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Abstract
The unprecedented global crisis brought about by the COVID-19 pandemic has sparked numerous efforts to create predictive 
models for the detection and prognostication of SARS-CoV-2 infections with the goal of helping health systems allocate 
resources. Machine learning models, in particular, hold promise for their ability to leverage patient clinical information and 
medical images for prediction. However, most of the published COVID-19 prediction models thus far have little clinical utility 
due to methodological flaws and lack of appropriate validation. In this paper, we describe our methodology to develop and 
validate multi-modal models for COVID-19 mortality prediction using multi-center patient data. The models for COVID-19 
mortality prediction were developed using retrospective data from Madrid, Spain (N = 2547) and were externally validated 
in patient cohorts from a community hospital in New Jersey, USA (N = 242) and an academic center in Seoul, Republic of 
Korea (N = 336). The models we developed performed differently across various clinical settings, underscoring the need 
for a guided strategy when employing machine learning for clinical decision-making. We demonstrated that using features 
from both the structured electronic health records and chest X-ray imaging data resulted in better 30-day mortality predic-
tion performance across all three datasets (areas under the receiver operating characteristic curves: 0.85 (95% confidence 
interval: 0.83–0.87), 0.76 (0.70–0.82), and 0.95 (0.92–0.98)). We discuss the rationale for the decisions made at every step in 
developing the models and have made our code available to the research community. We employed the best machine learning 
practices for clinical model development. Our goal is to create a toolkit that would assist investigators and organizations in 
building multi-modal models for prediction, classification, and/or optimization.
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Introduction

Beginning as an outbreak of an unknown viral pneumonia 
in Wuhan, China, the coronavirus disease 2019 (COVID-
19) pandemic has sparked numerous efforts to create pre-
dictive models. In particular, machine learning methods 
hold great promise because they provide the opportunity to 

combine and use features from multiple modalities avail-
able in electronic health records (EHR), such as imaging 
and structured clinical data, for downstream prediction 
tasks. At present, there are hundreds of papers in preprint 
servers and medical journals employing machine learning 
methodologies in an attempt to bridge the gaps in the diag-
nosis, triage, and management of COVID-19; eight of them 
have integrated both radiological and clinical data [1–8].

However, most of these studies were found to have little 
clinical utility, producing a credibility crisis in the realm 
of artificial intelligence in healthcare. A recent review by 
Roberts et al. found that, after screening more than 400 
machine learning models using various risk and bias 
assessment tools, none of the evaluated machine learning 
models had sufficiently fulfilled all of the following: (1) 
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documentation of reproducible methods, (2) adherence to 
best practices in the development of a model, and (3) exter-
nal validation that could justify claims of applicability [9].

Furthermore, the question remains as to how use-
ful these predictive models actually are to other institu-
tions to which these models were not customized [10]. 
While machine learning models offer the potential for a 
more accurate prediction of clinical outcomes within a 
specific context, these models were usually trained using 
data from a single institution and are unable to identify 
differences in contexts when employed in other settings 
[11]. This problem raises the need for validation not just 
in the neighboring center, but in other types of centers, 
states, or even countries, where patient demographics, 
standards of care, institutional policies may largely differ. 
In addition, these models need to be constantly updated 
because the contexts in which these models were trained 
and approved for use may be significantly different when 
used at present day [12–15]. Finally, beyond concerns 
about the reproducibility and generalizability of machine 
learning models is the issue of the lack of explainability, 
in which models may draw spurious associations between 
confounding imaging features and the outcome of interest 
[12, 16]. DeGrave et al. attempted to assess the trustwor-
thiness of recently published machine learning models for 
COVID-19 by using explainable AI technology to deter-
mine which regions of chest X-rays (CXR) these models 
used to predict outcomes [12]. Surprisingly, they found 
that in addition to highlighting lung regions, the evaluated 
models used laterality marks, CXR text markers, and other 
features that provide no pathologic basis for distinguish-
ing between COVID-positive and COVID-negative studies 
[12]. In other words, it was discovered that these models 
used shortcuts, further underscoring concerns about their 
applicability.

Therefore, we believe that some of the ways investiga-
tors can address the questions surrounding the credibility 
of a machine learning model are (1) to state the clinical 
context, which include patient demographics, geography, 
and timeframe, of the training and testing datasets that were 
used (2) to provide the resources for other centers to cre-
ate or fine tune models specific to their contexts, (3) to be 
explicit about the appropriate level of the model’s general-
izability based on results of external validation studies, (4) 
to explore strategies that either build in and/or evaluate the 
explainability of models, and (5) to externally validate the 
performance of the model on different subpopulations of 
the sample and explore the fairness of the model in under-
represented patient groups.

In our case, we present our efforts to develop three 
machine learning models for predicting 30-day mortality 
among hospitalized patients with COVID-19: (1) a struc-
tured EHR-based model, (2) a CXR-based model, and (3) an 

EHR-CXR fusion model. All three models were developed 
using a multi-center dataset from Madrid, Spain. We aim 
to investigate how the performance of each of these models 
differed when validated on two external unseen single-center 
datasets from different countries (the USA and Republic 
of Korea). In addition, we will flag and detail why certain 
modeling design decisions were made, including the diffi-
culties and trade-offs of these decision-making processes. 
The Checklist for Artificial Intelligence in Medical Imag-
ing [17] is used to report our study designs and findings. 
We have made the code and other resources to reproduce 
our model training process available to the research com-
munity. This work has the potential to inform triage alloca-
tion when demand exceeds hospital capacity or may aid in 
the prediction of the level of care, guiding inpatient assign-
ment of patients. We hope our work would serve as a toolkit 
that future investigators could use, adapt, and retrain models 
using data from their own institutions. Ultimately, our goal 
is to provide other institutions the opportunity to leverage 
machine learning technology to predict the mortality of their 
patients with COVID-19 and customize these models to meet 
their individual institution’s needs.

