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Abstract
Organs-at-risk contouring is time consuming and labour intensive. Automation by deep learning algorithms would decrease 
the workload of radiotherapists and technicians considerably. However, the variety of metrics used for the evaluation of deep 
learning algorithms make the results of many papers difficult to interpret and compare. In this paper, a qualitative evaluation 
is done on five established metrics to assess whether their values correlate with clinical usability. A total of 377 CT volumes 
with heart delineations were randomly selected for training and evaluation. A deep learning algorithm was used to predict 
the contours of the heart. A total of 101 CT slices from the validation set with the predicted contours were shown to three 
experienced radiologists. They examined each slice independently whether they would accept or adjust the prediction and if 
there were (small) mistakes. For each slice, the scores of this qualitative evaluation were then compared with the Sørensen-
Dice coefficient (DC), the Hausdorff distance (HD), pixel-wise accuracy, sensitivity and precision. The statistical analysis 
of the qualitative evaluation and metrics showed a significant correlation. Of the slices with a DC over 0.96 (N = 20) or a 
95% HD under 5 voxels (N = 25), no slices were rejected by the readers. Contours with lower DC or higher HD were seen in 
both rejected and accepted contours. Qualitative evaluation shows that it is difficult to use common quantification metrics as 
indicator for use in clinic. We might need to change the reporting of quantitative metrics to better reflect clinical acceptance.
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Introduction

The number of papers published on deep learning (DL) in 
the medical imaging field is rising rapidly each year [1]. 
However, it can be difficult to implement the results of this 
type of research in clinic, due to difficulty in interpreting 
validation studies. For segmentation tasks, various overlap 
metrics are used to describe the accuracy of neural net-
works, and, commonly, a range of random overlap metrics 
is reported. Recently, guidelines on the reporting of accu-
racy metrics have been published to reduce this variance of 
reported metrics in artificial intelligence (AI) challenges 
[2]. These overlap metrics are calculated by comparing 
the ‘ground truth’ with the prediction of the AI software. 
Although high values of these might be achieved, it could 
still mean that the predictions of a neural network might 
be unsuited for clinical use [3]. For this purpose, this paper 
will investigate the correlation of the three most impor-
tant metrics and the acceptance for clinical use of a deep 
learning algorithm by doing a qualitative assessment. The 
focus of this paper is the qualitative assessment; therefore, 
we selected a use case, automatic heart contouring and a 
random AI method.

Automatic heart contouring for radiotherapeutic plan-
ning will be used as an example of an AI algorithm. Radi-
otherapeutic planning is labour intensive due to its need 
for manual segmentations of various organs surrounding 
the organ targeted. Therefore, automatic methods for 
segmenting organs on CT images have been an attrac-
tive field of research. More recent developments in this 
field use deep learning algorithms to attempt to automate 
this process and to reduce the workload of radiothera-
pists [4–6]. Automatic heart contouring can also be used 
for improving the accuracy of heart disease detection 
AI algorithms by cropping the images around the heart, 
thereby removing irrelevant parts of the image that could 
otherwise lead to bias in an algorithm. For instance, in the 
detection of coronary artery calcium (CAC), false posi-
tive plaques are sometimes found outside of the heart. By 
using a heart contour, these false positives could be fur-
ther reduced [7].

A way of investigating the readiness of an AI algorithm 
is to validate its accuracy in a clinical setting. In the case 
of segmentation results, the contours could be shown to 
trained readers to do a qualitative evaluation [8]. When the 
segmentation results are assessed by clinicians for correct-
ness, the relation to the geometrical evaluation metrics can 
be explored to see if these can somehow be linked to clini-
cal usability. This paper will test if the five most important 
metrics to measure overlap could be used to indicate if AI 
algorithms are fit for clinical practice.

Materials and Methods

Nomenclature

The terminology coined by Liu et al. [9] is used for the 
description of our datasets. The training dataset is the data-
set used for optimization of the model weights, the tuning 
dataset is used to avoid overfitting during the training phase, 
and the internal validation dataset is used for measuring the 
accuracy of the neural networks after training.

Population

The dataset used in this paper comes from the Thoraces retro-
spective study composed of nearly 4000 female breast cancer 
patients treated between 2005 and 2008 at the Department 
of Radiation Oncology of the University Medical Center 
Groningen. Exclusion criteria included the unavailability of 
a planning CT scan or a medical history of cancer requiring 
adjuvant treatment [10]. A total of 377 CT volumes with heart 
delineations available were randomly selected for our study. 
These 377 volumes were divided into a training dataset (303 
volumes), a tuning dataset (37 volumes) and an internal valida-
tion dataset (37 volumes).

