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Abstract
Degenerative changes of the spine can cause spinal misalignment, with part of the spine arching beyond normal limits or 
moving in an incorrect direction, potentially resulting in back pain and significantly limiting a person’s mobility. The most 
important parameters related to spinal misalignment include pelvic incidence, pelvic tilt, lumbar lordosis, thoracic kyphosis, 
and cervical lordosis. As a general rule, alignment of the spine for diagnosis and surgical treatment is estimated based on 
geometrical parameters measured manually by experienced doctors. However, these measurements consume the time and 
effort of experts to perform repetitive tasks that could be automated, especially with the powerful support of current artificial 
intelligence techniques. This paper focuses on creation of a decentralized convolutional neural network to precisely measure 
12 spinal alignment parameters. Specifically, this method is based on detecting regions of interest with its dimensions that 
decrease by three orders of magnitude to focus on the necessary region to provide the output as key points. Using these key 
points, parameters representing spinal alignment are calculated. The quality of the method’s performance, which is the con-
sistency of the measurement results with manual measurement, is validated by 30 test cases and shows 10 of 12 parameters 
with a correlation coefficient > 0.8, with pelvic tilt having the smallest absolute deviation of 1.156°.
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Introduction

Lumbar lordosis is the normal inward curvature of the lum-
bar spine observed only in human beings. It supports the 
body, absorbs shock, and ensures stability and flexibility, 
maintaining the torso within the cone of economy of so-
called genuine bipedalism [1]. When the curve arches too 

far inward, it is known as increased lumbar lordosis or sway-
back disease [2]. Abnormal kyphosis is a spinal disorder 
caused by excessive outward curve of the thoracic spine and 
is referred to as Scheuermann’s kyphosis [3]. In the cervical 
region of the spine, there is also dropped head syndrome, in 
which the neck bends forward too much to maintain a hori-
zontal gaze [4]. It is well known that sagittal spinal deformi-
ties are more associated with low quality of life and debili-
tating conditions than is deformities in the coronal plane 
[5]. There have been many studies to determine the range of 
angles that represent the alignment status of spinal regions 
via geometrical relationships [6–8].

In data collection procedures, geometrical parameters 
often are manually measured from X-ray images by experi-
enced surgeons. This can help limiting data collection errors 
and consequently increasing the reliability of analyses drawn 
from the dataset. However, it consequently requires a lot of 
effort and time, especially in research studies that require 
diverse datasets. To measure an angle parameter, such as 
a Cobb angle between two vertebrae, the radiologist need 
to draw tangent lines along the end of vertebrae on X-ray 
images by a ruler and a pencil, and then measure the angle 
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using a protractor. This procedure highly dependents on the 
radiologist’s experience and also consumes a lot of time 
because of the large number of angle parameter between 
vertebras in one spine. Also, manual measurement of param-
eters presents a significant challenge in aggregating data for 
statistical analysis which is mostly performed sequentially 
by hand.

