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Abstract
Fungal keratitis (FK) is a common and severe corneal disease, which is widely spread in tropical and subtropical areas. Early 
diagnosis and treatment are vital for patients, with confocal microscopy cornea imaging being one of the most effective 
methods for the diagnosis of FK. However, most cases are currently diagnosed by the subjective judgment of ophthalmolo-
gists, which is time-consuming and heavily depends on the experience of the ophthalmologists. In this paper, we introduce a 
novel structure-aware automatic diagnosis algorithm based on deep convolutional neural networks for the accurate diagnosis 
of FK. Specifically, a two-stream convolutional network is deployed, combining GoogLeNet and VGGNet, which are two 
commonly used networks in computer vision architectures. The main stream is used for feature extraction of the input image, 
while the auxiliary stream is used for feature discrimination and enhancement of the hyphae structure. Then, the features are 
combined by concatenating the channel dimension to obtain the final output, i.e., normal or abnormal. The results showed 
that the proposed method achieved accuracy, sensitivity, and specificity of 97.73%, 97.02%, and 98.54%, respectively. These 
results suggest that the proposed neural network could be a promising computer-aided FK diagnosis solution.
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Introduction

Fungal keratitis (FK) is one of the most severe vision-
threatening ocular diseases worldwide, especially in 
developing countries, and seriously affects the patients’ 
quality of life. More than 70 kinds of opportunistic fungi 
have been demonstrated to cause FK, and these are mainly 
divided into filamentous fungi and yeast-like fungi [1]. 

The accurate diagnosis and early treatment are crucial to 
avoid severe complications, such as corneal perforation, 
hypopyon, endophthalmitis, and even blindness [2]. The 
current commonly used clinical examination methods 
include slit lamp examination, corneal scraping micros-
copy, fungal culture, tissue biopsy, KOH test, PCR, and 
confocal microscopy [2]. However, they all have limita-
tions: (a) a slit lamp examination can observe only the 
surface of the cornea and can provide only a simple initial 
diagnosis based on symptoms [3]; (b) scrape microscopy, 
tissue biopsy, and the KOH test can damage the cornea 
[4]; (c) fungal culture takes approximately 1  week to 
develop and makes timely diagnosis difficult [5]; and (d) 
the cost of PCR is too high to be suitable for widespread 
clinical diagnosis [6].

Confocal microscopy has been used for the early diag-
nosis of FK, and the results until now have been promis-
ing. However, this diagnosis is mainly depending on the 
subjective experience of ophthalmologists or experts, which 
is time-consuming and has a high false positives rate [2]. 
Furthermore, diagnosis based on confocal microscopy is 
not able to distinguish the species and the activity of fungi, 
while it is not able to perform quantitative analysis and 
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quantify the fungal hyphal number. Therefore, there exists 
a great need for an automatic classification system that can 
recognize hyphae. However, there have been limited studies 
so far aiming to overcome this limitation. The data acquisi-
tion of in vivo confocal images with fungal hyphae is dif-
ficult and time-consuming, while the images may show a 
complex structure, which makes accurate diagnosis difficult. 
Experienced ophthalmologists are required for the collection 
and labeling of the data to solve the first problem. Moreover, 
machine learning methods are deployed to tackle the second 
problem.

The standard processing firstly involves the manual 
extraction of proper features and then their utilization to 
train a support vector machine model to perform image 
classification [7]. Since the features are extracted manually, 
the whole classification system is transparent and inter-
pretable. However, the hand-crafting process also limits 
the flexibility and refrains the design of general features. 
Deep-learning-based methods, which can automatically 
extract features from the original images without requir-
ing hand-crafted features, have been recently applied and 
greatly improved the performance of many computer vision 
tasks. In general, in deep-learning-based methods, a convo-
lutional neural network is trained on a large dataset auto-
matically extracting hierarchical features. Harnessing the 
power of deep learning methods, automatic diagnosis of 
FK based on neural networks has also undergone extensive 
development [2, 8]. However, training a single network 
may not fully exploit the structural features of images in 
the case of FK classification. In the present research work, 
we suggest incorporating prior knowledge into the training 
of neural networks to substantially exploit the structural 
information of images and facilitate strong classification 
performance. Specifically, a two-stream convolutional neu-
ral network is deployed combining two commonly used 
network architectures in computer vision, GooLeNet [9] 
and VGGNet [10]. For the one stream, the network is used 
to directly extract features from the input image. For the 
second stream, the possible structure of fungal hyphae is 
first extracted to be used as prior knowledge and then the 
processed image is used as the input of the stream. Finally, 
the features extracted by the two streams are integrated to 
be used as inputs for the prediction models. The intuition 
is that the pixel intensity in regions with fungal hyphae is 
generally higher than the pixel intensity in other regions. 
Accordingly, the mean of all pixel values is subtracted to 
extract the possible structure of fungal hyphae as prior 
knowledge. This two-stream convolutional neural network 
was named as structure-aware convolutional neural net-
work (SACNN).

