture, at the same time introducing blocking artifacts, which 
affects the clinical diagnosis. Therefore, Yu et al. consid-
ered L0-norm-based LDCT image reconstruction model, 
only calculating the number of image gradients whose 
amplitude is non-zero while ignoring penalty for the 
large ones [30]. Recently, relative total variation (RTV)  
[31] was proposed to extract main structures from compli-
cated texture patterns. Unlike L0-norm and L1-norm, RTV 
is defined in terms of the differences between the partial 
derivatives of textures and structures in an image. Win-
dow inherent variation (WIV) and window total variation 

(WTV) are, respectively, defined as denominator and 
numerator of RTV. The main structures in images stand 
out according to the definition of WIV, which could eas-
ily distinguish structures and the textures. For WIV, the 
partial derivatives of textures and noise in a local window 
tend to cancel each other out. However, both textures and 
noise contribute to the value of WTV. As a consequence, 
the textures and noise can be removed by penalizing RTV. 
In [32], Gong et al. proposed RTV-regularized projections 
onto convex set (POCS-RTV) reconstruction model. Based 
on this model, they used L-curve method to set param-
eters in POCS-RTV, called adaptive POCS-RTV (POCS-
ARTV). This model is able to reduce noise by penalizing 
RTV term.

In this work, we aim to take advantages of prior knowl-
edge in gradient domain to enhance the quality of LDCT. 
Even though experimental results in [32] show a satisfac-
tory performance on low-intensity CT reconstruction, we 
observed that POCS-RTV tends to cause fuzzy edges and 
details in reconstructed results especially for extremely 
LDCT. We consider this phenomenon is related to the 
weighting function of RTV, because the weight is only 
based on distance between pixels, ignoring the importance 
of image gray-scale values. We draw lessons from the 
thought of bilateral filtering [33, 34] to propose the bilat-
eral weighted relative total variation (BRTV). Spatial prox-
imity and pixel value similarity are utilized as the weight-
ing function of WIV. Two close and similar pixels make 
more contributions to the partial derivative in WIV so that 
a smaller BRTV could be acquired, which could suppress 
noise while preserve sharp edges and fine details at the same 
time. Structures, textures, and noise contribute to the value 
of WTV. Therefore, weights of WTV are set as the original 
ones in RTV.

Inspired by [33, 34], we first propose BRTV to simulta-
neously maintain edges and further reduce noise for image 
restoration, then propose the BRTV-regularized projections 
onto convex set (POCS-BRTV) model for LDCT reconstruc-
tion. Being different from POCS-RTV, the weights of WIV 
in POCS-BRTV rely on both the closeness to vicinity in the 
domain and similarity to vicinity in the range, which could 
better characterize the distance and difference between two 
pixels. Especially for LDCT, textures and edges are severely 
degraded by extremely high level noise. It is easy to con-
fuse textures and noise when reconstruction models based 
on image sparsity in the gradient domain are used to tackle 
the LDCT images. POCS-BRTV shows outstanding perfor-
mance on getting sharper edges as well as distinguishing 
fine details and noise for LDCT reconstruction. The main 
contributions of this work are threefold. Firstly, we develop 
an image restoration model, BRTV, based on proximity and 
similarity between two pixels in a local rectangular. Sec-
ondly, BRTV is utilized as the regularization term for LDCT 
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reconstruction model. Penalizing BRTV term can suppress 
noise and preserve main structures. Finally, we develop an 
iterative algorithm to solve POCS-BRTV model.

This paper is structurally organized as follows. In the next 
section, we briefly introduce LDCT imaging model and RTV. In 
the third section, the proposed algorithm is presented, after which 
the experimental results of the simulated data are described. The 
conclusion of this study is given in the final section.

Methods

Low‑Dose CT Imaging Model

In LDCT, relationship between pixels and projection data 
can be expressed as.

Column vector g denotes the N-dimension projection data 
degraded by noise e ; column vector f  is M-dimension object 
image; A represents the projection coefficient matrix.

The task of CT imaging is to reconstruct the object image 
f  from projection data g . In ideal circumstances, CT projec-
tion data is noise-free so that the reconstructed images can 
be obtained according to the inverse of projection matrix if 
there is enough computer memory available. As a matter 
of fact, LDCT cannot be directly reconstructed due to the 
limitation of the computer memory for problem dimension 
and the degradation by noise. To approximately find f  from 
g , the least squares method of optimal objective function 
is usually adopted to solve the problem in Eq. (1), which is 
represented in the following form.