Due to the development of artificial intelligence tech-
niques, especially regarding deep learning, such applications 
in medical metrology that use vision-based data types have 
significant potential. One of the strengths of this technique 
is that it reduces the labor of repetitive work through a com-
bination of the high-volume processing power of computers 
and the ability of artificial intelligence techniques to gener-
ate a set of weighting factors optimized to simulate the expe-
rience of experts. In addition, data collection after automatic 
measurement can be conveniently integrated with statistical 
tools, especially for large-scale datasets. Aubert et al. [9] 
proposed a method to automatically reconstruct the spine 
in three dimensions, in which a realistic statistical model of 
the spine was fitted to images using a convolutional neural 
network (CNN). Weng et al. [10] introduced an approach 
that used regression deep learning to estimate automatically 
the sagittal vertical axis, which is one of the parameters that 
describes sagittal alignment. Cho et al. [11] presented a 
study using U-net to segment the landmarks in radiographs 
and subsequently measure key parameters including cervi-
cal lordosis (CL), thoracic kyphosis (TK), pelvic incidence 
minus lumbar lordosis (PI-LL), sagittal vertical axis (SVA), 
and pelvic tilt (PT). Wu et al. [12] proposed a novel Multi-
View Correlation Network architecture to measure the Cobb 
angle according to detected landmarks but did not mention 
parameters for sagittal alignment. For automatic measure-
ment of parameters representing the state of spinal align-
ment in this study, a program was developed based on a 
decentralized CNN, which was introduced by Chae et al. 
[13] and Nguyen et al. [14]. The program was highly rated in 
terms of correlation with manual measurements. However, 
both of these mentioned methods were mostly developed 
for positioning only the lumbar and sacrum regions of the 
spine, while the symptoms of swayback disease or abnor-
mal kyphosis requires, also, the detection of vertebras on 
cervical regions. Therefore, it requires an upgraded method 
that the model provides the ability to evaluate global spinal 
alignment.

Most research focuses only on localized spinal regions, 
especially the lumbar region, while there is no comprehen-
sive research on automatic measurement methods to evaluate 
global spinal alignment. Increased measurement of geomet-
rical parameters of the entire spine could provide informa-
tion for simultaneous monitoring and diagnosis of spinal 
sagittal deformities. This paper proposes a method that uses 
decentralized CNN algorithms to locate required key points 

and consequently measure the spinal alignment based on 12 
parameters distributed throughout the cervical, thoracic, and 
lumbar spine. The measurement accuracy of the proposed 
method is validated via a comparison with manual measure-
ments from experienced doctors as standard references.

Methods and Materials

Representative Parameters for Spinal Alignment

The angles chosen to characterize spinal alignment are 
determined according to geometrical relationships between 
quantities of interests, as shown in Fig. 1, including C2 
lower endplate (line AA’), C7 lower endplate (line BB’), 
T1 superior endplate (line CC’), L1 superior endplate (line 
DD’), sacrum superior endplate (line EE’), and the center of 
the femoral head (point F). Based on these points of interest 
positioned in spinal sagittal X-rays, representative param-
eters are measured.

 1. Pelvic incidence (PI) was defined as the angle between 
a line drawn from the center of the femoral heads 
(point F) to the midpoint of the sacral superior end-
plate (line EE’) perpendicular to the sacral superior 
endplate.

 2. Pelvic tilt (PT) was defined as the angle between a line 
drawn from the center of the femoral heads (point F) to 
the midpoint of the sacral superior endplate (line EE’) 
and the vertical line.

 3. Sacral slope (SS) was defined as the angle between the 
sacral superior endplate (line EE’) and the horizontal 
line.

 4. Lumbar lordosis (LL) was defined as the angle between 
the superior endplate of L1 (line DD’) and the superior 
endplate of S1 (line EE’).

 5. L1 incidence (L1I) was defined as the angle between a 
line drawn from the center of the femoral heads (point 
F) to the midpoint of the sacral superior endplate (line 
EE’) and perpendicular to the L1 superior endplate 
[15].

 6. T1 incidence (T1I) was defined as the angle between a 
line drawn from the center of the femoral heads (point 
F) to the midpoint of the sacral superior endplate (line 
EE’) and perpendicular to the T1 superior endplate.

 7. C2 incidence (C2I) was defined as the angle between a 
line drawn from the center of the femoral heads (point 
F) to the midpoint of the sacral superior endplate (line 
EE’) and perpendicular to the C2 inferior endplate 
[15].

 8. Thoracic kyphosis (TK) was defined as the angle 
between the superior endplate of T1 (line CC’) and 
the superior endplate of L1 (line DD’).
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 9. C2-C7 lordosis (C27L) was defined as the angle 
between the inferior endplate of C2 (line AA’) and the 
inferior endplate of C7 (line BB’).