Scan Protocol

Non-triggered CT scans were acquired from a SOMATOM 
Sensation Open (40 slice, Siemens Medical Inc.). The tube 
voltage and current were 140 kVp and 100 reference mAs, 
respectively. The slice thickness was either 5 or 3 mm, 
depending on the year the scans were made.

Data Annotation and Processing

The CT scans of the patients were automatically contoured by 
using a heart atlas registration software (Mirada RTx 1.6 and 
Workflow Box 1.4, Mirada Medical Ltd., Oxford, United King-
dom, research only). The atlas was based on 20 breast cancer 
patients [10, 11]. The contouring of these patients was checked 
and, if needed, corrected by a senior radiotherapy technician 
and subsequently validated by a radiation oncologist.

For use in deep learning, the CT images and the labels 
were deidentified, extracted and converted to NumPy format 
files. The CT images were windowed to mediastinum win-
dow level (W: 350 HU, L: 50 HU). The slices were recon-
structed into volumes to extract sagittal and coronal slices 
for use in the 2.5D network.

The dataset was inherently skewed due to the heart 
not being included in most of the CT slices. To balance 
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the dataset, all the CT slices containing the heart were 
included, while only 20% of slices without heart were 
included. This results in 12,620 axial CT slices, 38,973 
coronal CT slices and 49,147 sagittal CT slices in total 
for training.

Architectures and Model Training

The architecture of the neural network used in this paper is 
based on U-net [12]. We have added dilated convolutional 
layers in the first two and last two convolutional layers of 
the original network. This allows the network to make more 
use of spatial information in the larger images. One neural 
network is trained for axial, sagittal and coronal slices each, 
for a total of 3 neural networks. The final prediction is cre-
ated by combining the predicted contours of the three neural 
networks with either a majority voting operator.

The last activation layer was used a sigmoid function. All 
neural networks are trained for 20 epochs with a batch size 
of 5 images. The optimizer used was Adam with a learn-
ing rate of 10−5. The 1-Dice Similarity Coefficient (DC) 
is used as the loss function for the 2.5D U-nets. Training 
was performed on the Peregrine cluster of the University of 
Groningen using an NVIDIA V100 Tensor Core GPU. The 

code was implemented in Python v3.6 and used TensorFlow 
v2 and Keras v2.6.

Metrics

To assess the results of the experiment performed in this 
paper, the DC, precision, sensitivity, pixel-wise accuracy 
and 95% Hausdorff distance (95% HD) of the predictions of 
the internal validation dataset were calculated. The predic-
tions are created by a majority voting operator between the 
three predictions of the axial, sagittal and coronal networks. 
The DC is a measure of the amount of overlap between the 
prediction mask and the ground truth mask. The 95% HD 
is based on the maximum Hausdorff distance. This metric 
calculates the maximum distance of a predicted contour 
point to the nearest contour point of the ground truth. By 
using the 95th percentile, outliers have less impact. There-
fore, higher values mean more distance between the edges 
of the ground truth and the predictions, and as such, worse 
results. The precision and sensitivity give insight on the false 
positive voxels, true positive voxels and true negative voxels 
predicted by the networks. Finally, pixel-wise accuracy was 
calculated for overall accuracy.

Fig. 1   4 CT slices with pre-
dicted contouring of the heart as 
shown to the radiologists for the 
qualitative evaluation. The let-
ters correspond with the consen-
sus answers for this particular 
slide. A was rejected with clear 
mistakes, B was rejected with 
minor but clinically relevant 
mistakes, C was accepted with 
small but irrelevant mistakes 
and D was accepted with no 
mistakes
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This paper uses median values in reporting the metrics. 
It is common to see mean values reported in papers, but the 
accuracy metrics are not normally distributed and should, 
therefore, be reported as medians.