Related Work

Deep Learning on Image Classification

Since AlexNet [11] was first applied to ImageNet clas-
sification [12], the computer vision community has 
witnessed a rapid development of deep learning (a.k.a. 
deep neural networks). The performance on image clas-
sification and other computer vision tasks has greatly 
improved due to the advantages of deep learning [9, 10, 
13, 14]. The deep convolutional neural networks, which 
are typically used in computer vision tasks, generally 
consist of several sequential convolutional layers; they 
are optionally followed by nonlinear function and pool-
ing operations and followed by several fully connected 
layers, with their overall topology exhibiting tremendous 
potential in image-related tasks. The AlexNet, overcame 
other non-neural-network-based methods by large mar-
gins, demonstrating state-of-the-art performance on 
large-scale datasets [11]. The network in this tool con-
sists of five convolutional layers and three fully con-
nected layers, where each convolutional layer is followed 
by ReLU nonlinearity [15] and normalization called local 
response normalization. Data augmentation and dropout 
[16] were exploited in the training of the neural network 
to prevent overfitting [11]. However, although there are 
only five convolutional layers and three fully connected 
layers, the computational complexity of the network is 
high, due to the large kernel in the convolutional layers, 
which may prevent the network from increasing its depth. 
The recently introduced networks, such as VGGNet [10] 
and GoogLeNet inception v1 [9], attempt to use small 
kernels to lower the computational complexity while 
maintaining the same receptive field of the input image 
in an attempt to overcome the latter problem. Specifi-
cally, for VGGNet, the size of the convolution kernel is 
set to 3 × 3. Compared with the 3 × 3 pooling kernels of 
AlexNet, VGGNet has 2 × 2 pooling kernels. In addition, 
larger numbers of layers and channels (i.e., deeper and 
wider networks) are used in VGGNet. Generally, deeper 
networks result in larger model capacity and can learn 
more powerful and discriminative representations. For 
GoogLeNet inception v1, multibranch convolution is 
designed to extract image features from different convo-
lution kernels. The network is also extended to be deeper 
and wider to improve its performance. More details about 
those state-of-the-art models can be found in their origi-
nal papers [9, 10, 17, 18]. In this paper, we mainly utilize 
VGGNet [10] and GoogLeNet inception v1 [9] to classify 
medical images.
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Automatic Diagnosis of Fungal Keratitis

The accurate and quick diagnosis of FK is of great clini-
cal significance, as microbial culture takes approximately 
7 days, and confocal imaging has obtained the potential 
to achieve automatic diagnosis with the recent advances 
in image processing techniques using artificial intelli-
gence. In 2016, Qiu et al. developed an automatic diag-
nosis method based on local binary patterns and support 
vector machines [19]. This method achieved an accuracy 
of 93.53% on a dataset with approximately 200 images 
[19]. Wu et al. proposed an adaptive robust binary pattern 
as a better texture descriptor [20] to further improve the 
performance, and the accuracy improved to 99.74% on 
a dataset with approximately 400 images [20]. However, 
these methods are based on traditional image processing 
methods, and the datasets were relatively small, resulting  
in a limited role in clinical applications. With the rapid 
development of deep learning in computer vision appli-
cations, it has become natural to apply deep-learning-
based methods to the automatic diagnosis of FK. Liu 
et al. proposed applying convolutional neural networks 
combined with image preprocessing algorithms to diag-
nose and classify fungal hyphae, achieving high accuracy 
of 99.95% [21]. They used data augmentation and image 
fusion to preprocess the images to improve the classifi-
cation performance. Specifically, they first augmented 
images by image rollovers, then proposed sub-area con-
trast stretching to preprocess the images, and third fused 
the preprocessed images with the original images using a 
histogram matching fusion algorithm [21]. This combina-
tion of image preprocessing and convolutional neural net-
works presented satisfying results. However, the proposed 
image preprocessing is slightly complex, making it too 
time consuming for real-time processing in clinical appli-
cations. In addition, Lv et al. recently adopted ResNet for 
the automatic diagnosis of FK [22]. The proposed method 
in this study fuses prior knowledge to improve the clas-
sification performance and utilizes a larger dataset to train 

the network compared to the aforementioned comparative 
studies. Additionally, elaborate comparison experiments 
with previously proposed methods were conducted in the 
present study.

