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Abstract
Automated segmentation templates can save clinicians time compared to de novo segmentation but may still take substantial 
time to review and correct. It has not been thoroughly investigated which automated segmentation-corrected segmentation 
similarity metrics best predict clinician correction time. Bilateral thoracic cavity volumes in 329 CT scans were segmented 
by a UNet-inspired deep learning segmentation tool and subsequently corrected by a fourth-year medical student. Eight 
spatial similarity metrics were calculated between the automated and corrected segmentations and associated with correction 
times using Spearman’s rank correlation coefficients. Nine clinical variables were also associated with metrics and correc-
tion times using Spearman’s rank correlation coefficients or Mann–Whitney U tests. The added path length, false negative 
path length, and surface Dice similarity coefficient correlated better with correction time than traditional metrics, including 
the popular volumetric Dice similarity coefficient (respectively ρ = 0.69, ρ = 0.65, ρ =  − 0.48 versus ρ =  − 0.25; correlation 
p values < 0.001). Clinical variables poorly represented in the autosegmentation tool’s training data were often associated 
with decreased accuracy but not necessarily with prolonged correction time. Metrics used to develop and evaluate autoseg-
mentation tools should correlate with clinical time saved. To our knowledge, this is only the second investigation of which 
metrics correlate with time saved. Validation of our findings is indicated in other anatomic sites and clinical workflows. 
Novel spatial similarity metrics may be preferable to traditional metrics for developing and evaluating autosegmentation 
tools that are intended to save clinicians time.

Keywords Image segmentation · “Computer-assisted image analysis” [MeSH] · “AI artificial intelligence” [MeSH] · 
“Medical imaging” [MeSH] · “Clinical informatics” [MeSH]

Introduction

The advent of deep learning-based segmentation algorithms 
is expanding the range of automated segmentation (autoseg-
mentation) use to clinical tasks and research questions that 

demand previously unattainable accuracy or reliability. 
Autosegmentation algorithms may soon assist neurologists 
to localize ischemic cores during a code stroke [1, 2] or 
anticipate Parkinson’s disease onset in an outpatient setting 
[3]. They may inform 3D-printed implant designs for ortho-
pedists [4, 5] or highlight posterior segment lesions [6–8] 
for ophthalmologists. They may help neurosurgeons spare 
microvessels [9], outline catheters for radiation oncologists 
during MRI-guided brachytherapy [10], or characterize 
vocal fold mobility for otorhinolaryngologists [11]. Dedi-
cated imaging specialists—radiologists and pathologists—
are likely to identify even more autosegmentation uses than 
clinicians whose primary clinical domain is not imaging. 
For example, segmenting regions-of-interest is a necessary 
step prior to extraction of quantitative imaging biomarkers 
(“radiomics” features) known to harbor information respect-
ing disease prognoses and treatment response probabilities 
[12]. Radiomics feature computation methods were recently 

 * Kendall J. Kiser 
 K.j.kiser@wustl.edu

 Clifton D. Fuller 
 cdfuller@mdanderson.org

 Luca Giancardo 
 Luca.Giancardo@uth.tmc.edu

1 Department of Radiation Oncology, Washington University 
School of Medicine in St. Louis, St. Louis, MO, USA

2 Center for Precision Health, UT Health School of Biomedical 
Informatics, Houston, TX, USA

3 Department of Radiation Oncology, University of Texas MD 
Anderson Cancer Center, Houston, TX, USA

/ Published online: 23 May 2021

Journal of Digital Imaging (2021) 34:541–553

http://orcid.org/0000-0001-7457-5534
http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-021-00460-3&domain=pdf


1 3

standardized [13], overcoming a significant obstacle to clin-
ical implementation. In the future, reviewing and vetting 
autosegmented regions-of-interest prior to radiomics analy-
ses could become part of routine radiology [14].