The first term in Eq. (2) is a data fidelity term to constrain 
the reconstructed image and projection data. The second 
term is a penalty term, usually used for noise reduction and 
edge preservation. � is a penalty parameter to balance the 
two terms just mentioned.

Relative Total Variation

Relative total variation (RTV) [31] can be treated as a spe-
cial weighting total variation, which enforces the structure 
part to be sparse in gradient domain. The formulation of 
RTV can be expressed as.

where � is a positive number to avoid denominators equal-
ing to zero. Dx(p) and Dy(p) are windowed total variations 

(1)g = Af + e.

(2)f ∗ = argmin
f⩾0

‖Af − g‖2
2
+ �R(f ) .

(3)RTV(p) =
Dx(p)

Lx(p) + �
+

Dy(p)

Ly(p) + �
,

(WTV) along x and y directions at the pixel p of image f  , 
using for reflecting the absolute differences between neigh-
boring pixels within a rectangular region R(p) centered at 
pixel p . Structures, textures, and noise in region R(p) con-
tribute to WTV, which has no dependence on the sign of 
each partial derivative. Lx(p) and Ly(p) denote the windowed 
inherent variations (WIV) along x and y directions at pixel 
p , and the WIV helps to distinguish structures from image 
f  . WTV and WIV are defined as.

where �x and �y are the partial derivatives in two directions. 
kp,q is a weighting function defined based on the spatial affin-
ity referring to a rectangular region centered at pixel p , set-
ting as

where xp and yp are the horizontal and vertical coordinates at 
pixel p , and � relates to the scale of window R(p).

The Proposed Reconstruction Algorithm

LDCT naturally contains severe noise, and this noise will 
corrupt the image quality of the complicated texture within 
the LDCT. RTV tends to blur the distinction between tex-
tures and noise so that it is less than satisfactory for LDCT 
image denoising. In [32], Gong et al. proposed relative total 
variation-regularized projections onto convex set (POCS-
RTV) model. Experiments show a satisfactory performance 
on low-intensity CT reconstruction, while we observed that 
this model tends to cause fuzzy edges and textures in recon-
structed results especially for extremely LDCT. We consider 
that this phenomenon is related to the weighting function of 
RTV, because kp,q is only based on distance between pixels 
p and q , ignoring the importance of image gray-scale values. 
We draw lessons from the thought of bilateral filtering [33, 
34] to utilize spatial proximity and pixel value similarity as 
the weighting function of WIV. Therefore, bilateral weighted 
relative total variation (BRTV) is proposed to simultane-
ously maintain edges and further reduce noise. Based on 
the characteristics of BRTV and LDCT, we utilize BRTV as 
the regularization term of LDCT reconstruction model and 
propose the POCS-BRTV model.

(4)

Dx(p) =
∑

q∈R(p)

kp,q ⋅
|||
(
�x f

)
q

|||,Dy(p) =
∑

q∈R(p)

kp,q ⋅
|||
(
�y f

)
q

|||,

(5)Lx(p) =

||||||

∑

q∈R(p)

kp,q⋅
(
�x f

)
q

||||||
, Ly(p) =

||||||

∑

q∈R(p)

kp,q⋅
(
�y f

)
q

||||||
,

(6)kp,q ∝ exp

(
−

(
xp − xq

)2
+
(
yp − yq

)2

2�2

)
,
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Bilateral Weighted Relative Total Variation

BRTV considers both closeness to vicinity in the domain 
and similarity to vicinity in the range of WIV. Consider-
ing that WTV would extract edges, textures, and noise of 
an image at the same time, BRTV takes no account of the 
modifications on WTV. BRTV is set as

where Dx(p) and Dy(p) are same as the ones in RTV. L̃x( p) 
and L̃y(p) utilize a new weighting function hp,q . They are 
defined as.

where kp,q is the original weighting function in RTV. It was 
defined based on the closeness between pixel p and pixel q 
shown in Eq. (6). hp,q , as a composite similarity measure, is 
proportional to the product of gray similarity and position 
proximity between pixel p and pixel q:

where xp and yp are the horizontal and vertical coordinates 
at pixel p . fp is the gray-scale value at pixel p . A large hp,q 
represents a greater closeness between pixel p and pixel q . 
As a result of that, the partial derivatives make more contri-
butions for WIV to reach a smaller BRTV.