Method

The aim of this research work was to distinguish confocal 
corneal images from fungal hyphae using images without 
fungal hyphae and deep-learning-based methods. In general, 
a typical method to address the problem is to train a convo-
lutional neural network with a classification loss function. 
In this paper, however, we suggest incorporating simple but 
effective prior knowledge to further improve the classifi-
cation performance. For the confocal corneal images with 
fungal hyphae, the pixel intensity of the region with fun-
gal hyphae is generally higher than the one in the region 
without fungal hyphae. Accordingly, we can extract the 
approximate structure of hyphae to assist the classification. 
In this paper, the mean of all pixel values is subtracted to 
extract the structure of the hyphae, with this method being 
simple but effective. The extracted approximate structure is 
used as prior knowledge to improve the prediction perfor-
mance. For this purpose, a two-stream convolutional neural 
network, called SACNN, is used. SACNN consists of the 
main stream extracting image-level features and an auxil-
iary stream extracting prior-level features. The main stream 
processes the original image to extract hierarchical features, 
and the auxiliary stream processes the corresponding prior 
knowledge (i.e., approximate structure of hyphae). The 
overall framework is presented in Fig. 1. Regarding feature 
extraction of prior knowledge, it is expected that the auxil-
iary stream can learn discriminating features and enhanc-
ing the feature of hyphae structure for images with fungal 
hyphae, which may improve the classification accuracy. 
Then, the features extracted by the two streams are further 
integrated to perform the final prediction. For each stream, 
commonly used networks in computer vision applications 

Fig. 1  The overall proposed 
framework of the two-stream 
structure-aware convolutional 
neural network
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were adopted, i.e., Inception v1 [9] for the main stream 
and VGGNet [10] for the auxiliary stream. Other networks, 
such as ResNet [13] and DenseNet [18], may also be used 
as the two streams. However, the main focus of this paper 
was to incorporate prior knowledge on the structure of fun-
gal hyphae to improve the classification performance, and 
thus, less emphasis was given on optimizing the selection 
of network architectures and only commonly used and high-
performing architectures in other computer vision applica-
tions were utilized.

Experiments

Dataset and Implementation Details

The dataset used in the system is the SYSU_OC_  
Keratis2019 dataset, which consists of 7278 confocal images 
capturing the cornea that has been collected from FK 
patients at the Zhongshan Ophthalmic Center, Sun Yat-sen 
University, from November 2015 to May 2019. Among these 
patients, 3862 had hyphae and 3416 did not. All images were 
produced with an HRT3-CM confocal laser cornea micro-
scope from Heidelberg Company in Germany, and there 
were no selection criteria for age and sex. The study protocol 
was approved by a properly constituted institutional review 
board (Zhongshan Ophthalmic Centre ethics committee of 
Sun Yat-sen University, Guangzhou, China), and the study 
was conducted under the ethical principles of the Declara-
tion of Helsinki (2017KYPJ104).

The confocal images of FK were captured as follows. 
A sterile Tomocap (Heidelberg Engineering GmbH, 

Dossenheim, Germany) was mounted over the objec-
tive of the microscope (Zeiss, × 63), and polyacrylic acid 
0.2% (Viscotears, Novartis) was used as a coupling agent 
between the cap and the lens objective. The options for 
image acquisition included section (a single image at a 
particular depth), volume (a series of images over 60-μm 
depth), and sequence scans (a video sequence at a par-
ticular depth). The wavelength of the laser, which was 
employed in the HRT II/RCM, was 670 nm, and each 
standard 2-dimensional image consists of 384 × 384 pixels 
covering an area of 400 µm × 400 µm.

The image preparation process firstly starts with the con-
firmation of the diagnosis of FK by the results of the cor-
neal microbial culture of the fungi. Then, the IVCM images 
were randomly assigned to three junior corneal experts for 
initial screening and labeling. Each expert reviewed a set of 
images, and the other two corneal experts were invited to 
confirm the labeling results. If the diagnoses of the first- and 
second-round experts were inconsistent, the image was being 
submitted to the highest level of corneal expertise to obtain 
a final decision. A total of 3862 images with hyphae were 
selected. Finally, all the images with hyphae were traced by 
the drawing board with a red brush of 1-pixel width in the 
computer.

The total dataset is further split into a training and a test 
set, respectively. Twenty percent of the total dataset was 
selected as the test set, which consisted of 1455 images, 
with 683 of them being of patients without fungal hyphae 
and 772 of them coming from patients with hyphae.

Some examples in the dataset are shown in Fig. 2. Exam-
ples of prior images containing possible hyphal structures 
are shown in Fig. 3.

Fig. 2  Examples of images with 
and without fungal hyphae. Top 
row: with fungal hyphae. Bot-
tom row: without fungal hyphae
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The size of the images was resized and fixed to 224 × 224, 
and these processed images were used to train the network. 
The initial learning rate was 0.0001, decreasing linearly 
during the training process. Kaiming initialization [23] was 
used to assist the network training for the initialization of 
the network weights and biases. The batch size was set to 8 
to limit the usage of GPU memory. In addition, commonly 
used binary cross-entropy loss was utilized as the loss func-
tion and the Adam optimizer [24] was deployed to update 
the network parameters. The network training terminated 
after 100 epochs.