Autosegmentations are useful if they obviate the need 
for a clinician to delineate segmentations de novo, which 
can be time-consuming [4, 15–18] and inconsistent [19–23] 
between observers and within the same observer at differ-
ent time points. Several studies confirm that clinicians can 
save time from leveraging autosegmentation templates com-
pared to de novo segmentation [15, 24–29], but in many 
circumstances, the time required for clinicians to review and 
correct autosegmentations is still substantial. For example, 
during online adaptive/stereotactic MRI-guided radiotherapy 
[30], radiation oncologists must carefully correct cancer and 
normal anatomy autosegmentations while a patient waits 
immobilized in the treatment device. Cardiologists may 
spend just as long to review and correct cardiac ventricle 
autosegmentations as segmenting them de novo [18]. Plastic 
surgeons can implant facial trauma repair plates faster with 
autosegmentation-based 3D-printed mandibular templates 
than without them [31], but autosegmentation review still 
consumes time in an urgent setting. Whenever autosegmen-
tation algorithms are deployed to save clinical time, the met-
rics used to assess them should capture an expected time-
savings benefit. Algorithm development should be optimized 
and evaluated by whatever metric or metrics best predict 
time savings.

Autosegmentations are usually compared with a reference 
segmentation by spatial similarity metrics that compare (1) 
volumetric overlap between an autosegmented structure and 
the same manually segmented structure [4, 6, 10, 11, 16, 
22–26, 28, 29, 32–47], such as the volumetric Dice similar-
ity coefficient/index [48] (DSC); or (2) geometric distance 
between two structures’ surfaces [4, 10, 22, 24–26, 28, 
32–35, 37, 40, 42, 43, 46, 47], such as the Hausdorff distance 
[49] (HD); or (3) structure centricity [32, 39], such as dif-
ferences between centers-of-mass. Critically, these metrics 
do not necessarily correlate with time savings in clinical 
practice [40, 50]. To our knowledge, the only investigation 
of which metrics best predict the time clinicians spend cor-
recting autosegmentations was published in 2020 by Vaassen 
et al. [28].

Vaassen et al. compared automatically generated and 
manually corrected thoracic structure segmentations in 20 
CT cases acquired from patients with non-small-cell lung 
cancer (NSCLC). They found that the “added path length” 
(APL; a novel metric they introduced) and the surface Dice 
similarity coefficient (a novel metric introduced by Nikolov 
et al. [51]) correlated better with the time it took a clinician 
to review and correct autosegmentations than other metrics 
that are popular for autosegmentation evaluation. Here, we 
corroborate and extend their findings. We also experiment 

with APL by calculating variations of it, which we term the 
false negative path length (FNPL) and false negative volume 
(FNV). We correlate the APL, FNPL, FNV, surface DSC, 
volumetric DSC, Jaccard index (JI), average surface distance 
(ASD), and HD metrics calculated between automatically 
generated and manually corrected thoracic cavity segmenta-
tions with time required for correction. We contribute evi-
dence that the surface DSC may be superior to popular volu-
metric DSC for optimizing autosegmentation algorithms. 
We also investigate how anatomic and pathologic variables 
impact autosegmentation correction time. In the process, we 
have generated a library of 402 expert-vetted left and right 
thoracic cavity segmentations, as well as 78 pleural effusion  
segmentations, which we made publicly available [52] through  
The Cancer Imaging Archive (TCIA). The CT scans on 
which the segmentations were delineated are likewise pub-
licly available [53] from TCIA.

Materials and Methods

CT Datasets

A collection of four hundred twenty-two CT datasets 
acquired in Digital Imaging and Communications in Medi-
cine (DICOM) format from patients with NSCLC was 
downloaded from NSCLC-Radiomics [53], a TCIA data 
collection, in January 2019. Accompanying clinical data in 
tabular format and gross tumor volume, segmentations avail-
able for a subset of cases were also downloaded. CT scans 
were converted from DICOM to Neuroimaging Informatics 
Technology Initiative (NIfTI) format using a free program 
called “dcm2niix.” [54, 55] Four-hundred-two CT datasets 
were successfully converted and subsequently underwent 
autosegmentation and manual correction.