Lx(p) , L̃x(p) , Ly(p) , and L̃y(p) of a noisy image are dis-
played in Fig. 1 to verify the performance of hp,q . It can be 
observed that L̃x(p) and L̃y(p) show clearer structures with 
less blurry edges than Lx(p) and Ly(p).

(7)BRTV(p) =
Dx(p)

L̃x(p) + 𝜀
+

Dy(p)

L̃y(p) + 𝜀
,

(8)

Dx(p) =
∑

q∈R(p)

kp,q ⋅
|||
(
�x f

)
q

|||, Dy(p) =
∑

q∈R(p)

kp,q ⋅
|||
(
�y f

)
q

|||,

(9)

L̃x(p) =

||||||

∑

q∈R(p)

hp,q⋅
(
𝜕x f

)
q

||||||
, L̃y(p) =

||||||

∑

q∈R (p)

hp,q⋅
(
𝜕y f

)
q

||||||
,

(10)

hp,q ∝ exp

(
−

(
xp − xq

)2
+
(
yp − yq

)2

2�2

)
⋅ exp

(
−

(
fp − fq

)2

2�2

)
,

POCS‑BRTV Reconstruction Model

The proposed POCS-BRTV reconstruction model is set as

This model is to reconstruct image f  from projection data 
g . A represents the projection coefficient matrix. The first term 
is data fidelity term, which maintains the constancy between 
the reconstructed image and the measurements. The second 
term, BRTV, is applied to remove noise and preserve clearer 
edges during LDCT reconstruction process. � is a weight to 
balance data fidelity and regularization term.

As an iterative algorithm is adopted to solve this problem, 
we linearize ‖Af − g‖2

2
 at point f k . Problem (11) could be 

expressed as

where � is a positive parameter, and f k is the intermediate 
image at the kth iteration during reconstruction process. ⟨ ⋅ ⟩ 
represents inner product of the two vectors. Optimization 
problem (12) can be reformulated as the following concise 
form:

The term f k − (1∕�) ⋅ AT
(
Af k − g∗

)
 can be approximately 

implemented by simultaneous algebraic reconstruction tech-
nique (SART). The combination of SART and nonnegative 
constraints, called POCS, is to acquire the intermediate image 
f k+1∕2 . Let �1 be equal to 2�∕� . Therefore, problem (11) can be 
solved by a two-step iterative reconstruction algorithm, includ-
ing POCS step [35] and BRTV step:

(11)min
f⩾0

‖Af − g‖2
2
+ � ⋅

�

p∈f

BRTV(p).

(12)

min
f⩾0

‖‖‖Af
k − g

‖‖‖
2

2
+
⟨
AT

(
Af k − g

)
, f − f k

⟩

+ (�∕2) ⋅
‖‖‖ f − f k

‖‖‖
2

2
+ � ⋅

∑

p∈f

BRTV(p),

(13)

min
f⩾0

‖‖‖ f −
(
f k − (1∕�) ⋅ AT

(
Af k − g

))‖‖‖
2

2
+ (2�∕�) ⋅

∑

p∈f

BRTV(p).

(14)f k+1∕2 = POCS
(
f k, g

)
,

Fig. 1   The noisy phantom image and corresponding Lx(p) , L̃x(p) , Ly(p) , and L̃y(p) images. The display window is [0, 0. 5]
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To solve Eq. (15), we first discuss the x-direction measure 
of penalty term. It can be written as

where �g is introduced for numerical stability. ũxq and wxq 
are set as.

A similar process can be used to the y-direction measure in 
BRTV. Then, Eq. (15) can be written in a matrix form:

where vf  and vf k+1∕2 represent the vector of f  and f k+1∕2 , respec-
tively. Cx and Cy are the matrices of forward difference operator. 
Ũx , Ũy , Wx , and Wy are the diagonal matrices consisting of ũxi , ũyi , 
wxi , and wyi , respectively. The optimization problem of Eq. (18) 
can be solved using the following equation:

where I is an identity matrix. t  represents the number of 
iterations of BRTV.