Materials and Methods

Study Objectives

We used retrospective data from Hospitales de Madrid to 
build three machine learning models that taking input from 
(1) only structured EHR data, (2) the first CXR image, 
and (3) both the EHR data and CXR image for predicting 
COVID-19 patient’s mortality at 30 days from hospital 
admission, as illustrated in Fig. 1. Our aims are (1) to inves-
tigate if modeling with features from both EHR and CXR 
image data result in improved mortality prediction perfor-
mance and (2) to investigate if modeling with features from 
both EHR and CXR image data result in more consistent 
model performance on external test sets (from Hoboken, 
New Jersey, USA and Seoul, Republic of Korea).

Datasets

Three datasets of patients with confirmed SARS-CoV-2 
infection from three different countries were used in our 
study (see details under “Case Definitions”). The hospital 
mortality outcomes came from the source EHRs [18, 19]. 
Table 1 documents the number of patients included and/
or excluded for different reasons. We used the dataset from 
Hospitales de Madrid (HM), a network of 17 hospitals in 
Madrid, Spain, for all model training and hyperparameter 
tuning experiments. The dataset is accessible via creden-
tialed and HIPAA-compliant approvals from https:// www.  
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hmhos pital es. com/ coron avirus/ covid- data- save- lives/ engli sh- 
versi on. External datasets from Hoboken University Medi-
cal Center (HUMC), USA and Seoul National University 

Hospital (SNUH), Republic of Korea were used for validat-
ing and evaluating the trained models. Table 2 describes the 
basic clinical characteristics of patients in each of the three 
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Fig. 1  The proposed multi-modal models for mortality prediction. 
The extracted EHR data were first preprocessed and then used to 
train the EHR-based model. For the CXR-based model, an anatomical 
bounding box extraction pipeline was used to automatically extract 
the coordinates for the left lung, right lung, mediastinum, and trachea 
anatomies from each of the CXR images. The CXR images with aug-

mentation were then used to train the CXR-based model. The prob-
ability computed from the CXR-based model along with EHR data 
were used to train the proposed EHR-CXR fusion model, by which 
the final prediction was generated. The predictions from the EHR- 
and CXR-based models were also generated for the comparison

Table 1  High level descriptive summary of datasets used in this study

* These are unique patients

Dataset name Data split Inclusion criteria Exclusion criteria Size (number 
included/all)*

Madrid fourfold training and 
internal validation

for building and tuning 
the models

Multi-centered hospital network, Madrid, 
Spain, from 12/2019 to 06/2020 [18]

Under age (< 16) N = 14 1628/2547
Missing admission time N = 85
Missing admission chest X-ray N = 820

Hoboken Test (external validation) Community hospital, Hoboken, NJ, USA, 
from 03/2020 to 04/2020 [19]

Under age (< 16) N = 0 201/242
Missing admission time N = 0
Missing admission chest X-ray N = 41

Seoul Test
(external validation)

Academic tertiary hospital, Seoul, 
Republic of Korea, from 1/1/2020 to 
12/31/2020

Under age (< 16) N = 16 315/336
Missing admission time N = 0
Missing admission chest X-ray N = 5
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different datasets. For more detailed patient clinical charac-
teristics, please see Supplementary Table 1.

Case Definitions

Madrid From all patients with COVID-19 (N = 2547) 
admitted at Madrid, the vast majority of patients have been 
diagnosed by positive PCR. However, during the months 
of March–April 2020, when there was no PCR test, the 
diagnosis was made by clinical and/or radiological signs 
from an CXR and symptoms compatible with bilateral 
pneumonia.

Hoboken Data of all patients with COVID-19 (N = 242) 
admitted at the Hoboken University Medical Center until 
April 11, 2020, were retrospectively collected on April 21, 
2020. COVID-19 was confirmed in all patients using quanti-
tative real-time reverse transcription polymerase chain reac-
tion for SARS-CoV-2 RNA. Data for patients who did not 
meet the primary outcome were excluded on the 30th day 
of admission.

Seoul Data of all patients with COVID-19 (N = 336) admit-
ted at Seoul are patients diagnosed with COVID-19 (PCR 
confirmed) from Seoul clinical data warehouse (CDW) and 
admitted to the intensive care unit at Seoul.

Ethical Statements

Separate IRBs and data use agreements were independently 
obtained from the data controller and the ethics board of the 
source institutions for the three different datasets to conduct 

this study. Data access to different datasets by researchers in 
this study is given via an as needed basis after the researchers 
and their institutions signed the relevant data use agreement. 
The purpose of the study is non-commercial and the ethical 
statements for the following datasets are the following:

Madrid CEIm Ref No. 20.05.1627-GHM Title of the Pro-
tocol: Clinical course and outcomes of severe and critical 
COVID-19 patients on interleukin-6 inhibitors: a retrospec-
tive cohort study; protocol identification: Covid-IL6; IRB 
Sponsor: Fundación de Investigación HM Hospitales.

Hoboken This patient population was previously reported 
by Yao et al. and the study protocol was approved and was 
granted a waiver of informed consent by the hospital board 
on April 15, 2020 [19]. Data extraction, collection, and 
analyses and external model validation on this dataset were 
performed by two trained physicians from HUMC (JAP and 
JSY).

Seoul IRB No. H-2007–065-1140 from Seoul National Uni-
versity Hospital, Republic of Korea.