Segmentations

We leveraged a publicly available, UNet-inspired deep learn-
ing autosegmentation algorithm [56] to segment lungs in the 
402 CT datasets described above. This algorithm was trained 
to segment bilateral lungs (under a single label) with approxi-
mately 200 CTs acquired in patients who—importantly—did 
not have lung cancer. A fourth-year medical student reviewed 
and corrected the autosegmentations using an image segmen-
tation software called ITK-SNAP v 3.6. [57] The corrections 
included the bilateral thoracic cavity spaces that healthy lung 
parenchyma normally occupies but in our dataset were occa-
sionally occupied by atelectatic parenchyma, tumor, pleural 
effusion, or other changes. Because the idea to capture correc-
tion time and correlate it with autosegmentation similarity met-
rics developed after this project had commenced, the medical 
student recorded the time it took to correct autosegmentations 
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for only 329 of 402 corrected cases. Specifically, correction 
times comprised the times required to load autosegmentations, 
correct them slice-wise with size-adjustable brush and inter-
polation tools, and save the corrections. Because the autoseg-
mentation algorithm was trained on scans without cancer but 
deployed on scans with NSCLC, its accuracy varied with the 
severity of disease-induced anatomic change in each case. For 
example, cases with massive tumors or pleural effusions were 
sometimes poorly autosegmented, whereas cases with minimal 
anatomic changes were autosegmented well. This effectively 
simulated a range of major and minor manual corrections. 
Subsequently, the medical student’s manually corrected seg-
mentations were vetted and corrected as necessary by a radia-
tion oncologist or a radiologist. The 402 physician-corrected 
thoracic cavity segmentations—so named to reflect inclusion 
of primary tumor and pleural pathologies in the thoracic cavity 
rather than lung parenchyma alone—have been made publicly 
available [52].

Metrics

Automated and corrected segmentations were compared 
by the volumetric DSC; the JI; the surface DSC at 0-mm, 
4-mm, 8-mm, and 10-mm tolerances; the APL; the FNPL; 
the FNV; the 100th, 99th, 98th, and 95th percentile HDs; 
and the ASD. Each metric is illustrated in Fig. 1. The volu-
metric DSC is twice the overlap between volumes A and 
B, divided by their sum. A DSC of 1 indicates perfect 
overlap while 0 indicates no overlap. The JI is a related 
volumetric measure and is the overlap between volumes 
A and B divided by their union. The DSC and JI converge  
at 1 [58]. The surface DSC is calculated by the same  
formula as the volumetric DSC, but its inputs A and B are 
the segmentations’ surface areas rather than their volumes. 
To permit small differences between surfaces to go unpun-
ished, Nikolov et al. programmed a tolerance parameter: 
if points in two surfaces are separated by a distance that is 
within the tolerance parameter, they are considered part 
of the intersection of A and B. The APL is the number of 
pixels in the corrected segmentation surface (edge) that are 
not in the autosegmentation surface [28]. We experiment 
with metrics related to the APL that we term the FNPL 
and the FNV. The FNPL is the APL less the pixels from 
any edits that shrink the autosegmentation. That is, edits 
that erase pixels from the autosegmentation volume are 
excluded. The FNV is the number of pixels in the corrected 
segmentation volume that are not in the autosegmentation 
volume. The Python code we developed to calculate the 
APL, FNPL, and FNV has been made available at GitHub 
at https:// github. com/ kkise r1/ Autos egmen tation- Spati al- 
Simil arity- Metri cs. The Hausdorff distance calculates the 
minimum distance from every point in surface A to every 
point in surface B, and vice versa; arranges all distances in 

ascending order; and returns the maximum distance (100th 
percentile) or another percentile if so specified (e.g., 95th 
percentile). The ASD calculates the average of the mini-
mum distances from every point in surface A to every 
point in surface B, and vice versa, and returns the average 
of the two average distances. All metric calculations were 
made using custom Python scripts that leveraged common 
scientific libraries [51, 59–61].

