Skip to main content

Advertisement

Log in

A Narrative Review on Clinical Applications of fNIRS

  • Review
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Functional near-infrared spectroscopy (fNIRS) is a relatively new imaging modality in the functional neuroimaging research arena. The fNIRS modality non-invasively investigates the change of blood oxygenation level in the human brain utilizing the transillumination technique. In the last two decades, the interest in this modality is gradually evolving for its real-time monitoring, relatively low-cost, radiation-less environment, portability, patient-friendliness, etc. Including brain-computer interface and functional neuroimaging research, this technique has some important application of clinical perspectives such as Alzheimer’s disease, schizophrenia, dyslexia, Parkinson’s disease, childhood disorders, post-neurosurgery dysfunction, attention, functional connectivity, and many more can be diagnosed as well as in some form of assistive modality in clinical approaches. Regarding the issue, this review article presents the current scopes of fNIRS in medical assistance, clinical decision making, and future perspectives. This article also covers a short history of fNIRS, fundamental theories, and significant outcomes reported by a number of scholarly articles. Since this review article is hopefully the first one that comprehensively explores the potential scopes of the fNIRS in a clinical perspective, we hope it will be helpful for the researchers, physicians, practitioners, current students of the functional neuroimaging field, and the related personnel for their further studies and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jöbsis FF: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198: 1264–1267, 1977. https://doi.org/10.1126/science.929199

    Article  PubMed  Google Scholar 

  2. Brazy JE, Lewis DV, Mitnick MH, Jöbsis vander Vliet FF: Noninvasive monitoring of cerebral oxygenation in preterm infants: preliminary observations. Pediatrics 75: 217–225, 1985

    CAS  PubMed  Google Scholar 

  3. Ferrari M, Giannini I, Carpi A, Fasella P, Fieschi C, Zanette E: Noninvasive, infrared monitoring of tissue oxygenation and circulatory parameters. XII World Congress of Angiology, Athens, September 7–12, abs. 663, 1980

  4. Ferrari M, Giannini I, Sideri G, Zanette E: Continuous non invasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol 191: 873–882, 1985. https://doi.org/10.1007/978-1-4684-3291-6_88

    Article  CAS  PubMed  Google Scholar 

  5. Wolf M, Naulaers G, van Bel F, Kleiser S, Greisen G: A review of near-infrared spectroscopy for term and preterm newborns. J Near Infrared Spectrosc. 20, 2012. https://doi.org/10.1255/jnirs.972

  6. Cope M, Delpy DT: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput 26: 289–294, 1988. https://doi.org/10.1007/BF02447083.

    Article  CAS  PubMed  Google Scholar 

  7. Xu Cui, Bray Signe, Bryant Daniel M, Glover Gary H, and Reiss Allan L: A quantitative comparison of NIRS and fMRI across multiple cognitive tasks, Neuroimage, vol. 54, 4, pp. 2808–2821, 2011. https://doi.org/10.1016/j.neuroimage.2010.10.069

    Article  Google Scholar 

  8. Rahman MA and Ahmad M: Identifying appropriate feature to distinguish between resting and active condition from FNIRS, 3rd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, pp. 671-675, 2016. https://doi.org/10.1109/SPIN.2016.7566781

  9. Rahman MA and Ahmad M: Movement related events classification from functional near infrared spectroscopic signal, Int. Conf. on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18-20 December, 2016, Dhaka, Bangladesh. https://doi.org/10.1109/ICCITECHN.2016.7860196

  10. American Society of Anesthesiologists (ASA): Standards for basic anesthetic monitoring, ASA house of delegates. 1986

  11. Medical Advisory Secretariat: Bispectral index monitor: an evidence based analysis. Ontario Health Technology Assessment Series vol. 4, no. 9, 2004

  12. Gajraj RJ, Doi M, Mantzaridis H, Kenny GN: Analysis of the EEG bispectrum, auditory evoked potentials and the EEG power spectrum during repeated transitions from consciousness to unconsciousness. Br J Anaesth 80(1):46–52, 1998. https://doi.org/10.1093/bja/80.1.46

    Article  CAS  PubMed  Google Scholar 

  13. Von Delius S, Thies P, Rieder T, Wagenpfeil S, Herberich E, Karagianni A, Frimberger E, Meining A, Ludwig L, Ebert MP, Schulte-Frohlinde E, Neu B, Prinz C, Schimid RM, Huber W: Auditory evoked potentials compared with bispectral index for monitoring of midazolam and propofol sedation during colonoscopy. Am J Gastroenterol 104(2):318–25, 2009. https://doi.org/10.1038/ajg.2008.73.