Data Extraction

We included both comorbidities and lab EHR variables for 
the EHR-based and the EHR-CXR fusion models. Vari-
ables (categorical) included for comorbidities are diabetes, 
hyperlipidemia (HLD), hypertension (HTN), ischemic heart 
disease (IHD), chronic kidney disease, chronic obstruc-
tive pulmonary disease (COPD), asthma, cancer, chronic 
liver disease, stroke, congestive heart failure (CHF), and 

Table 2  Summary of clinical characteristics for the 3 different datasets used in the study

COPD chronic obstructive pulmonary disease, CKD chronic kidney disease

Characteristics Madrid Hoboken Seoul

Alive Expired p value Alive Expired p value Alive Expired p value

n 1439 189 114 87 310 5
Age (mean) 65.7 79.6  < 0.001 61.9 69.1 0.003 45.7 64.0 0.053
Female (%) 41.3 28.6  < 0.001 48.2 32.2 0.032 48.4 0 0.062
30-day mortality (%) 88.4 11.6  < 0.001 56.7 43.3  < 0.001 98.4 1.6  < 0.001
Diabetes (%) 16.1 24.1 0.008 39.4 35.6 0.682 11.0 40.0 0.103
Hypertension (%) 6.1 10.2 0.055 54.3 55.2 0.974 13.9 80.0 0.002
Hyperlipidemia (%) 26.0 35.3 0.01 32.5 34.5 0.880 6.1 20.0 0.283
Congestive heart failure (%) 4.3 7.0 0.156 16.7 14.9 0.891 1.6 20.0 0.093
Ischemic heart disease (%) 6.0 13.4  < 0.001 16.7 14.9 0.891 2.3 20.0 0.122
Stroke (%) 2.6 7.5  < 0.001 2.6 4.6 0.469 2.6 0.0 -
COPD (%) 4.7 8.0 0.083 9.6 10.3 0.941 0.6 20.0 0.047
CKD (%) 5.1 11.8  < 0.001 7.0 20.7 0.008 1.3 20.0 0.078
Chronic liver disease (%) 0.6 4.8  < 0.001 0.9 0.0 1.000 1.0 0.0 -
Active cancer (%) 4.0 12.3  < 0.001 6.1 3.4 0.519 0.0 0.0 -
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dementia. Lab variables (numeric) include lactate dehy-
drogenase (LDH), hemoglobin, mean corpuscular volume 
(MCV), neutrophil percentage, mean neutrophil, lymphocyte 
percentage, mean lymphocyte, mean leukocyte, mean plate-
let volume, mean platelet, C-reactive protein (CRP), mean 
corpuscular hemoglobin (MCH), aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), activated partial 
thromboplastin time (APTT), D-dimer, prothrombin activ-
ity, international normalized ratio (INR), glucose, sodium, 
potassium, blood urea nitrogen (BUN), and creatinine. 
Images were included and excluded as per Table 1.

Structured EHR Data Preprocessing

Deidentification The following identifiers of the individual 
or of relatives, employers, or household members of the indi-
vidual were removed for de-identifying the dataset: names; 
all geographic subdivisions smaller than a state, including 
street address, city, county, precinct, ZIP code, and their 
equivalent odes, except for the initial three digits of the ZIP 
code if, according to the current publicly available data from 
the Bureau of the us, all elements of dates (except year) 
for dates that are directly related to an individual, includ-
ing birth date, admission date, discharge date, death date, 
and all ages over 89 and all elements of dates (including 
year) indicative of such age, except that such ages elements 
may be aggregated into a single category of age 90 or older; 
telephone numbers; vehicle identifiers and serial numbers, 
including license plate numbers; fax numbers; device iden-
tifiers and serial numbers; email addresses; web Universal 
Resource Locators (URLs); social security numbers; internet 
Protocol (IP) addresses; medical record numbers; health plan 
beneficiary numbers; account numbers; any other unique 
identifying number, characteristic, or code.

Outliers We cleaned up systolic blood pressure (systolic 
BP), heart rate, SPO2 and temperature to be within valid 
ranges (code available). The valid ranges used for tempera-
ture, SPO2, heart rate, and systolic BP are 30–45 C, 1–100%, 
20–300 bmp, 20–240 mmHg, respectively.

Missing Values We removed labs that had more than 50% 
missing values in the model development dataset (Madrid). 
The remaining missing values are imputed following com-
mon data science procedures, where missing categorical 
values were filled by most frequent value imputation and 
continuous values by median imputation. Variables not 
available in Hoboken or Seoul but available in Madrid were 
filled with 0 s.

Data Normalization The categorical variables were trans-
formed by a one-hot encoding method. The numerical vari-
ables were scaled based on percentiles across the whole 

Madrid dataset with the robust scaler method in python 
package (scikit learn 0.21).

Training and Model Picking

A 121-layer Densely Connected Convolutional Network 
(DenseNet-121) [20] was used as the model architecture. 
Four different types of machine learning were tried in a 
tuning setting to select for the best EHR-based model. The 
CXR-based model building including 5 steps: (1) online 
(real-time) image augmentation during training; (2) online 
CXR feature extraction; (3) mortality classification layers; 
(4) optimization settings; (5) hyperparameter tuning and 
model selection, as described in supplementary. For the 
fusion model, we took a late fusion approach that uses the 
output probability from the CXR model as a feature along 
with the EHR features for the 30-day mortality classification.

Statistical Analysis

In all three datasets, we reported the point estimates and 95% 
confidence interval (95% CI) of the reported validation met-
rics: areas under the receiver operating characteristic curves 
(AUROC), sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), F1-score, and accu-
racy. 95% CIs were computed by bootstrapping the scores 
of the predictions 1000 times. The optimal cut-off value 
was determined when the absolute value of the difference 
between the sensitivity and specificity values is minimum.

Model Evaluation

Internal validation was performed by averaging the results 
across the 4 folds using the best hyperparameters for the 
final models using the Madrid dataset. External validation 
using the Hoboken and Seoul datasets were respectively 
performed by two in-house Hoboken physicians and a data 
scientist, all of whom were uninvolved in model tuning.