Clinical Variables

To describe clinical variation in the NSCLC-Radiomics CT 
datasets and study the effects of variation in tumor volume, 
tumor laterality and location, pleural effusion presence, 
pleural effusion volume, and thoracic cavity volume on 
autosegmentation spatial similarity metrics and on manual 
correction time, we collected these variables for each case. 
Furthermore, we studied how primary tumor stage, tumor 
overall stage, and tumor histology associated with accuracy 
and correction time, but these variables were already col-
lected in the NSCLC-Radiomics collection [53] in a spread-
sheet named “NSCLC Radiomics Lung1.clinical-version3-
Oct 2019.csv.” Left and right thoracic cavity volumes were 
collected from physician-vetted thoracic cavity segmenta-
tions using ITK-SNAP. Tumor volume and laterality were 
collected by referencing primary gross tumor volume seg-
mentations (“GTV-1”) and other tumor volume segmenta-
tions available from the NSCLC-Radiomics data collection 
[53]. Tumor location was classified as central, peripheral, or 
pan. There is no consensus in radiotherapy literature regard-
ing the definition of centrality [62]; we used a definition 
based off that provided by the International Association for 
the Study of Lung Cancer [63]: tumors located within 2 cm 
of the proximal bronchial tree, spinal cord, heart, great ves-
sels, esophagus, or phrenic nerves and recurrent laryngeal 
nerves and spanning up to 4 cm from these structures were 
classified as central. Tumors that were not within 2 cm of 
any central structure were classified as peripheral. Tumors 
within the central territory that extended further than 4 cm 
from central structures were classified as pan. The presence 
or absence of pleural effusion in each subject was noted 
by a medical student, and effusions were contoured by 
the student. Pleural effusion segmentations were reviewed 
and corrected by a radiologist. Pleural effusion volumes 
were collected from physician-vetted segmentations using 
ITK-SNAP.

Statistics

We correlated eight autosegmentation spatial similarity met-
rics with the time expended to correct the autosegmentations. 
Segmentation correction time; volumetric DSC; surface 
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DSC, JI, APL, FNPL, FNV, HD; and ASD distributions were 
assessed for normality using the Shapiro–Wilk’s test [64]. 
The null hypotheses (that distributions were normal) were 
rejected in each case (p values < 0.001). Additionally, we 
sought to describe the influence of common disease-induced 
anatomic changes on the accuracy of the UNet autosegmen-
tation algorithm. The null hypotheses that tumor, thoracic 
cavity, and pleural effusion volume distributions were normal 
were likewise each rejected (p values < 0.001). Therefore, 
non-parametric statistical tests were employed. Pairwise 
Spearman’s rank correlation coefficients [65] described linear 
associations between spatial similarity metrics and correc-
tion times. The pairwise Mann–Whitney U test [66] assessed 
significant differences between numeric variable distributions 
stratified by a categorical variable with two categories and 
followed a Kruskal-Wallis [67] test if the categorical vari-
able had three or more categories and the Kruskal–Wallis 
result was significant. A significance threshold of α = 0.05 
was used, and Bonferroni corrections [68] were assessed to 
account for multiple comparisons as needed. Statistics were 
computed in Python using the SciPy library [59].

Results

Four-hundred and two thoracic cavity segmentations were 
automatically generated and corrected manually (Fig. 2). 
Correction times were recorded in 329 cases. Among 
these cases, median right and left corrected thoracic cavity 
volumes were 2220 cm [3] and 1920 cm [3], respectively 
(Fig. 3a). Tumor overall stage was I in 10% of cases (33/329), 
II in 21% of cases (69/329), IIIA in 27% of cases (88/329), 
and IIIB in 42% of cases (139/329). Tumor stage was T1 in 
24% of cases (78/329), T2 in 34% of cases (112/329), T3 
in 13% of cases (42/329), and T4 in 29% of cases (97/329). 
Primary lung tumors were in the right hemithorax in 58% of 
cases (191/329) and in the left hemithorax in 42% of cases 
(138/329). Tumor locations were classified as central in 24% 
of cases (80/329), peripheral in 33% of cases (108/329), and 
pan in 43% of cases (141/329). Median tumor volumes were 
29 cm [3], 17 cm [3], 2 cm [3], 4 cm [3], 3 cm [3], and 
6 cm [3] for GTV1 through GTV6, respectively (Fig. 3b). 

Among 298 cases with recorded autosegmentation time 
and available tumor histology, the histology was squamous 
cell carcinoma in 40% of cases (120/298), large cell carci-
noma in 30% of cases (90/298), adenocarcinoma in 14% of 
cases (43/298), and not otherwise specified in 15% of cases 
(45/298). Among 59 cases with recorded autosegmenta-
tion correction times and a pleural effusion in at least one 
hemithorax, median right and left pleural effusion volumes 
were 53 cm [3] and 51 cm [3], respectively (Fig. 3c).