(15)f k+1 = argmin
f⩾0

‖‖‖ f − f k+1∕2
‖‖‖
2

2
+ �1 ⋅

∑

p∈f

BRTV(p).

(16)

�

p

Dx(p)

L̃x(p) + 𝜀
=
�

p

∑
q∈R(p)

kp,q ⋅
���
�
𝜕x f

�
q

���
�����

∑
q∈R(p)

hp,q ⋅
�
𝜕x f

�
q

�����
+ 𝜀

=
�

q

�

p∈R(q)

kp,q

�����

∑
q∈R(p)

hp,q ⋅
�
𝜕x f

�
q

�����
+ 𝜀

���
�
𝜕x f

�
q

���

≈
�

q

�

p∈R(q)

kp,q

L̃x(p) + 𝜀

1

���
�
𝜕x f

�
q

��� + 𝜀g

�
𝜕x f

�2
q
=
�

q

ũxqwxq

�
𝜕xf

�2
q

(17)ũxq =
∑

p∈R(q)

kp,q

L̃x(p) + 𝜀
, wxq =

1
|||
(
𝜕xf

)
q
||| + 𝜀g

.

(18)

(
vf − vf k+1∕2

)T(
vf − vf k+1∕2

)
+ 𝜆1

(
vT
f
CT
x
ŨxWxCxvf + vT

f
CT
y
ŨyWyCyvf

)

(19)
[
I + 𝜆1

(
CT
x
Ũt

x
Wt

x
Cx + CT

y
Ũt

y
Wt

y
Cy

)]
⋅ vt+1

f
= vf k+1∕2 ,

The complete workflow of the proposed POCS-BRTV 
model is summarized as Table 1.

Experiments and Analysis

In this section, experiments on digital photons are used 
for demonstrating performance of the proposed model. 
All experiments ran on a 3.20 GHz Intel(R) Core(TM) 
i7-8700 CPU with windows 10 64-bit system environ-
ments, and all the reconstruction algorithms were imple-
mented by Matlab 2016b combining with Visual Studio 
2015. All reconstructed images use root mean square 
error (RMSE), peak signal-to-noise ratio (PSNR), and 
structure similarity (SSIM) for quantitative analyses. The 
size of each phantom is 256 × 256 for all of the experi-
ments in this paper. Projections from these phantoms 
are acquired via fan-beam CT, and the detector units are 
arranged in line. Poisson noise is added to projection 
data in order to simulate LDCT. The level of Poisson 
noise is negatively correlated with photon number I0 . 
Specifically, a large I0 corresponds to a higher SNR. 
We set I0 = 1.0 × 104 and 1.0 × 105 for all digital photon 
experiments. The geometry scanning parameters in this 
work are set as Table 2.

Table 1   LDCT reconstruction by the proposed POCS-BRTV model

Inputs: projection data g , max iterative reconstruction number iterMaxN , noise standard deviation 0I , relaxation parameter SART� , regularization

parameters 1� , BRTV iteration number BRTVN , window controlling parameter � , and small positive number � .

Repeat

While “If the termination condition is not satisfied” Do

POCS-step: update
2���kf via Eq. (14);

BRTV-step: update
1�kf via Eq. (19);

1�� kout ff . 

End Do

Output: reconstructed image 
outf . 
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In all of the experiments, the qualities of reconstructed 
images are highly affected by parameters, which are 
selected according to the evaluation indexes and visual 
effect. In this work, we fixed the number of max iterative 
reconstruction NiterMax = 1000 . A stopping criteria refer-
ring to errors between two successive steps is set for an 
earlier termination. The relaxation parameters �SART  are 
empirically fixed as 0.15 and 0.25 corresponding to pho-
ton number I0 at 1.0 × 104 and 1.0 × 105, respectively. The 
value of the regularization parameter �1 can control the 
smoothness of results. A larger one represents a greater 
smoothness. Making BRTV iteration number NBRTV larger 
could preserve the edge sharpness well. Because BRTV 
is implemented in each iteration during the reconstruc-
tion process, NBRTV  set as 2 or 3 is enough. � is a spatial 
parameter to control the window size for computing the 
windowed variations. A large � refers to a bigger window 
size, as a result of which the images would be strongly 
smoothed. A bit larger � helps preserve smoothly varying 

structures. In other words, a smaller one helps to preserve 
sharper edges and more fine textures. Besides, we found 
that the value of � depends on image complexities, simple 
images corresponding to a small value of � . It is worth 
noting that all of the parameters of POCS-RTV are set 
the same as those of POCS-BRTV for a fair comparison.