 10. L1 slope (L1S) was defined as the angle between the 
horizontal line and superior endplates of L1 (line 
DD’).

 11. T1 slope (T1S) was defined as the angle between the 
horizontal line and superior endplates of T1 (line BB’).

 12. C2 slope (C2S) was defined as the angle between the 
horizontal line and inferior endplates of C2 (line AA’).

In an approach that differs from determining the lower 
and superior endplates of typical vertebrae (from C3 to L1), 
which is based on pairs of upper or lower corners and can 
be applied for special vertebrae such as C2 and S1, and the 
representative line AA’ is drawn from the anterior and pos-
terior corner of C2 inferior endplate (Fig. 1).

X‑ray Image Preparation

The X-ray images for parameter measurement included 500 
whole spine lateral radiographs from 500 patients obtained 
from March 2019 to November 2020 at a single institute. 
The collected radiographs were obtained with different 

X-ray scanners that had the average pixel dimensions of 
3240 × 1080. To increase the diversity of the constructed 
dataset, both good-posture cases and abnormal spinal 
deformity cases are included which particularly consist 
of images of 283 good-posture cases, 101 lumbar lordosis 
cases, and 116 thoracic kyphosis cases. Furthermore, during 
image collecting process, the posture of patient intentionally 
distributed from flexion to extension view, with forward and 
backward bending options. Totally, it includes 150 images of 
spinal flexion, 200 images of spinal neutral, and 150 images 
of spinal extension. Besides, cases of minors with the skel-
eton that is not fully developed and cases of degenerative 
disk disease, which the corners of a vertebra are difficult to 
be observe, were excluded from the dataset. And only high-
quality images in which the contrast and brightness were 
suitable for observation were used.

AI‑Based Measuring Program

Fukushima first introduced the CNN [16], which is well 
known for its feature auto-extracting ability via multi-types 
of layers. After the features are successfully extracted, a 
part of the fully connected layers (FC layers), which form a 
deep learning network with set weighting factors optimized 

Fig. 1  Representative param-
eters of spinal sagittal alignment
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during the training process, can predict the required informa-
tion of the input image. Therefore, the variety of the training 
dataset is one of the important factors that determine the 
accuracy of the predicted outcome.

Consequently, a decentralized CNN provided a solution 
that was decentralized to multiple detecting orders to achieve 
high accuracy with a small number of training images, which 
is extremely important in medical metrology. However, dif-
ferent from the previous research of Chae et al. [13], which 
used three orders to locate the spinal region of L1–S1 verte-
brae and femur head, or of Nguyen et al. [14], which located 
intervertebral discs between adjacent vertebrae from L1 
to S1, the developed program utilized 3 detecting orders 
to locate key points in 3 regions of interest (ROIs) of the 
cervical section with C1–T1 vertebrae, the lumbar section 
with L1–S1 vertebrae, and the femoral heads section, which 
adapt to typical parameters, as shown in Fig. 2a. In detail, 
after the three ROIs representing the cervical spine, lumbar 
spine, and femoral head sections were detected by the first-
order model, six minor ROIs were determined, including 
one for the C1 vertebra; four for the intervertebral discs in 
C2–C3, C7–T1, T12–L1, and L5–sacrum areas; and one 
for the femoral heads. At last, the exact position of each 
key point was calculated based on the corresponding ROIs 
obtained in the third order model. Figure 2b depicts the over-
all image training flowchart, with 500 input images hav-
ing 1620 × 540 pixel resolution for training the first-order 
model, 8454 input images with 500 × 250 pixel resolution for 
training each second-order model, and 76,086 input images 
with 150 × 150 pixel resolution for training each third-order 
model. The accuracy improvement was a consequence of 
not only decentralized detection but also dataset increment 
with the application of additional augmentation techniques. 
Considering the sagittal X-ray images which includes cases 
of patients having the sight views of both left and right with 
the unchanged direction of the sagittal X-rays along ver-
tical axis, flipping augmentation along horizontal axis is 
applied. Besides, vertebras have multiple size and orienta-
tion depending on the its position on the spine and also the 
individual. Therefore, the augmentation of rotation and scale 
are utilized to increase the diversity of the dataset for train-
ing the third-order models.