    Article  CAS  Google Scholar 

  14. Ou W, Nissilä I, Radhakrishnan H, Boas DA, Hämäläinen MS, Franceschini MA: Study of neurovascular coupling in humans via simultaneous magnetoencephalography and diffuse optical imaging acquisition. Neuroimage 46:624–32, 2009. https://doi.org/10.1016/j.neuroimage.2009.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rosengarten B, Kaps M: A simultaneous EEG and transcranial Doppler technique to investigate the neurovascular coupling in the human visual cortex. Cerebrovasc Dis 29:211–6, 2010. https://doi.org/10.1159/000267840

    Article  CAS  PubMed  Google Scholar 

  16. Masamoto K, Kanno I: Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32(7):1233–47, 2012. https://doi.org/10.1038/jcbfm.2012.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. John ER, Prichep LS: The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology. 102(2):447, 2005. https://doi.org/10.1097/00000542-200502000-00030.

    Article  PubMed  Google Scholar 

  18. Heinke W, Fiebach CJ, Schwarzbauer C, Meyer M, Olthoff D, Alter K: Sequential effects of propofol on functional brain activation induced by auditory language processing: an event related functional magnetic resonance imaging study. British J Anaesth 92(5):641–50, 2004. https://doi.org/10.1093/bja/aeh133

    Article  CAS  Google Scholar 

  19. Leon-Dominguez U, Izzetoglu M, Leon-Carrion J, Solís-Marcos KL, Garcia-Torrado FJ, Forastero-Rodríguez A, Mellado-Miras P, Villegas-Duque D, Lopez-Romero J, Izzetoglu K: Molecular concentration of deoxyHb in human prefrontal cortex predicts the emergence and suppression of consciousness. Neuroimage. 85:616–25, 2014. https://doi.org/10.1016/j.neuroimage.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  20. Magistretti PJ: Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling, Brain Res, vol. 886, no. 1-2, pp. 108–112, 2000. https://doi.org/10.1016/S0006-8993(00)02945-0

  21. Magistretti PJ and Pellerin L: Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans Royal Soc B Biol Sci, vol. 354, no. 1387, pp. 1155–1163, 1999. https://doi.org/10.1098/rstb.1999.0471.

    Article  CAS  Google Scholar 

  22. Rajapakse JC, Kruggel F, Maisog JM, and von Cramon DY: Modeling hemodynamic response for analysis of functional MRI time-series. Hum Brain Mapp, vol. 6, no. 4, pp. 283–300, 1998. https://doi.org/10.1002/(sici)1097-0193(1998)6:4<283::aid-hbm7>3.0.co;2-#

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fleck T, Schubert S, Ewert P, Stiller B, Nagdyman N, and Berger F: Propofol effect on cerebral oxygenation in children with congenital heart disease. Pediatr Cardiol, vol. 36, no. 3, pp. 543–549, 2015. https://doi.org/10.1007/s00246-014-1047-7

    Article  PubMed  Google Scholar 

  24. Fassoulaki A, Kaliontzi H, Petropoulos G, and Tsaroucha A: The effect of desflurane and sevoflurane on cerebral oximetry under steady-state conditions. Anesth Analg, vol. 102, no. 6, pp. 1830–1835, 2006. https://doi.org/10.1213/01.ane.0000205739.37190.14

    Article  CAS  PubMed  Google Scholar 

  25. Iwasaki K, Nomoto Y, Ishiwata M, Yokota T, and Ogawa R: Vital capacity induction with 8% sevoflurane and N2O causes cerebral hyperemia. J Anesth, vol. 17, no. 1, pp. 3–7, 2003. https://doi.org/10.1007/s005400300001

    Article  PubMed  Google Scholar 

  26. A. T. Lovell, H. Owen-Reece, C. E. Elwell, M. Smith, and J. C. Goldstone, Continuous measurement of cerebral oxygenation by near infrared spectroscopy during induction of anesthesia, Anesth Analg, vol. 88, no. 3, pp. 554–558, 1999. https://doi.org/10.1097/00000539-199903000-00017.