Shepp‑Logan Phantom Experiment

The first simulation experiment uses a Shepp-Logan phantom 
to simulate LDCT case. In this experiment, the photon number 
is set as I0 = 1.0 × 104 and 1.0 × 105 . Parameters for POCS-
BRTV model in different corresponding cases are set as fol-
lows: (1) �1 = 0.0007 , NBRTV = 2 , � = 0.6 , � = 0.000001 ; (2) 
�1 = 0.00045 , NBRTV = 2 , � = 0.5 , � = 0.000001.

In Fig.  2, CT images are reconstructed using LDCT 
projection data via SART, POCS-TV, POCS-RTV, and 

Table 2   Geometry scanning parameters of the simulated experiments

System parameter Parameter value

The distance from X-ray source to center of rotation 500.0 mm
The distance from center of rotation to detector 0 mm
Interval angle between two views 1
The number of detector units 372
The length of the detector 372 mm
Image size 256 × 256
Pixel size 1.0 × 1.0 mm2

Fig. 2   The tomographic results of Shepp-Logan phantom and a 
zoomed-in region reconstructed by different algorithms with differ-
ent noise levels. The first column is the reference image, the rest of 
columns are results reconstructed via SART, POCS-TV, POCS-RTV, 

and POCS-BRTV. Images from top to bottom are the results recon-
structed with different photon numbers: 1.0 × 104 and 1.0 × 10.5. The 
display window is [0, 0. 5]

Table 3   Global RMSEs, SSIMs, and PSNRs of reconstructed Shepp-
Logan phantom with different photon numbers

Photon number Method RMSE SSIM PSNR

1 × 104 SART​ 0.0522 0.6791 25.6493
POCS-TV 0.0117 0.8248 38.6347
POCS-RTV 0.0066 0.9745 43.5711
POCS-BRTV 0.0050 0.9891 46.1031

1 × 105 SART​ 0.0193 0.8469 34.2898
POCS-TV 0.0041 0.9937 47.8366
POCS-RTV 0.0020 0.9962 53.8810
POCS-BRTV 0.0011 0.9985 59.0495
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POCS-BRTV. On the far left one is the noise-free phantom, 
in which a ROI is marked by a red rectangle and zoomed-in 
at the corner. It can be observed that images reconstructed 
by SART are severely degraded by noise. POCS-TV recon-
struction can effectively reduce noise, while the results from 
POCS-TV are blurred by staircase effect (indicated by red 
arrows). Adjusting parameters could mitigate this problem, 
while at the same time details might be blurred during the 
reconstruction process. From the reconstructed images of 
POCS-RTV, edges indicated by red arrows are blurry, while 
these artifacts disappear in the results of POCS-BRTV. Clear 
edges can be seen from the results of POCS-BRTV. Our 
model represents better noise suppression and edge protec-
tion than other three algorithms.

Table 3, listed RMSE, SSIM, and PSNR corresponding 
to Fig. 2, is to quantitatively analyze different reconstruction 
algorithms under different noise levels. The bold ones are 
the optimal indexes. POCS-BRTV outdistances the other 
three algorithms according to the indexes.

FORBILD Head Phantom Experiment

The second experiment is performed on the projection data 
of the FORBILD head phantom. Parameters for our model 
corresponding to I0 = 1.0 × 104 and 1.0 × 105 are set as 
follows: (1) �1 = 0.01 , NBRTV = 3 , � = 1 , � = 0.0002 ; (2) 
�1 = 0.004 , NBRTV = 3 , � = 0.9 , � = 0.00001.

Fig. 3   The tomographic results of FORBILD head phantom recon-
structed by different algorithms with different noise levels. The 
first column is the reference image, the rest of columns are results 
reconstructed via SART, POCS-TV, POCS-RTV, and POCS-BRTV. 