This study was approved by the institutional review board 
of our hospital (HYU 2020–05-032–001).

Architectures

After the input image features are extracted by the convolu-
tion [17] and max-pooling layers [18], two fully connected 
(FC) layers are used to calculate the position in terms of 
both horizontal and vertical values. Tables 1, 2 and 3 pre-
sent the dimensions of each layer along with the filter size 
and kernel applied for the first-, second-, and third-order 

detection models. However, the output number for each 
model depends on the quantity of required points that need 
to be detected in the considered ROIs. Each convolutional 
layer is composed of a set of matrices (filter/kernel) contain-
ing weighting factors, which are automatically updated for 
the features extracted during training. To reduce the output 
size from the previous layers, the max-pooling layers intro-
duced select the maximum sub-matrix value as a representa-
tive element in the max-pooling matrix. After constructing 
the convolution and max-pooling layers, the rectified linear 
unit (ReLU) [19] layer targets the replacement of negative 
input values with a zero value, because they are unnecessary 
for training. From the ReLU layer results, two FC layers 
with optimized weighting factors pass feature extraction and 
are used to calculate the final results, including the position 
values of the required points.

However, a highly complex CNN structure can lead to 
redundancy of untrained weighting factors, which is known 
as overfitting [20], and tends to induce accuracy variation 
between the training and testing results. The dropout layer 
(Google et al. [21]) is proposed to eliminate random connec-
tions between the nodes of two layers. Designing a suitable 
CNN architecture is an essential task that not only helps to 
avoid underfitting [22] but also reduces the effect of overfit-
ting [23]. After considering the specifics of the classified 
targets, a CNN architecture based on the VGG-net [24] is 
proposed for this inspecting method.

Purely in terms of a working principle, the purpose of 
training a deep learning system is to determine a set of 
weighting factors that is optimized to represent a detailed 
set of rules. Based on these rules, combined with an X-ray 
radiograph as the input data, the position of the key points 
can be estimated as the output values. This main task of 
training the deep learning model is preceded by a backpropa-
gation process for establishing a suitable weighting factor in 
all layers. The weighting factor adjustment is calculated as 
the difference between the output Aj from the deep learning 
model containing the calculated position value j for the input 
image and the label Yj created based on the actual position 
of the required points in the input image. This difference is 
calculated with mean square error as the chosen loss func-
tion L, expressed in Eq. (1) with n outputs in the dataset.

As the difference between Aj and Yj increases, the value 
of L also increases. Optimization for the weighting factors 
w
p
q between nodes p and q located in a neighboring layer 

is conducted based on the loss function difference in the 
direction from the output to input layer. After each training 
step, the weighting factor wq

p is updated by Δwq
p , which can 

be derived from Eq. (2) with a learning rate α, determining 
the model learning speed [25]. Here, zq denotes a weighted 

(1)L =
1

n

∑n

i=1
(Aj − Yj)

2
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Fig. 2  Detection procedure for 
the required points with the 
CNN model. (a) Partition into 
first, second, and third order 
detection. (b) Overall flowchart 
for the training and testing 
dataset
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input data summation by multiplying the weighting factor 
and oq , which is the node output signal.

During optimization of weighting factors, to calculate the 
difference between the current model performance and the 
labelled, exact values, the output calculated from the input 
and the weighting factors is necessary. This is called a feed 
forward process, in which the output Yn in layer n is calcu-
lated using Eq. (3) based on the input Xn provided by the 

(2)Δwq
p
= −�

�L

�oq

�oq

�zq

�zq

�w
q
p

previous layer and the set of weighting factors wn
i
 in layer n, 

where bn
i
 is the bias, and f  is the activation function selected 

by the ReLU.