Qualitative Evaluation

To evaluate the correlation between the metrics and accept-
ance of slices in clinical applications, three experienced 
radiologists, specialized in cardiothoracic imaging, scored 
101 slices from the internal validation dataset with predicted 
contours as shown in Fig. 1. The scoring was done sepa-
rately, so all slices had separate answers per radiologist. The 
answers available to the question ‘Your colleague asks you 
to check the following contour, would you:’ were:

•	 A, adjust the contour, there are clear major mistakes
•	 B, adjust the contour, there are minor but clinically rel-

evant mistakes,
•	 C, accept the contour, there are small but irrelevant mis-

takes
•	 D, accept the contour, it is very accurate [11]

The final answer was made by majority vote. For fur-
ther analysis, slices where the consensus was A or B were 
assigned as rejected slices, whereas C and D consensus were 
treated as accepted slices. Every slice, therefore, had a quan-
titative number based on the evaluation metrics and had a 
qualitative measure in the form of accepted or rejected. This 
was done to investigate the validity of a quantitative metric 
threshold for accepting or rejecting contours.

A threshold for the evaluation metric was then used to 
divide the slices in accepted and rejected slices. Cohen’s 
kappa could be calculated to investigate the agreement 
between the readers and the use of a metric for accepting 
or rejecting slices.

Statistical Analysis

The differences between the values of the metrics and the 
evaluation answers of the readers were analysed using a 
Kruskal–Wallis H test in SPSS. A Kruskal–Wallis H test 
was selected to compensate for the small dataset and the 
skewed distribution of the data.

Results

The 2.5D CNN achieved a DC of 0.91, a precision of 0.89, 
a sensitivity of 0.94, pixel-wise accuracy of 0.95 and 95% 
HD of 12.8 voxels with the majority voting as method for 
combining the 3 predictions.

Qualitative Evaluation

Three radiologists scored 101 CT slices with predicted con-
tours for correctness of the contour. Seventy-six slices were 
accepted and 25 rejected. The median values and interquartile 
ranges of the overlap metrics and pixel-wise precision, sen-
sitivity and accuracy grouped either per rejected/accepted or 
per answer can be seen in Tables 1 and 2. Figures 2, 3 and 
4 show the consensus answers and their correlating 95% HD, 
DC and pixel-wise accuracy values of the CT slices. Of the 
slices with a DC over 0.96 (N = 20) or a 95% HD under 5 
voxels (N = 25), no slices were rejected by the readers. The 
pixel-wise accuracy showed no such threshold.

The highest agreement between thresholding the metrics 
and the consensus of the readers is reached at thresholds for 
the 95% HD under 12, a DC of over 0.85 and a pixel-wise 
accuracy of over 0.96 with Cohen’s kappa of 0.40, 0.51 and 
0.31 respectively (Figs. 5, 6 and 7). Precision and sensitiv-
ity reached Cohen’s kappa of 0.36 and 0.47.

Table 1   Results of the evaluation as done by the radiologists. The 
answers are combined by majority vote and grouped by rejected (A 
or B answers) or accepted (C or D answers) slices. The medians and 

25th and 75th quartiles of the DC, precision, sensitivity, 95% HD and 
pixel-wise accuracy are given for the accepted and rejected slices

DC 95% HD
(in voxels)

Precision Sensitivity Pixel-wise accuracy

Rejected (N = 25) 0.83 (0.76–0.87) 18.1 (11.7–27.0) 0.80 (0.72–0.85) 0.87 (0.80–0.97) 0.93 (0.84–0.99)
Accepted (N = 76) 0.93 (0.87–0.97) 8.08 (3.27–13.2) 0.90 (0.82–0.98) 0.98 (0.95–0.99) 0.98 (0.95–0.99)

Table 2   Results of the evaluation by radiologists per answer. The medians and 25th and 75th quartiles of the metrics are given per answer

Consensus DC 95% HD (in voxels) Precision Sensitivity Pixel-wise accuracy

A (N = 7) 0.81 (0.76–0.88) 21.1 (12.7–32.0) 0.72 (0.71–0.91) 0.89 (0.84–0.98) 0.91 (0.85–1.00)
B (N = 18) 0.84 (0.76–0.87) 16.9 (10.0–23.8) 0.81 (0.73–0.85) 0.86 (0.78–0.96) 0.94 (0.82–0.99)
C (N = 32) 0.90 (0.86–0.93) 10.3 (5.4–18.5) 0.87 (0.77–0.94) 0.98 (0.77–0.94) 0.98 (0.90–0.99)
D (N = 44) 0.95 (0.89–0.99) 5.90 (2.00–10.2) 0.94 (0.86–0.99) 0.99 (0.97–0.99) 0.98 (0.96–0.99)
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Statistical Analysis

The Kruskal–Wallis H test showed that there was a sta-
tistically significant difference in all 4 quantative metrics 

compared to the consensus answers with χ2s of 37.0, 23.6, 
23.2 and 27.7, all p < 0.001, for the DC, precision, sensi-
tivity and 95% HD metrics and critical χ2 of 7.81. Pixel-
wise accuracy showed no statistically significant difference 
between the metrics and consensus answers with a χ2 of 
4.82.