Specifically, validation of the Hoboken dataset was per-
formed by clinicians of the community hospital who had the 
appropriate credentials to access patient health information. 
To accomplish this task, the necessary code was developed 
by an external team of data scientists. This code is made 
available (Supplementary Table 6) to allow future researchers 
to replicate our methodology that allows inter-institutional 
collaboration while complying with data governance stand-
ards and protecting sensitive patient information.

Evaluating Model Fairness

A more complete analysis of biases in our models is not 
within the scope of our study, particularly since the datasets 
came from countries with completely different ethnic makeup. 
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However, as a baseline, performance results for male and 
female are reported separately on all three datasets to explore 
how the models’ performance differ between the gender strata.

Evaluating Model Explainability

We used SHapley Additive exPlanations (SHAP) [21] to 
show the feature importance in our EHR-based and fusion 
model [21]. The SHAP method estimates differences 
between models with different feature subsets and calcu-
lates SHAP values representing the importance of each 
feature to overall model predictions. The features with 
larger absolute SHAP values are supposed to contribute 
more to the prediction. A more positive SHAP value for a 
feature corresponds to a higher model predicted likelihood. 
For the fusion model, the SHAP analysis helps to show 

whether the CXR model’s prediction is important for the 
final morality prediction. For evaluating the explainability 
of the CXR model’s prediction, we visualize where on the 
image the model attended to most by using Grad-CAM 
[22]. Grad-CAM computes the gradient of the prediction 
scores of the features generated by convolutional layers to 
reveal which locations in the image are most important.

Design Decisions and Reasons

To address the questions surrounding the credibility of a 
machine learning model, we documented design decisions 
and reasons for our study objectives, datasets, data pre-
processing, training and model picking, model evaluation, 
and code packaging for testing.

Study objectives

Design decisions Optimize for F1-score for all three models for the 30-day mortality prediction task and report all metrics including areas 
under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), F1-score, and accuracy

Reasons 30-day mortality is chosen as the target outcome in accordance with clinical precedence [23–25]. The F1-score finds an 
equal balance between PPV (precision) and sensitivity (recall), which gives a better indication of model performance 
for unbalanced dataset (mortality is relatively rare compared to survival). Reporting all metrics allows assessment of 
how the models might perform in populations with a different COVID-19-related mortality distribution. With COVID 
mortality rates varying with time, model drift can be a real concern under different care delivery parameters during 
surges [26]

Datasets

Design decisions We included only cases with admission CXRs and results of laboratory tests taken within the first 24 h of hospital 
admission in Tables 1 and 2. Cases were also excluded for missing admission time. Patients aged 16 or under are 
excluded and only frontal (AP or PA) images are included for the CXR-based and EHR-CXR fusion models

Reasons Our clinical goal is to develop an early assessment algorithm. Admission time is needed to establish the 30-day mortal-
ity cut off for this study. Patients under 16 need more privacy protection (very rare and more easily re-identifiable) and 
their CXR imaging appearance (anatomically) and disease outcome distributions are very different. Not all CXR exam 
orders include lateral images hence they are not included as an input for the models

Image preprocessing

Design decisions An anatomical bounding box (Bbox) extraction pipeline was used to automatically extract the coordinates for the 
left lung, right lung, mediastinum, and trachea anatomies from each of the frontal CXR images [27]. The extracted 
bounding boxes are reviewed and manually corrected as needed by clinicians (JAP, JSY, ECD). We used these ana-
tomical Bboxes to create 4 additional versions for each image for augmentation, where in version (1) trachea Bbox 
was masked out with 0’s, (2) trachea Bbox was replaced with random noise, (3) background and trachea Bboxes 
were masked out with 0’s, and (4) background and trachea boxes were replaced with random noise. The original and 
augmented images are pre-saved as JPEGs without resizing at this stage. During training, when the hyperparameter 
for “augment_bbox” is set to true, a random version of each image (including possibly the non-augmented version) is 
drawn to teach the model in each epoch (see Fig. 2)

Reasons As compared to simply post hoc assessing the explainability of models with Gradient-weighted Class Activation Mapping 
(Grad-CAM), we tried to force the CXR model to learn features from key CXR anatomies that should be relied on more 
heavily for prediction during the model training stage as well [27]. Non-augmented image examples are also used in the 
training so that the model can handle non-augmented CXR images too at inference (i.e., clinical deployment setting). 
Doing the Bbox augmentation offline not only makes training faster but also more deterministic. We left input size for 
images as a tuning parameter that is dependent on the pre-trained model teacher
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Fig. 2  A random sample of images shown to teach the model where at least 1–2 positive mortality (expired) cases are shown to the model in 
each batch

Training and model picking

All models

Design decisions The whole of Madrid dataset was randomly divided into four subsets in order to conduct a fourfold cross-validation 
training strategy to select for the best model (by F1-score) for each of the three model types. We ensured similar 
numbers of mortality cases in each split and the same four-way split was used for all experiments. Finally, we 
trained each of the 3 models on all of Madrid data once we identified the best hyperparameters from the fourfold 
cross-validation hyperparameter tuning experiments. The final models are then validated on the two external 
datasets (Hoboken and Seoul). See supplementary materials for the details of model training and picking for EHR, 
CXR, and fusion models. All models are trained on Google Cloud TPUs via Colab notebooks. Code for both 
training with paid and free TPUs are available. Software packages used were tensorflow = = 2.4.1, sklearn-pan-
das = = 1.8.0, xgboost = = 0.90. To ensure repeatability, a random seed of 2020 was used for all experiments
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Training and model picking

All models

Reasons In this setup, for each experiment, 3 folds are combined and used for training and the fourth fold is used for validation, 
whereby each individual data subset gets equal opportunities to validate models. Model parameters that perform best on 
one validation subset might just be “lucky.” Rotating the validation subset and picking model parameters that perform the 
best on average across all subsets helps in selecting a model that has hopefully learned more reliable features and may gen-
eralize better on external validation sets. Similar number of positive mortality cases (expired patients) in each split makes 
the validation set more likely to be equally difficult. We had to use the whole Madrid dataset for model development (train-
ing and validation); otherwise, the number of positive cases (mortality) would be too small for tuning. We used only open 
sourced python packages so that others can easily re-use and build on our work with no cost barriers