Anatomic changes caused by disease significantly influ-
enced the autosegmentation algorithm’s similarity to manu-
ally corrected segmentations, but worse similarity did not 
always result in longer correction times. Tumor location 
(central, peripheral, or pan) was associated with similarity 
by several metrics (e.g., volumetric DSC for central tumors: 
0.963, pan tumors: 0.945; p < 0.001), but there were no 
significant differences in correction time between central 
(median 18.61 min), peripheral (median 19.01 min), or pan 
(median 18.83 min) tumors (p = 0.24). Primary tumor vol-
ume correlated moderately with several similarity metrics 
but not with correction time (p = 0.15). Like tumor location, 
the presence of pleural effusion was associated with sig-
nificantly worse similarity by all metrics (p values < 0.001), 
but this did not significantly prolong manual correction 
times (median with effusion: 19.13 min, without effusion: 
18.71 min; p = 0.18). Furthermore, pleural effusion volume 
correlated weakly with volume overlap metrics (i.e. volumet-
ric DSC, JI) but not with correction time (p = 0.20). Neither 
metric nor correction time distributions were significantly 
different between tumor histologies.

Few clinical variables were significantly associated 
with correction time. Autosegmentations delineated on CT 
scans with T4 tumors took marginally but significantly 
longer to correct (median 20.82 min) than those on CTs 
with T1 (median 19.0 min), T2 (median 18.13 min), or 
T3 (median 18.30 min) tumors (p values ≤ 0.01). Inter-
estingly, the only metrics that captured significant dif-
ferences between cases with T4 tumors and cases with 
any other T stage tumor were the maximum HD (median 
T4: 56 mm, median T3: 70 mm; p = 0.02), FNV (median 
T4: 104,991 pixels, median T1: 89,334 pixels; p = 0.001), 
FNPL (median T4: 61,928 pixels, median T2: 56,612 
pixels, median T1: 57,489 pixels; p values ≤ 0.006), and 
APL (median T4: 69,707 pixels, median T2: 61,553 pix-
els, median T1: 61,788 pixels; p values ≤ 0.002). Autoseg-
mentations on CT scans with overall stage II tumors took 
significantly less time to correct (median 13.53 min) than 
those from CTs with stage I (median 19.08 min), stage 
IIIA (median 18.94 min), or stage IIIB tumors (median 
19.83 min) (p values ≤ 0.04). Only the surface DSC at 
0 mm tolerance, FNPL, and APL captured a significant 
difference between these groups (surface DSC median 
for stage II: 0.77 vs. stage I: 0.70, stage IIIA: 0.70, stage 

Fig. 1  Eight metrics for evaluating spatial similarity between seg-
mentations. Traditional (volumetric DSC, Jaccard index, Hausdorff 
distance, and average surface distance) or novel (surface DSC, added 
path length, false negative path length, false negative volume) was 
used to compare autosegmentations with manually corrected segmen-
tations. The surface DSC calculation permits a tolerance parameter 
whereby non-intersecting segments of surfaces A and B that are sepa-
rated by no more than the parameter distance are considered part of 
the intersection between A and B. The Hausdorff distance illustration 
and equation represent the 100th percentile (maximum) distance but 
can be adapted to any other percentile distance

◂
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IIIB: 0.70; p values ≤ 0.004; FNPL median for stage II: 
48,262 pixels vs. stage I: 62,698 pixels, stage IIIA: 58,211 
pixels, stage IIIB: 58,863 pixels; p values ≤ 0.004; APL 
median for stage II: 52,260 pixels vs. stage I: 67,446 pix-
els, stage IIIA: 62,986 pixels, stage IIIB: 67,054 pixels; p 
values ≤ 0.001). Of the quantitative clinical variables, total 
thoracic cavity volume was the only significant correlate 
with correction time (ρ = 0.19, p < 0.001).