Discussion

We show that the DC, precision, sensitivity and 95% 
HD metrics correlate with clinical acceptance by using a 
Kruskal–Wallis H test. However, the results also show that a 
high DC or low 95% HD is no guarantee for clinical accept-
ance unless in the higher echelons for the DC and lower ech-
elons for the 95% HD. Based on our findings, it is difficult to 
indicate clinical acceptance based on a minimal value of a 
metric. An argument could be made that a minimum of 0.96 
for the DC and a maximum of 5 for the HD, for every predic-
tion, would ensure clinical acceptability. This would require 
a very stable and generalized deep learning algorithm.

The automatic contouring of the whole heart, albeit prom-
ising, still needs to be corrected, although often minimally, 
even with high metric scores. It would, however, be usable 
as a first-stage contouring that can then be corrected by the 
technicians. The average DC achieved shows that most slices 
would need correction. Only 4 of the 50 CT slices shown to 
the radiologists with a DC of over 0.9 were rejected.

Fig. 2   Overview of the consensus answers and the corresponding 
95% HD values of the slices. The grey bar indicates the median value 
with the 25th and 75th quartiles. The coloured dots are the qualitative 
evaluation answers

Fig. 3   Overview of the consensus answers and the corresponding 
DC values of the slices. The grey bar indicates median value with the 
25th and 75th quartiles. The coloured dots are the qualitative evalua-
tion answers

Fig. 4   Overview of the consensus answers and the correspond-
ing pixel-wise accuracy values of the slices. The grey bar indicates 
median value with the 25th and 75th quartiles. The coloured dots are 
the qualitative evaluation answers
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Limitations

There are a number of limitations to the work presented in 
this paper. No postprocessing was performed on the predic-
tions of the neural networks. Small postprocessing steps, 
such as the removal of small objects or the smoothing of 
edges, such as seen in the right most image of Fig. 1, might 
have improved the accuracy further. We also recommend 
doing this when presenting contours to readers. A number 

of contours were rejected only due to the edges being rough 
in the contours. These might not be clinically significant and 
easily removed with postprocessing steps.

The ground truth masks of the heart contours did not 
include the aorta. The DL algorithms, therefore, learned 
to exclude the aorta as well. For the qualitative evaluation, 
however, it was difficult for the readers to evaluate if the 
aorta was in the CT slice in some images. The readers were 
only presented with random CT slices, so could not scroll 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Co
he

n'
s k

ap
pa

Dice threshold

DC threshold vs Cohen's kappa

Fig. 6   This graph shows the agreement between metrics and readers when shifting the threshold for the DC for acceptance or rejection of con-
tours

245Journal of Digital Imaging  (2022) 35:240–247

1 3



through the volume to evaluate the aorta based on surround-
ing slices. Ten slices were accepted with low DC and high 
HD due to this effect (Fig. 8).

Another limitation is that this work is only tested on a 
single dataset with large ground truths and with only one 
AI architecture. It would be interesting to investigate the 
effects in smaller or more difficult segmentation problems 
and the effect of different AI tools or architectures. It should 
be noted that the effect of very high DC or very low 95% HD 
on clinical acceptance is only based on a very small sample, 
only 20 and 25 slices in the cases of the DC and 95% HD 
metric respectively. Similarly, only three metrics were ana-
lysed for their clinical acceptability.

Implications for Clinic and Future Work

With this work, we hope to make a step towards implementa-
tion of AI software into the clinic by showing the relevance 
of qualitative evaluation of clinical acceptance and the 
necessity of better evaluation metrics. Since average values 
of metrics seem to fail in predicting the use in clinic, we 
would like to suggest minimal or maximal values of met-
rics were reported. This would, of course, be susceptible to 
outliers, so an idea to minimize that might be to use mini-
mal value of metrics and excluding a certain percentage of 
outliers. If a method could be found for indicating clinical 
usability of an AI algorithm, it might be easier for clinicians 
to interpret results of AI papers.
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