EHR-based model
Design decisions Four different types of machine learning algorithms (logistic regression, random forest, gradient boosting, and 

XGBoost) implemented in scikit learn 0.21 were tried in a tuning setting to select for the best EHR-based model. A 
randomized grid-search method was used to sample different hyperparameter settings from prespecified ranges for 
each optimization experiment, as shown in Supplementary Table 3

Reasons The goal of this modeling is not causality analysis but simply to select a model that performs the best for the given 
dataset and prediction task. We picked the four most common machine learning algorithms suitable for modeling 
tabular data and tuned their hyperparameters

CXR-based model
Step 1: Online (real-time) image augmentation during training
Design decisions CXR images were randomly flipped vertically (left–right) and brightness adjusted (0–0.05). Together with the 

preprocessed anatomical Bbox augmentation, a random set of CXRs used for training the model is illustrated 
in Fig. 2. Both the online and offline augmentations are only used during training and not during internal and 
external validation of models

Reasons The goal of image augmentation is to automatically increase training sample variety so that the model can learn to discern 
features that are more generalizable for the downstream prediction task. This step is particularly important if the training 
dataset is small. The online augmentations (flip and brightness) try to simulate how variations under which CXRs can be 
taken in real life might alter the image appearance. Only small augmentation ranges are chosen so that the CXR images 
remain radiologically interpretable. Augmentation is not used during internal and external validation because there is 
(1) no need to update model weights during evaluation settings and (2) need for comparing models against a consistent 
benchmark and augmentation introduces randomness

Step 2: Online CXR feature extraction
Design decisions Two different previously published pre-trained DenseNet-121 CXR models [28] are tried for feature selection for 

our downstream mortality prediction task. The Madrid CXR images are resized during training to the input size 
for each of the pre-trained models (320 × 320 vs. 224 × 224) to output the imaging features for classification. The 
last fully connected layer of both models, containing 14 outputs corresponding to the 14 radiologic CheXpert 
finding labels [35], was removed. Instead, linearized convolutional features from either the second (− 2) or the 
fourth (− 4) to the last layer were used for the mortality prediction classification task. The pre-trained models 
were partially frozen, with model weights updating after either layer 355, 400, or 420 during training. Choices for 
which “teacher” pre-trained model, feature layer to use, and how many model layers to update for the new mortal-
ity prediction task are set up as hyperparameters to be tuned in our experiments

Reasons The Madrid dataset is too small to train deep learning networks from scratch. The pre-trained CXR models chosen 
have already been trained on much larger CXR datasets (MIMIC-CXR) [29] (> 200,000 images) to discern fea-
tures that are useful for diagnosing 14 different CXR lung and heart radiologic findings, which are also clinically 
relevant for COVID patients. The final few layers in pre-trained convolutional neural networks tend to have best 
summarized the features useful for downstream (related) classification tasks. Since we only have a small training 
dataset (Madrid), we decided to only partially update the weights in the later layers in the pre-trained models 
and leave the choice of how many layers to update as a tunable parameter—knowing that there is a balance to be 
“learned” between updating weights for the new task on the small Madrid training dataset and losing the benefit 
of pre-learned weights from the pre-trained “teacher” CXR models

Step 3: Mortality classification layers
Design decisions After CXR features are extracted from a pre-trained model, we added a classification block consisting of tunable 

number of hidden linear layers, followed by a final activation function (choice between ReLU and LeakyReLU), a 
dropout layer, and a single binary output layer. The output layer represents whether a patient is alive or expired at 
30 days. An initial bias to the final out layer was optionally added and tuned along with the choices for activation 
function (ReLU or LeakyReLU) and the number and sizes of the hidden layers

Reasons The feature size extracted from both pre-trained models is 1024 in length. Additional classification layers were 
added to learn the new mortality classification task. Since the layer numbers and sizes are arbitrary, we picked a 
few common sizes to tune. We tried LeakyRelu as an activation function in the classification block because the 
CXR features extracted from the (− 2) and (− 4) layers can have many zeros due to the DenseNet-121 architec-
ture. Adding initial bias to the output layer can help with performance for very unbalanced dataset
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Training and model picking

All models

Step 4: Optimization settings
Design decisions Binary cross entropy was used as the loss function and the Adam optimizer was used for parameter optimization. 

We did not tune for these settings
Reasons Binary cross entropy as the loss is appropriate for the binary mortality classification task. Adam is a fast optimizer, 

helps with avoiding overfitting and has shown good performance over a range of tasks
Step 5: Hyperparameter tuning and model selection
Design decisions Supplementary Table 4 provides a summary of all the hyperparameters we experimented with on the Madrid 

dataset to select for the final best performing CXR-based COVID-19 30-day prediction model. An experi-
ment is defined by one unique combination of hyperparameters. Due to limited training resources and a large 
hyperparameter search space (345,600 unique combinations), we had to first rough search and manually 
narrow down the hyperparameter search space—e.g., early observation suggests most experiments did better 
with smaller batch sizes, LeakyReLU activation, and with Bbox augmentation. We then fine-tuned the model 
on the other more important parameters such as the learning rate. Early stopping was used to end experiments 
that did not show loss reduction after 2 or 5 epochs. Overall, we performed over 300 experiments. For each 
experiment, we plotted the train and valid curves for multiple metrics (recall, precision, accuracy, AUC and 
F1-score) against the number of epochs. We performed a range of manual and automatic model selection by 
(1) evaluating experiments with F1-scores above 0.25 for all four folds and (2) manually examining the train-
vs.-validation learning curves to pick the hyperparameter setting that showed improvement of the model’s 
precision and recall from baseline for both the train and valid data, as well as ensuring that the chosen model 
did not show evidence of overfitting