After this process is sequentially conducted to the final 
layer, the output is determined as the final predicted results 
Aj . Besides, the hyperparameters, which are initially set 
for training CNN model, include dropout values of 50%, 
Adadelta [26] optimizer for adjusting learning rate, train-
ing epoch number of 50, and chosen batch size of 32. Also, 
cross-validation is performed with 5th iterations with the 
ratio between training data and test data as 8:2, which has 
shown the similarity in term of model’s performance on test 
data.

Results

Validation Process

To verify the performance of the proposed method, which 
was evaluated according to consistency with conventional 
manual measurements from experts, 30 spinal sagittal X-ray 
images that were not included in the training dataset were 
utilized. The considered alignment parameters of all test 
cases were manually measured by two experienced medical 
doctors and the mean values were determined as the stand-
ard references to ensure the reliability of the validation pro-
cess. The automatic measurement of the proposed method, 

(3)Yn
= f

�
∑

iw
n
i
Xn

+ bn
i

�

Table 1  Specification of layer size and shape of the first-order detect-
ing model

Layer Filter size/kernel size Output shape

Conv1 8 filter 9 × 9 (1612, 532, 8)
Max—pooling 1 4 × 4 (403, 133, 8)
Conv2 16 filter 7 × 7 (397, 127, 16)
Max—pooling 2 3 × 3 (132, 42, 16)
Conv3 16 filter 7 × 7 (126, 36, 16)
Max—pooling 3 2 × 2 (63, 18, 16)
Conv4 32 filter 5 × 5 (59, 14, 32)
Max—pooling 4 2 × 2 (29, 7, 32)
Conv5 32 filter 3 × 3 (27, 5, 32)
Dropout (27, 5, 32)
ReLU (27, 5, 32)
Fully connected 1 256 256
Fully connected 2 128 128
Output First-order model for entire input image: 

2

Table 2  Specification of layer size and shape of the second-order 
detecting model

Layer Filter size/kernel size Output shape

Conv1 8 filter 9 × 9 (492, 242, 8)
Max—pooling 1 3 × 3 (164, 81, 8)
Conv2 16 filter 7 × 7 (158, 75, 16)
Max—pooling 2 2 × 2 (79, 37, 16)
Conv3 16 filter 7 × 7 (73, 31, 16)
Max—pooling 3 2 × 2 (36, 15, 16)
Conv4 16 filter 5 × 5 (32, 11, 32)
Max—pooling 4 2 × 2 (16, 5, 32)
Conv5 32 filter 3 × 3 (14, 3, 32)
Dropout
ReLU (14, 3, 32)
Fully connected 1 256 256
Fully connected 2 90 90
Output Second-order model for cervical region: 

6
Second-order model for lumbar region: 4

Table 3  Specification of layer size and shape of the third-order 
detecting model

Layer Filter size/kernel size Output shape

Conv1 8 filter 9 × 9 (142, 142, 8)
Max—pooling 1 2 × 2 (71, 71, 8)
Conv2 8 filter 7 × 7 (65, 65, 8)
Max—pooling 2 2 × 2 (32, 32, 8)
Conv3 16 filter 5 × 5 (28, 28, 16)
Max—pooling 3 2 × 2 (14, 14, 16)
Conv4 16 filter 3 × 3 (12, 12, 16)
Max—pooling 4 2 × 2 (6, 6, 16)
Conv5 32 filter 1 × 1 (6, 6, 32)
Dropout
ReLU (6, 6, 32)
Fully connected 1 256 256
Fully connected 2 90 90
Output Third-order model for C1, L1 region: 4

Third-order model for C2, T1, S1 region: 
8

Third-order model for femoral heads 
region: 2
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in which six examples of the 30 test cases are shown in 
Fig. 3, was compared to the standard references via com-
parison criteria of mean absolute differences and correlation 
coefficient.