Linear correlations between autosegmentation spatial 
similarity metrics and correction times were also evalu-
ated. Correction time and metric distribution summary 
statistics are reported in Table 1. All metrics had statisti-
cally significant correlations with correction time (p val-
ues < 0.05), but the strength of these correlations var-
ied from strongest to weakest as follows: APL (ρ = 0.69, 
p < 0.001), FNPL (ρ = 0.65, p < 0.001), surface DSC at 

Fig. 2  A A deep learning 
algorithm segmented bilat-
eral thoracic cavity volumes. 
Accuracy varied in the presence 
of disease-induced anatomic 
changes, exemplified by pleural 
effusion (orange arrow) and 
primary tumor (blue arrow). B 
A fourth-year medical student 
corrected the autosegmentations
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Fig. 3  A Right and left thoracic cavity volumes in cases with a 
recorded autosegmentation correction time (n = 329). Volumes were 
collected after autosegmentation correction by a medical student and 
subsequent vetting by a physician. B Gross tumor volumes as deline-
ated in “RTSTRUCT” segmentation files available from The Cancer 
Imaging Archive NSCLC-Radiomics data collection [53]. “GTV1” 
denotes the primary tumor volumes (n = 328), whereas “GTV2” 
through “GTV6” denote secondary tumor volumes that were occa-
sionally present. Usually, the latter were clusters of mediastinal 

nodes. Because the mediastinum is not part of the lung nor the space 
healthy lung usually occupies, correlations with tumor volume con-
sider only GTV1, not the sum of GTV1 through GTV6. C Right and 
left pleural effusion volumes in cases with a pleural effusion and a 
recorded thoracic cavity autosegmentation correction time (n = 59). 
These were delineated de novo by a medical student (rather than cor-
rected from an autosegmentation template) and subsequently vetted 
by a radiologist
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0 mm tolerance (ρ =  − 0.48, p < 0.001), FNV (ρ = 0.40, 
p < 0.001), JI (ρ =  − 0.26, p < 0.001), volumetric DSC 
(ρ =  − 0.25, p < 0.001), ASD (ρ = 0.24, p < 0.001), surface 
DSC at 4 mm tolerance (ρ =  − 0.23, p < 0.001), 95th per-
centile HD (ρ = 0.20, p < 0.001), surface DSC at 8 mm toler-
ance (ρ =  − 0.20, p < 0.001), surface DSC at 10 mm toler-
ance (ρ =  − 0.19, p < 0.001), 98th percentile HD (ρ = 0.17, 
p = 0.002), 99th percentile HD (ρ = 0.11, p = 0.04), and 
maximum HD (ρ = 0.11, p = 0.05). Correction time correla-
tions with conformality metrics (volumetric DSC, JI, and 
best-performing surface DSC) are visualized in Fig. 4, with 
surface distance metrics (best-performing HD and ASD) in 
Fig. 5, and with pixel count metrics (APL, FNPL, FNV) in 
Fig. 6.

Secondary regression analyses were performed between 
autosegmentation spatial similarity metrics and correction 
times after stratifying by clinical variables known to have 
significant relationships with correction times (i.e., T stage, 
overall stage, and total thoracic cavity volume; thoracic 
cavity volume was transformed to a categorical variable by 
binning volumes by quartile). The APL, FNPL, and surface 
DSC at 0 mm remained highly significant correlates with 
correction time in every T stage, overall stage, and thoracic 
volume quartile subgroup (p values < 0.001) except the stage 
IIIA subgroup, in which only the APL and FNPL (but not 
the surface DSC) were significant correlates. APL ρ cor-
relation coefficients ranged from 0.60 to 0.80 and were the 
highest of all metrics in every subgroup except the thoracic 

Table 1  Eight spatial similarity 
metrics were calculated between 
autosegmented and manually 
corrected bilateral thoracic 
cavity segmentations (n = 329). 
Two metrics—the surface 
Dice similarity coefficient and 
the Hausdorff distance—were 
calculated with different 
parameters. Table values are the 
median, range, and interquartile 
range for each of these 
distributions

Median Range Interquartile Range

Contour Correction Time 18.8 min 5.4–51.6 min 7.6 min
Volumetric DSC 0.958 0.354–0.994 0.040
JI 0.919 0.215–0.987 0.072
Surface DSC (0 mm) 0.707 0.108–0.944 0.116
Surface DSC (4 mm) 0.913 0.311–0.987 0.085
Surface DSC (8 mm) 0.954 0.370–0.995 0.062
Surface DSC (10 mm) 0.964 0.391–0.998 0.054
Hausdorff Distance (Max) (mm) 54 15–288 42
Hausdorff Distance (99%) (mm) 29 6–256 41
Hausdorff Distance (98%) (mm) 19 3–246 36
Hausdorff Distance (95%) (mm) 9 1–232 22
Average Surface Distance (mm) 1.5 0.2–57 1.9
Added Path Length (pixels) 64,060 15,658–158,283 23,806
False negative path length (pixels) 58,306 14,555–154,867 21,675
False negative volume (pixels) 102,323 21,482–915,852 76,204