Images from top to bottom are the results reconstructed with different 
photon numbers: 1.0 × 104 and 1.0 × 10.5. The display window is [0.5, 
1.5]

Fig. 4   ROIs of the FORBILD head phantom and the reconstructed 
results in Fig. 3. The images in (a) are extracted from the reference 
FORBILD head phantom image. Images in (b) and (c) are extracted 
from results reconstructed with different photon numbers: 1.0 × 104 

and 1.0 × 105, respectively. From top to bottom, images are ROI 1 
and ROI 2. From left to right in (b) and (c), images are, respectively, 
reconstructed by SART, POCS-TV, POCS-RTV, and POCS-BRTV. 
The display window is [0.5, 1.5]
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The restored images from LDCT data are presented in 
Fig. 3, and the reference image is on the far left. Two ROIs 
are marked with red rectangles. The rest of columns are 
images processed by SART, POCS-TV, POCS-RTV, and 
POCS-BRTV, respectively. The zoomed-in ROIs corre-
sponding to Fig. 3 are displayed in Fig. 4.

From the zoomed-in ROIs, it can be observed that all of the 
results from SART are severely disrupted by noise so that three 
minor dots in images cannot be identified even to the naked eye. 
Images reconstructed via POCS-TV tend to cause staircase 
effects, which are not smooth enough. POCS-RTV leads to 
over-smoothing results. Almost all of the three minor dots 
are smoothed by POCS-RTV. These problems are improved 

according to the results of POCS-BRTV. However, there is 
something that needs to be improved. When the noise in projec-
tion data intensifies, even though the POCS-BRTV model can 
significantly suppress noise, two extremely minor dots cannot 
be preserved in ROI1. Table 4 presents the quantitative evalu-
ation indexes corresponding to the results in Fig. 3. The bold 
ones are optimal indexes. The results show that POCS-BRTV 
model presents the best performance at the two presented cases.

In Fig.  5, the horizontal profiles (177th row) of the 
reconstructed images from the incident X-ray intensity 
at I0 = 1.0 × 104 are provided to verify the advantages of 
POCS-BRTV, that it generates the nearest image, especially 
at edges, to the reference one. From the RIOs in Fig. 5, we 
can see that POCS-BRTV is able to preserve the sharp 
edges, while POCS-RTV tends to cause jitter on edges.

Discussion and Conclusion

In this paper, we proposed a LDCT reconstruction model 
based on the prior knowledge in gradient domain. This work 
extended the thinking of Gong et al. that they utilized the 
differences between partial derivatives generated by noise 
and structures, and developed POCS-RTV for low-intensity 
CT reconstruction [32]. POCS-RTV is defined based on WIV 
and WTV in the gradient domain. Structures and noise can be 
adaptively distinguished by WIV. However, the results from 

Table 4   Global RMSEs, SSIMs, and PSNRs of reconstructed FOR-
BILD head phantom with different photon numbers

Photon number Method RMSE SSIM PSNR

1 × 104 SART​ 0.1927 0.4384 14.2608
POCS-TV 0.0647 0.7113 23.7786
POCS-RTV 0.0294 0.8334 30.6457
POCS-BRTV 0.0274 0.8499 31.2318

1 × 105 SART​ 0.0725 0.6243 22.7593
POCS-TV 0.0240 0.9344 33.3779
POCS-RTV 0.0097 0.9671 40.2613
POCS-BRTV 0.0058 0.9867 44.7963

Fig. 5   Horizontal profiles (177th row) of the reconstructed images shown in Fig. 3 by different algorithms with the incident X-ray intensity of 
1 × 104
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POCS-RTV tend to cause blur on edges especially under 
high-level noise. It might result from the weights of WIV 
that only depend on the distance between two pixels in a local 
rectangular. In fact, both nearby spatial location and similar 
gray values make contributions to characterize the close-
ness between two pixels. Therefore, we further integrated 
the similarity measurement with the weighting function of 
WIV, proposing POCS-BRTV to reconstruct LDCT. POCS-
BRTV considers both position closeness and gray similarity 
to vicinity in the range of WIV, which helps preserve more 
fine details and sharp edges compared with POCS-RTV.

In summary, we propose a bilateral weighted relative 
total variation (POCS-BRTV) model for LDCT recon-
struction in this work, integrating the thinking of bilateral 
filtering with POCS-RTV. Experimental results obtained at 
different noise levels show that the proposed POCS-BRTV 
model leads to significant improvements on LDCT images 
and especially achieves better results on preservation of 
edges and details during the reconstruction procedure.
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