Reasons The standard practice for hyperparameter tuning is to update model weights on the train dataset and evaluate 
the updated model on the validation dataset at the end of each epoch, which is when the model has “seen” all 
examples in the train set once. Despite using all of the Madrid dataset for training and validation, the number of 
positive cases in the valid set is still small. Simply picking the best F1-score automatically without inspecting all 
the learning curves could just end up picking a “lucky” epoch

EHR-CXR fusion model
Design decisions We took a late fusion approach that uses the output probability from the CXR model as a feature along with the 

EHR features for the 30-day mortality classification. With the Madrid train dataset, we again tuned four differ-
ent machine learning models (logistic regression, random forest, gradient boosting, and XGBoost) in a fourfold 
cross-validation setting and the best model along with the best hyperparameters were selected using randomized 
grid search via the same methodology as that for training the EHR-based model

Reasons Late fusion approach is used because it can be implemented with traditional machine learning methods, which 
can avoid overfitting for smaller datasets. On the other hand, intermediate (joint) fusion implemented by neural 
networks requires more data for training (the implementation of the intermediate fusion model can also be found 
in Supplementary Table 6). In addition, the much larger feature size from imaging modality can easily swamp 
important clinical signals from the tabular EHR data. From analyzing the fusion model’s point of view, late 
fusion allows interpretation of the overall feature importance from the CXR model’s prediction

Model evaluation

Design decisions We made a clear separation between model developers and final model testers. Development of models 
includes programming feature selection and model training. External testing of models requires institu-
tional access for the Hoboken and Seoul data, which were obtained upon request with submission of our 
study protocol

Reasons This is the best practice to avoid repeated testing on the final test datasets, which could invalidate the 
reported results. It is also a common setting in real life model evaluation scenarios

Code packaging for testing

Design decisions We packaged the inference code for the three different models for testing in an end-to-end Colab Notebook 
for the model testers to run on their datasets

Reasons All datasets had been de-identified and are hosted on different HIPPA compliant cloud servers with access 
granted to different researchers based on institutional affiliation, data access approvals, and IRBs. Running 
via Colab, which have access management protocols, allows the clinical researchers to run the inference 
code without setting up Python and other required packages on their local machines, which can be a techni-
cal barrier
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Data Sharing

We have made the code and other resources to reproduce our 
model training process available to the research community. The 
authors provided open access to all their data extraction, filtering, 
data wrangling, modeling, figures and tables, code, and queries 
on https:// github. com/ theon esp/ multi modal_ morta lity_ covid. 
The de-identified version of Madrid COVID Data Saves Lives 
repository can be requested at https:// www. hmhos pital es. com/ 
coron avirus/ covid- data- save- lives/ engli sh- versi on. The associ-
ated datasets in this study can be accessed through the respective 
application processes of the hospitals involved.

Results

Internal Validation

Table 3 shows the results of internal validation for mor-
tality prediction in COVID-19 patients. The models were 
trained and validated on the Madrid dataset using fourfold 
cross-validation. The respective F1-score (95% confidence 
interval) of the EHR-based, CXR-based, and fusion models 
were 0.36 (95% CI 0.32–0.41), 0.37 (0.33–0.41), and 0.40 

Table 3  Internal validation on Madrid dataset with 95% confidence intervals

AUROC area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value, CI confidence interval

EHR-based CXR-based Fusion

AUROC (CI) 0.82 (0.79–0.84) 0.81 (0.78–0.83) 0.85 (0.83–0.87)
Sensitivity (CI) 0.77 (0.71–0.82) 0.76 (0.71–0.82) 0.79 (0.74–0.84)
Specificity (CI) 0.71 (0.66–0.76) 0.72 (0.67–0.75) 0.74 (0.71–0.78)
PPV (CI) 0.24 (0.21–0.28) 0.25 (0.21–0.28) 0.27 (0.23–0.31)
NPV (CI) 0.96 (0.95–0.97) 0.96 (0.95–0.97) 0.97 (0.96–0.98)
F1-score (CI) 0.36 (0.32–0.41) 0.37 (0.33–0.41) 0.40 (0.36–0.45)
Accuracy (CI) 0.71 (0.68–0.76) 0.73 (0.68–0.76) 0.75 (0.72–0.78)

(0.36–0.45). Figure 3(A) shows the ROC curves obtained 
from EHR-based (orange), CXR-based (green), and fusion 
models (blue) for internal validation on Madrid datasets.

External Testing

Table 4 shows the results of external testing for mortality 
prediction using all the Madrid dataset for model develop-
ment and Hoboken and Seoul datasets for external testing. 
In the external testing on the Hoboken dataset, the F1-score 
(95% CI) of the EHR-based, CXR-based, and fusion mod-
els were 0.66 (0.59–0.73), 0.64 (0.57–0.70), and 0.69 
(0.62–0.76), respectively. In the external testing on the Seoul 
dataset, the respective F1-score (95%CI) of the EHR-based, 
CXR-based, and fusion models were 0.15(0.04–0.28), 0.13 
(0.03–0.25), and 0.21 (0.06–0.38). The ROC curves for 
external testing on Hoboken and Seoul datasets are illus-
trated in Fig. 3(B) and (C), respectively.