Comparison Results Between Proposed Method 
and Standard Reference

Based on the position of key points detected by the pro-
posed method, 12 sagittal parameters were calculated. To 
validate the consistency between the performance of the 
developed method and the manual measurements of the 
experienced doctors, the correlation coefficient and coef-
ficient of determination between two measurements were 
analyzed, as shown in Table 4. The method achieved the 
highest correlation in case of L1 incidence. However, 
the method appeared to have difficulties in measuring 
T1-related parameters, particularly the correlation coeffi-
cients of 0.584 for T1S and 0.751 for C27L. This difficulty 
also was observed in the mean absolute error (MAE) and 
standard deviation of absolute error (STD of AE), of which 
the lowest value was 1.156° for PT, and the largest error 
was from C27L.

To more clearly evaluate the performance of the proposed 
method with respect to each of the considered parameters, 
the detection rates of parameters, which is the ratio of the 
test case having the MAE of measured results smaller than 
the threshold, is enumerated, as shown in Fig. 4. The pro-
posed method shows efficiency in measuring PT, L1I, L1S, 
and PI, with the detection rate for these angles reaching 
0.8 with an error threshold of 3.5°, especially low at 2° 
in the case of PT. In addition, the visualized results of the 
T1-related parameters are incommensurate to the remaining 
results when they achieved a 0.8 detection rate at an error 
threshold of 8° in the C27L case and 9° for T1I and T1S.

The test results of the method were visualized via 
Bland–Altman (B-A) plots for all angles of the entire sagittal 
parameters, as shown in Fig. 5, which includes the horizon-
tal lines of mean difference (red solid line) and mean dif-
ference ± 1.96 standard deviation (SD) (blue dashed lines). 
The mean time required to perform the entire measurement 
procedure was less than 1 s.

To clarify the interobserver analysis from two experts 
and compare the variability between manual measurement 
and the proposed method, the correlation coefficient between 
values from two experts, between the automated measure-
ment and each manual measurement, and also average of 
them, were calculated. Besides, the mean absolute error 
(MAE) and standard deviation (STD) of the absolute error 
were also considered. This comparison totally considered 
360 angles consisting of 12 considered parameters in 30 
validation cases as shown in Table 5.

About the metric of MAE and STD, it can be noticed 
that the MAE between two experts is smaller than between 
the proposed method and experts, including each expert 
separately and average of them. The reason of this point 
is that the proposed method’s results are similar to the 1st 
expert measurement in some cases and, in the other cases, 
to the 2nd expert measurement. Because the similarity of 
the proposed method and one of two manual measurements 
depends on cases, the error between the automated method 
and each expert, and also average of two experts is larger 
than error between experts. Therefore, if the error between 
the automated approach and manual measurement is con-
sidered as the minimum value between the error of auto-
mated approach and 1st expert, and the error of automated 
approach and 2nd expert, the MAE and STD between the 
automated approach and manual measurement, respectively, 
are 2.995 and 3.003°, which is equal to the MAE and STD 
between two experts.

Discussion

This paper presents a method using a decentralized CNN 
to automatically determine spinal alignment by evaluating 
representative parameters from X-ray images. The proposed 
method is developed at the hierarchical levels of one model 
for locating ROIs of the cervical spine, lumbar spine, and 
femoral heads regions; a second model for positioning the 
landmarks considered; and a third model for determining the 
required key points. The advantages of this decentralization 
are due to the elimination of the effects of areas that are not 
necessary for detection by narrowing the considered areas at 
each successive model level based on the geometrical char-
acteristics of the spine. Detection of key points that have 
geometrical characteristics, such as corners of vertebrae 
and center circles of femur heads, with small ROIs in the 
third model shows high accuracy. In addition, the ability to 
expand the dataset diversity by utilizing vertebral images not 
included in the image of the entire spine contributes to the 
quality of this approach.