Experimental Results

The trained model was evaluated on a test set consisting 
of 1455 images. The confusion matrix of the classification 
results is shown in Fig. 4. According to these results, 10 
images without fungal hyphae were diagnosed as fungal 
images, and 23 images with fungal hyphae were diagnosed 
as nonfungal images. Several statistical indexes, including 
accuracy, precision, sensitivity, specificity, F1-score, area 
under the ROC curve (denoted as ROC-AUC), and area 
under the precision-recall curve (denoted as PR-AUC), were 
calculated to quantitatively evaluate the performance of the 
proposed method. These metrics are defined as follows:

(1)Accuracy =
TP + TN

TP + TN + FP + FN

where TP is the number of true positive samples, TN is the 
number of true negative samples, FP is the number of false-
positive samples, and FN is the number of false-negative sam-
ples. The positive samples here are images with fungal hyphae.

The accuracy, precision, sensitivity, specificity, and 
F1-score were 0.9773, 0.9868, 0.9702, 0.9854, and 0.9784, 
respectively. The precision-recall and the ROC curves are 
shown in Figs. 5 and 6, respectively. The proposed method 
was benchmarked against previously proposed algorithms 
in [21] to further confirm the improvement in its classifica-
tion performance. The method proposed in [21] was used 
to train neural networks using the training set of this study. 
Experimental results on the same training and test sets are 
shown in Table 1. The results indicate that our method can 
achieve better performance.

(2)Pr ecision =
TP

TP + FP

(3)Sensitivity = Re call =
TP

TP + FN

(4)Specificity =
TN

TN + FP

(5)F1 =
2 × Pr ecision × Re call

Pr ecision + Re call

Fig. 3  Examples of original images and corresponding prior images. Top row: original images. Bottom row: prior images
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Fig. 4  Confusion matrix of 
the classification results on the 
test set

Fig. 5  Precision-recall curve of 
the classification results on the 
test set
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An ablation study was also conducted to validate the 
effectiveness of the fusion of prior knowledge. Firstly, the 
auxiliary stream was removed and only the main stream was 
trained (i.e., GoogLeNet [9]) to perform the prediction. Sec-
ondly, the main stream is removed and only the auxiliary 
stream was trained (i.e., VGGNet [10]) to make the predic-
tion. The results are shown in Table 2. The results showed 
that the fusion of prior knowledge is indeed beneficial for 
the classification performance.

Conclusions

In this paper, we propose the incorporation of simple but 
effective prior knowledge to classification models of FK. 
The mean of all pixel values was subtracted from every 

image to extract the approximate hyphae structure as prior 
knowledge. To incorporate this prior knowledge, a two-
stream convolutional neural network is utilized to facilitate 
the fusion. The main stream can extract image-level features 
from the original images. For the auxiliary stream, the net-
work is expected to learn conducting feature discrimination 
and enhancement of images with fungal hyphae. The experi-
mental results demonstrated that the proposed method can 
achieve higher accuracy compared to other existing methods.

An interesting future direction could be to incorporate 
and fuse more complicated prior knowledge, especially 
domain knowledge in the medical field, to further improve 
the diagnosis accuracy. Moreover, it is worth exploring the 
combination of deep-learning-based methods and domain 
knowledge. However, interpretability is very important in 
medical applications, and this is a limitation of existing 

Fig. 6  ROC curve of the clas-
sification results on the test set

Table 1  Comparison results of 
the proposed and other existing 
methods

Method Accuracy Precision Sensitivity Specificity F1-score ROC-AUC PR -AUC 

ALEXNET + HMF 0.7237 0.9920 0.4831 0.9956 0.6498 0.9650 0.9720
GOOGLENET + HMF 0.9567 0.9810 0.9365 0.9795 0.9582 0.9880 0.9880
SACNN 0.9773 0.9868 0.9702 0.9854 0.9784 0.9930 0.9940

Table 2  Ablation results Method Accuracy Precision Sensitivity Specificity F1-score ROC-AUC PR-AUC 

GOOGLENET 0.9677 0.9714 0.9676 0.9678 0.9695 0.9930 0.9950
VGG16 0.8158 0.8310 0.8223 0.8225 0.8255 0.9130 0.9170
SACNN 0.9773 0.9868 0.9702 0.9854 0.9784 0.9930 0.9940
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deep-learning-based methods. In future research, we aim 
to design more interpretable algorithms, further supporting 
physicians to make clinical decisions.
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