Explainability Analysis

Figures 4 and 5 show the impact of features on the EHR-
based and fusion models’ prediction, respectively. Figure 5 

(C)
Hoboken Seoul

(B)(A)

False Positive Rate

eta
R evitisoP eurT Fusion (AUC = 0.85)

CXR (AUC = 0.81)
EHR (AUC = 0.82)

Madrid

Fusion (AUC = 0.76)
CXR (AUC = 0.72)
EHR (AUC = 0.74)

Fusion (AUC = 0.95)
CXR (AUC = 0.90)
EHR (AUC = 0.92)

Fig. 3  Model performance using EHR-based model, CXR-based model, and fusion model (EHR + CXR). (A) Internal validation on Madrid 
dataset; (B) external testing on Hoboken dataset; and (C) external testing on Seoul dataset
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Table 4  External testing on Hoboken and Seoul datasets with 95% confidence intervals

AUROC area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value, CI confidence 
interval

Hoboken dataset Seoul dataset

EHR-based CXR-based Fusion EHR-based CXR-based Fusion

AUROC (CI) 0.74 (0.68–0.80) 0.72 (0.66–0.78) 0.76 (0.70–0.82) 0.92 (0.88–0.96) 0.90 (0.86–0.94) 0.95 (0.92–0.98)
Sensitivity (CI) 0.68 (0.59–0.77) 0.68 (0.57–0.8) 0.68 (0.60–0.76) 0.64 (0.25–0.86) 0.63 (0.20–0.86) 0.64 (0.20–0.86)
Specificity (CI) 0.72 (0.62–0.82) 0.65 (0.55–0.78) 0.78 (0.70–0.85) 0.88 (0.85–0.93) 0.86 (0.80–0.93) 0.93 (0.89–0.96)
PPV (CI) 0.65 (0.56–0.75) 0.60 (0.52–0.69) 0.71 (0.61–0.79) 0.09 (0.02–0.17) 0.07 (0.02–0.15) 0.13 (0.03–0.25)
NPV (CI) 0.75 (0.68–0.81) 0.73 (0.66–0.8) 0.76 (0.70–0.82) 0.99 (0.99–1.0) 0.99 (0.99–1.0) 1.00 (0.99–1.0)
F1-score (CI) 0.66 (0.59–0.73) 0.64 (0.57–0.7) 0.69 (0.62–0.76) 0.15 (0.04–0.28) 0.13 (0.03–0.25) 0.21 (0.06–0.38)
Accuracy (CI) 0.70 (0.65–0.76) 0.67 (0.61–0.72) 0.74 (0.68–0.79) 0.92 (0.88–0.96) 0.90 (0.86–0.94) 0.95 (0.92–0.98)

Fig. 4  Feature importance of the EHR-based model revealed by a SHAP plot. Features on the y-axis are ranked by their mean absolute SHAP 
values and each point represents a patient
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shows the CXR model’s prediction and the patient age were 
two features with highest mean absolute SHapley Additive 
exPlanations (SHAP) [21] value for predicting 30-day mor-
tality. Figure 6 shows the mean Gradient-weighted Class 
Activation Mapping (Grad-CAM) [22] heatmap obtained by 
averaging the heatmaps with prediction probability larger 
than 0.6 for the expired patients in the Madrid dataset. CXR 
regions with high levels of importance in the model predic-
tion (represented in red or yellow) were located within the 

lung zones. In particular, the lung parenchyma and medias-
tinal structures were the primary focus of the algorithm for 
mortality prediction.

Fairness Analysis

Supplementary Table 5 shows the difference of model per-
formance between female vs. male patients across all three 
datasets. All the expired cases in the Seoul dataset are male.

Fig. 5  Feature importance of the fusion model revealed by a SHAP plot. Features on the y-axis are ranked by their mean absolute SHAP values 
and each point represents a patient
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Discussion

Our findings demonstrate differences in the performance of 
our predictive models across different institutions, clinical 
settings, and populations. Previous studies have demonstrated 
that predictive models tend not to perform well outside the 
institution and setting that it was trained in, while also losing 
their accuracy over time due to underlying clinical data drift 
[30–32]. In this paper, we trained three models (EHR-based, 
CXR-based, and fusion) by optimizing their F1-scores for 
30-day mortality prediction from hospital admission for con-
firmed COVID-19 patients. On internal validation (Madrid) 
and testing on two external datasets (Hoboken and Seoul), 
point estimates of the F1-score of the fusion model con-
sistently outperformed the EHR-based and the CXR-based 
models. These findings are not statistically significant at 95% 
CI, which can be expected in the context of small numbers 
of mortality events in all the datasets. We reported all met-
rics for transparent reporting on our models’ performance. 
Reporting just AUROC and/or accuracy can give a falsely 
higher sense of model performance for imbalanced datasets.

On evaluating the changes in F1-scores between the 
results on the Madrid dataset and the two external test sets, 
we see expected significantly drops in F1-scores for all three 
models when they are tested on the Seoul dataset (statistically 
significant). However, we see unexpectedly higher F1-scores 
from all three models for the Hoboken dataset (statistically 
significant). Possible explanations for these findings include 
(1) the surge in COVID-19 cases during this period in the 
Greater New York Metropolitan area, which includes Hobo-
ken, NJ, that led to higher mortality rates in the hospital 
(more likely), and (2) the pre-trained “teacher” CXR models 
used in the development of our CXR model were trained on 
CXR images from the USA (possible). Both factors would 
make Hoboken an easier evaluation dataset than the both the 
Madrid and Seoul datasets. For the former factor, F1-scores 

would naturally be higher if the target prevalence is higher 
in a dataset. For the latter factor, since deep learning models 
are brittle to small changes in machine type and calibration, 
changes in geography (a different country with likely more 
different machines and calibration protocols) alone may 
affect model’s feature extraction suitability for the same 
task—i.e., it is possible that the CXR models extract better 
features from Hoboken CXRs as the images were taken in 
similar US setting.

Our findings further highlight the need for a guided strat-
egy with the use of predictive models as clinical decision 
support tools. This is particularly important for machine 
learning models because, unlike traditional statistically 
based models (e.g., multivariate regression models which 
have deterministic performance on the same data), the state-
of-the-art machine learning models, though powerful, are 
often built with many design decisions during their devel-
opment. Changes in any parameters, optimizing target(s) 
(e.g., accuracy, AUROC, and F1-score), or even just dif-
ferent GPUs or TPUs for training, could result in different 
performance. As such, performance reported in any paper 
is really a snapshot. Furthermore, institutional and tempo-
ral data variation can also change the performance of these 
models. Ultimately, performance of predictive models, like 
most medical tests, is sensitive to changes in disease sever-
ity, prevalence, and distribution in a patient population.