From the perspective of the medical field, this artificial 
intelligence (AI)-based measurement method possesses 
highly accurate automated ROI and key point detection 
rates. Compared to the expert-dependent manual meas-
urement method, this AI-based method has the potential 
for nearly infinite expansion in its scope of technologi-
cal applications. The knowledge of spinal sagittal align-
ment has increased linearly through manual measurement 
of preoperative and postoperative sagittal parameters in 
patients requiring surgery. However, the AI-based meas-
urement method will enable an exponential increase in 
the knowledge of the spinal alignment by rapidly analyz-
ing the chronological and reciprocal change of the spinal 
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Fig. 3  Example of detection results from test cases containing detected qualities of interest, including end plates of considered vertebrae and the 
center of femoral heads
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alignment of degenerative spondylotic patients as well 
as the normal population. In addition, the accumulated 
knowledge will help determine the degree of optimum 
deformity correction of the spine using a deep mining 
algorithm to compare patients with good versus bad 
prognoses.

Segmentation of X-ray images or reconstruction of 
three-dimensional (3D) profiles utilizing the deep learn-
ing technique [9, 11] are alternative potential directions 
for use of X-ray images. However, for the measurement 
results to be applied for diagnosis and as design param-
eters of specialized treatment equipment [27–31], accuracy 
is a key factor that should be considered as a top priority. 
Training a highly accurate segmentation or 3D reconstruc-
tion task model requires a diverse set of data, a challenge 
in this field. In addition, poor visual quality of images, 
which depends on facilities and is difficult to synchronize, 
has been cited as a limitation. In contrast, focusing on 
identifying key points as the geometric characteristics of 
the proposed method has succeeded in limiting the impact 
of image quality. This is highlighted by comparison of 
mean errors of the proposed algorithm (2.93° in LLA) 
with performance of a method in [9] (3.6° in LLA) and a 
method in [11] (8.055° in LLA).

There are other research approaches that propose deep 
learning models designed based on location of key points. 

After comparing the accuracy of these studies, the proposed 
method provides a significant advantage. These results com-
pare favorably to those of a state-of-the-art method [32] for 
automatic Cobb angle prediction using deep learning, which 
reported an MAE of 11.5°, 9.5°, 8.5°, and 2.7° in LL, PI, 
SS, and PT cases, respectively. That advantage is confirmed 
by comparing the performance of the method of [12], which 
had greater accuracy, with an MAE of 4.04° for Cobb angle 
estimation. The utilization of a decentralized CNN method 
[13, 14] provides a substantially lower deviation between 
automatic detection and direct measurement from a medi-
cal doctor. This deviation is 1.76° with respect to segmental 
motion angle and 3.17°, 3.53°, 2.64°, 1.45°, and 2.51° for 
LL, lumbar sacral joint angle, PT, PI, and SS, respectively.

However, the proposed method has two main limitations. 
First, utilization of a decentralized CNN requires separate 
datasets which are contributed for each order and conse-
quently consume time not only for creating the dataset but 
also for comprehensively training the CNN models. Second, 
there is a significant obstacle related to the lack of clarity 
of conventional X-ray images in the ROIs of T1 vertebrae. 
To visualize deviation of the performance of the proposed 
method by parameter, the correlations between manual 
measurements and obtained results of SS, L1S, T1S, and 
C2S are shown in Fig. 6. All four angles are measured 
between the specific lines from the detected key points and 

Table 4  Correlation and 
deviation of spinal alignment 
parameters evaluated by CNN 
models and measured by 
experienced doctors