Fig. 4  Correlations between 
correction time and conformal-
ity metrics. The surface Dice 
similarity coefficient at 0 mm 
tolerance correlated more 
strongly with correction time 
(ρ =  − 0.48, p < 0.001) than 
any other conformality, surface 
distance, or pixel metric except 
the added path length and false 
negative path length. Other 
conformality metrics cor-
related poorly (Jaccard index: 
ρ =  − 0.26, p < 0.001; volumet-
ric Dice similarity coefficient: 
ρ =  − 0.25, p < 0.001)
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cavity volume of the 1st quartile subgroup, in which the 
surface DSC at 0 mm correlation coefficient was slightly 
stronger (ρ =  − 0.62).

Discussion

Autosegmentation algorithms can assist physicians in an 
increasing number of clinical tasks, but algorithms are 
evaluated by spatial similarity metrics that do not neces-
sarily correlate with clinical time savings. The question of 
which metrics correlate best with time savings has not been 
thoroughly investigated. To our knowledge, ours is only 
the second and largest study described for this purpose. In 
thoracic cavity segmentations delineated on 329 CT data-
sets, we evaluated correlations between the time required to 

review and correct autosegmentations and eight spatial simi-
larity metrics. We find the APL, FNPL, and surface DSC to 
be better correlates with correction times than traditional 
metrics, including the ubiquitous [4, 6, 10, 11, 16, 22–26, 
28, 29, 32–47] volumetric DSC. We find that clinical vari-
ables that worsen autosegmentation similarity to manually-
corrected references do not necessarily prolong the time it 
takes to correct the autosegmentations. We also show that 
APL, FNPL, and surface DSC remain strong correlates with 
correction time even after controlling for clinical variables 
that do prolong correction time. Using the APL or surface 
DSC to optimize algorithm training—such as to compute a 
loss function [69, 70]—may make the algorithms’ outputs 
faster to correct. Using them to assess autosegmentation 
performance may communicate a more accurate expecta-
tion of the time needed to correct the autosegmentations. 

Fig. 5  Correlations between 
correction time and surface 
distance metrics. For visual 
clarity, only the average surface 
distance (ρ = 0.24, p < 0.001) 
and the 95th percentile 
Hausdorff distance (ρ = 0.20, 
p < 0.001) are displayed, which 
are the two best-performing 
surface distance metrics. The 
y axis maximum has been 
limited to better visualize the 
distributions, excluding ten 95th 
percentile Hausdorff distance 
points that exceeded 100 mm. 
As a class, surface distance met-
rics were poorer correlates with 
correction time than conformal-
ity or pixel metrics

Fig. 6  Correlations between 
correction time and pixel count 
metrics. The added path length 
correlated better with correc-
tion time than any other metric 
(ρ = 0.69, p < 0.001), while 
the false negative path length 
(ρ = 0.65, p < 0.001) and false 
negative volume (ρ = 0.40, 
p < 0.001) were respectively the 
second and fourth best perform-
ing metrics. The y axis maxi-
mum has been limited to better 
visualize the distributions, 
excluding three false negative 
volume points between 600,000 
and 1,000,000 pixels
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Notably, for any comparison of two segmentations where 
neither can be considered the reference standard, the surface 
DSC should be preferred to the APL. The surface DSC is 
directionless, but calculating the APL requires designating 
one segmentation as a standard.