Therefore, we reinforce the previously reported recom-
mendation that institutions should reassess models on local 
datasets [15, 33]. They should also consider fine tuning 
their own predictive models and to learn what works best 
for their local patient populations. Training a predictive 
model to prioritize a high positive predictive value may 
mitigate the risk of incorrectly predicting an outcome––in 
this case, mortality––among patients who would have oth-
erwise survived or have not met the outcome. Prioritiza-
tion of sensitivity may allow clinicians to triage as many 

Fig. 6  Explainability: heatmaps 
using Grad-CAM algorithm 
shows that the model primarily 
uses imaging features from the 
lungs and mediastinum region 
for mortality prediction. The 
image was produced by averag-
ing the heatmaps from the 
expired patients with prediction 
probability larger than 0·6 and 
overlaying it on an actual CXR 
so it is easier to highlight the 
physiologic area
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severely ill patients to advanced care facilities. Ultimately, 
locally tested predictive models can become tools that help 
institutions address their individual needs, either to appro-
priately distribute limited resources or to help detect and 
manage severely ill patients early. To facilitate this and for 
reproducibility, we have open sourced our data preprocess-
ing and training code for re-use by other research groups 
and institutions.

Multiple groups have suggested best practices and regu-
lations in the development and use of artificial intelligence 
and predictive modeling that address pertinent concerns 
[15, 33]. Much of these recommendations have to do with 
reproducibility, quality of data being used, and the intended 
function of artificial intelligence programs [34]. However, 
the complexity of applying machine learning models in 
clinical settings goes beyond reproducibility and generaliz-
ability. Deep learning’s advantage of not needing to engi-
neer predictive features for model building can be offset by 
the disadvantage of its lack of explainability. Models may 
draw spurious associations between confounding tabular or 
imaging features and the outcome of interest [12, 16]. For 
example, a prior study has shown that AI has a predilection 
for detecting imaging features other than signals of pathol-
ogy as shortcuts for predicting COVID-19 outcomes [12]. 
Unlike linear models, weights in deep learning models have 
no intrinsic significance on their own that can be interpreted 
clinically outside the model. Despite this, in the imaging 
space, researchers have used methods, such as Grad-CAM, 
to post analyze the “explainability” of deep learning imaging 
models by examining where on the image the trained model 
“attended” to most for prediction. However, these analy-
ses are often qualitative in nature for publication purposes, 
which we argue is insufficiently rigorous for most clinical 
applications.

Therefore, for imaging feature explainability, we not only 
presented heatmaps from post-training Grad-CAM analy-
sis of the CXR model but also specifically used anatomi-
cal bounding box augmentation to teach our CXR model 
to focus on lungs and mediastinum regions for prediction 
during the training stage. Choices for both tuning with or 
without anatomy augmentation was used and the best model 
had utilized the anatomical regional augmentation approach. 
As shown in Grad-CAM analysis, our CXR model does 
focus on the clinically important lungs and mediastinum 
CXR regions for prediction. This gives our clinicians more 
confidence for the model’s prediction.

Lastly, we took a late fusion approach to model features 
from the EHR data and the CXR image so that we could 
easily assess how much the prediction depended on differ-
ent data sources via SHAP plots. Previous machine learn-
ing models have also used similar techniques to elucidate 
the explainability of their models [12, 36]. In our case, the 
fusion model placed the most weight on patient age and 

CXR features, further supporting that including both clinical 
and imaging data improves downstream model performance.

This study is limited by its retrospective nature, imbal-
anced and small evaluation datasets, and merits further 
research. The models trained also need the exact same 
input features at inference and some institutions may not 
routinely collect all the required input variables. In addi-
tion, as with many published AI models, fairness as an 
operationalized outcome has not been incorporated in our 
models [33]. We did, however, assess for differences in 
the models’ performance separately for male and female 
on the Madrid and the Hoboken dataset (no female deaths 
in the Seoul dataset), which showed no statistically sig-
nificant differences on 95% CI analysis except the EHR-
based model on the Madrid dataset. In general, evaluating 
differences in model performance in subpopulations can 
help elucidate and inform downstream applications about 
potential problems if an AI model was applied to patients 
from under-represented/marginalized populations. Pooled 
results from the general population may gloss over worse 
outcomes in vulnerable groups [37]. Furthermore, in gen-
eral when the dataset contains underlying data entry biases 
and/or imbalanced representations, building fair models is 
still an unsolved technical research problem.

Conclusion

Machining learning methods offer the advantage of utilizing 
richer clinical data for predictive modeling, which many have 
explored during the COVID-19 pandemic. However, many 
studies published so far have further exposed the credibility 
crisis that machine learning is facing in terms of reproducibil-
ity, generalizability, explainability, and fairness. This is often 
due to implementation issues, such as poorly documented 
study designs, lack of external test sets, and study code avail-
ability. In this paper, we employed best machine learning prac-
tices and trained three machine learning models on a model 
development (internal) dataset. We subsequently stress tested 
the final models on two external datasets from different coun-
tries. We redemonstrated (1) that using features from both the 
EHR and CXR imaging data resulted in better 30-day mor-
tality prediction performances across all three datasets, and 
(2) the need to fine tune models on local datasets and update 
with time. We evaluated our models for explainability in terms 
of feature dependence, and fairness in terms of gender-based 
performance differences. Finally, for the sake of transparency 
and reproducibility, we documented all study design decisions 
and made the study code available to the research community.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10278- 022- 00674-z.
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