PI PT SS L1I T1I C2I LL TK C27L L1S T1S C2S

Corr. coefficient 0.968 0.984 0.893 0.983 0.823 0.935 0.958 0.836 0.751 0.957 0.584 0.860
R2 0.937 0.965 0.798 0.966 0.677 0.875 0.916 0.699 0.564 0.916 0.342 0.741
MAE (°) 2.205 1.156 3.171 2.252 5.842 3.355 3.895 5.737 6.318 2.128 6.241 3.708
STD of AE (°) 2.048 0.824 3.097 1.626 4.895 3.187 2.848 5.419 6.695 1.500 5.568 2.663

Fig. 4  Detection rate for 12 
parameters by degree of error 
threshold
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Fig. 5  Bland–Altman plots comparing the values of radiographic parameters, including (a) PI, (b) PT, (c) SS, (d) L1I, (e) T1I, (f) C2I, (g) LL, 
(h) TK, (i) C27L, (j) L1S, (k) T1S, and (l) C2S
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the horizontal axis, which ensures the equivalent depend-
ence of accuracy on the measured results. Based on the 
graphs shown, there seems to be a significant gap of method 
performance between angles, particularly the 0.584 correla-
tion coefficient of T1S and the remaining parameters.

These issues might be caused by a characteristic of the 
shoulder girdle of human, which usually overlaps on the 
spinal regions in sagittal X-rays. Therefore, visualization 
of the last vertebrae in the cervical region and the upper 
half of the thoracic region generally contains significant 

Table 5  Comparison between 
measurement performed for 
validation

No Measurement 1 Measurement 2 Corr. coefficient MAE (°) STD (°)

1 1st expert 2nd expert 0.9589 3.175 3.603
2 Proposed method 1st expert 0.9523 3.926 3.784
3 Proposed method 2nd expert 0.9527 3.988 3.789
4 Proposed method Aver. of  1st and 2nd exp 0.9558 3.832 3.369

Fig. 6  Scatterplots of correlation between standard references and the proposed methods with respect to (a) SS, (b) L1S, (c) T1S, and (d) C2S
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noise compared to other regions. The noise not only limits 
the performance of the proposed method but also causes 
difficulties for manual implementation.

About the clinical significance of errors, considering 
the high correlation and small error in most of param-
eter cases, except the T1 vertebrae-related parameters, it 
is considered acceptable, especially with the purpose of 
this method which is to provide doctors the global deform-
ity of spine for diagnosing and establishing the treatment. 
Besides, the most significant advantage of this approach 
comparing to manual measurement is reducing amount 
of time consumed by detecting features of vertebras by 
hand, which decreases from around 10 min for one case 
to less than 1 s.

Consequently, the second limitation opens a future 
research direction on enhancing the visual quality of X-ray 
images. To deal with this limitation, the future research 
direction utilizing image-to-image deep learning, which 
receive the sagittal X-rays of T1 region as the input and 
provide a de-blurred image with high clarity of vertebrae 
features for experts and automated method to measure, is 
now being considered.

Conclusion

Based on the time and effort required of an experienced 
doctor to measure alignment parameters of the spine, 
development of an automated measurement software 
that can utilize deep learning and leverage the rapid 
advancement of big data technologies could free labor 
from repetitive work and increase productivity because 
of its ability to process a large amount of data. A fully 
automatic method was proposed for measuring 12 spinal 
alignment parameters, PI, PT, SS, L1I, T1I, C2I, LL, 
TK, C27L, L1S, T1S, and C2S using a designed decen-
tralized CNN algorithm. To validate the performance 
of the proposed method, the measured results of 30 test 
cases were compared to standard references created by 
human experts. The quality of the proposed method, 
which was evaluated in terms of the correlation coef-
ficient and MAE, was recorded with good results for 10 
of 12 parameters, while the gap of accuracy of the two 
remaining parameters was determined to be an effect of 
inevitable local noise in the images. In addition, the cal-
culation time was less than 1 s for all cases. Because 
of difficulties in measuring parameters under in noisy 
conditions, future research will focus on the reconstruc-
tion of images with enhanced visual conditions using 
image-to-image deep learning techniques.
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