Autosegmentations that are optimized to save clinicians 
time may facilitate faster urgent and emergent interventions 
[1, 2]. They may decrease intraoperative overhead costs 
[31]. They may be especially beneficial for treatment para-
digms that demand daily image segmentation. For example, 
in an online adaptive MRI-guided radiotherapy workflow, 
autosegmentations for various anatomic structures are gener-
ated every day. Segmentation review occurs while the patient 
remains in full-body immobilization [30, 71]. This creates 
a need for a metric to generate a “go/no-go” decision for 
real-time manual segmentation [72]. Computing the APL 
between autosegmentations-of-the-day and the physician-
approved segmentations from the previous day could signal 
to the radiation oncologist whether re-segmentation is likely 
feasible within the time constraints of online fractionation, 
or whether offline corrections are needed given patient time-
in-device. Furthermore, optimized autosegmentation algo-
rithms are foundational to unlocking the benefits of artificial 
intelligence in radiology; indeed, the Radiological Society 
of North America, National Institutes of Health, and Ameri-
can College of Radiology identify improved autosegmenta-
tion algorithms among their research priorities [73]. These 
benefits include clinical implementation of radiomics-based 
clinical decision support systems. While not the only obsta-
cle preventing implementing of these systems, region-of-
interest segmentation is currently the rate-limiting step [74].

We corroborate the findings of Vaassen et al., [28] who 
likewise reported the APL and surface DSC to be superior 
correlates with correction time. Importantly, our methodology 
differs from Vaassen et al. in that we used an autosegmenta-
tion algorithm that was not optimized to segment thoracic cav-
ity volumes in CT scans from patients with NSCLC, whereas 
Vaassen et al. used a commercial atlas-based tool and a com-
mercial prototype deep learning tool. The good correlation 
between the APL and surface DSC and correction time in our 
study suggests that these metrics may be robust even when 
evaluating autosegmentation tools that are not highly opti-
mized for their tasks. In contrast, other metrics may degrade 
in this circumstance. For example, surface distance metrics 
performed dramatically worse in our study than in Vaassen 
et al. The maximum, 99th, and 98th percentile HDs were 
worse correlates with correction time than the surface DSC 
even at an impractically high error tolerance (10 mm). Given 
the popularity of the HD as a measure of autosegmentation 
goodness, this alone is an informative result.

Autosegmentations have achieved unprecedented spatial 
similarity to reference segmentations [29, 35, 36, 51, 70] 

and improved computational efficiency [37, 43, 47, 75] since 
deep learning’s [76] emergence in 2012 [77].  Deep learning 
algorithms should be trained on data representing the spec-
trum of clinical variation, but the practical consequences 
of deploying algorithms that are not trained on diverse data 
remains an outstanding question. Our methodology per-
mits an interesting case study in the time-savings value of 
deep learning autosegmentation tools that are deployed on 
classes of data that are underrepresented in the algorithms’ 
training data, since our autosegmentation algorithm was not 
trained on CTs from patients with NSCLC. We expected that 
autosegmentation spatial similarity losses due to unseen, 
cancer-induced anatomic variation would prolong the time 
required to correct autosegmentations. Rather, we made the 
interesting observation that clinical variation did not always 
cost time. Presumably, manual segmentation tools such as 
adaptable brush sizes and segmentation interpolation were 
enough to buffer similarity losses.

It is a limitation of this study that autosegmentation cor-
rections were delineated by a fourth-year medical student, 
but all medical student segmentations underwent subsequent 
vetting by a radiation oncologist or radiologist and showed 
very high agreement with physician-corrected segmenta-
tions. Furthermore, we acknowledge that our conclusions 
are limited to the context of thoracic cavity segmentation 
and should be replicated for clinical autosegmentation tasks 
across medical domains.

Conclusion

Deep learning algorithms developed to perform autosegmen-
tation for clinical purposes should save clinicians time. It 
follows that the metrics used to optimize an algorithm ought 
to correlate closely with clinician time spent correcting the 
algorithm’s product. In this study, we report that three novel 
metrics—the added path length, the false negative path 
length, and the surface Dice similarity coefficient—each 
captured the time-saving benefit of thoracic cavity autoseg-
mentation better than traditional metrics. They correlated 
strongly with autosegmentation correction time even after 
controlling for confounding clinical variables. Nevertheless, 
most algorithms are developed with traditional metrics that 
we find to be inferior correlates with correction time (most 
prominently the volumetric Dice similarity coefficient). 
The findings in this study provide preliminary evidence that 
novel spatial similarity metrics may be preferred for optimiz-
ing and evaluating autosegmentation algorithms intended for 
clinical implementation.
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