    Article  CAS  PubMed  Google Scholar 

  27. A. Curtin, K. Izzetoglu, J. Reynolds et al., Functional near-infrared spectroscopy for the measurement of propofol effects in conscious sedation during outpatient elective colonoscopy, NeuroImage, vol. 85, pp. 626–636, 2014. https://doi.org/10.1016/j.neuroimage.2013.07.009.

  28. G. Hernandez-Meza, M. Izzetoglu, M. Osbakken, M. Green, H. Abubakar, and K. Izzetoglu, Investigation of optical neuro-monitoring technique for detection of maintenance and emergence states during general anesthesia, J Clin Monit Comput, vol. 32, 1, 147-163, 2018. https://doi.org/10.1007/s10877-017-9998-x.

    Article  PubMed  Google Scholar 

  29. Hock C, Villringer K, Müller-Spahn F, Hofmann M, Schuh-Hofer S, Heekeren H, Wenzel R, Dirnagl U, Villringer A. Near infrared spectroscopy in the diagnosis of Alzheimer's disease. Ann N Y Acad Sci 1996;777:22-9. https://doi.org/10.1111/j.1749-6632.1996.tb34397.x

    Article  CAS  PubMed  Google Scholar 

  30. Fallgatter AJ, Roesler M, Sitzmann L, Heidrich A, Mueller TJ, Strik WK. Loss of functional hemispheric asymmetry in Alzheimer's dementia assessed with near-infrared spectroscopy. Brain Res Cogn Brain Res 1997;6(1):67-72. https://doi.org/10.1016/S0926-6410(97)00016-5.

    Article  CAS  PubMed  Google Scholar 

  31. Hock C, Müller-Spahn F, Schuh-Hofer S, Hofmann M, Dirnagl U, Villringer A. Age dependency of changes in cerebral hemoglobin oxygenation during brain activation: a near-infrared spectroscopy study. J Cereb Blood Flow Metab 1995;15(6):1103-8. https://doi.org/10.1038/jcbfm.1995.137.

    Article  CAS  PubMed  Google Scholar 

  32. Hoshi Y, Tamura M: Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci Lett 150:5e8, 1993. https://doi.org/10.1016/0304-3940(93)90094-2

    Article  Google Scholar 

  33. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939e44, 1984. https://doi.org/10.1212/WNL.34.7.939

    Article  Google Scholar 

  34. Fladby T, Bryhn G, Halvorsen O, Rosé I, Wahlund M, Wiig P, et al.: Olfactory response in the temporal cortex of the elderly measured with near-infrared spectroscopy: a preliminary feasibility study. J Cereb Blood Flow Metab 24:677e80, 2004. https://doi.org/10.1097/01.WCB.0000119966.74298.5C

    Article  Google Scholar 

  35. Herrmann MJ, Langer JB, Jacob C, Ehlis AC, Fallgatter AJ: Reduced prefrontal oxygenation in Alzheimer disease during verbal fluency tasks. Am J Geriatr Psychiatry 16:125e35, 2008. https://doi.org/10.1097/JGP.0b013e3180cc1fbc

    Article  Google Scholar 

  36. Mega MS, Dinov ID, Lee L, O’Connor SM, Masterman DM, Wilen B, et al.: Orbital and dorsolateral frontal perfusion defect associated with behavioral response to cholinesterase inhibitor therapy in Alzheimer’s disease. J Neuropsychiatr Clin Neurosci 12:209e18, 2000. https://doi.org/10.1176/jnp.12.2.209.

    Article  Google Scholar 

  37. Arai H, Takano M, Miyakawa K, Ota T, Takahashi T, Asaka H, et al.: A quantitative near-infrared spectroscopy study: a decrease in cerebral hemoglobin oxygenation in Alzheimer’s disease and mild cognitive impairment. Brain Cogn 61:189e94, 2006. https://doi.org/10.1016/j.bandc.2005.12.012

    Article  Google Scholar 

  38. Zeller JB, Herrmann MJ, Ehlis AC, Polak T, Fallgatter AJ: Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy. Am J Geriatr Psychiatry 18:433e41, 2010. https://doi.org/10.1097/JGP.0b013e3181c65821

    Article  Google Scholar 

  39. Watanabe A, Kato T. Cerebrovascular response to cognitive tasks in patients with schizophrenia measured by near-infrared spectroscopy. Schizophr Bull (2004) 30:435–44. https://doi.org/10.1093/oxfordjournals.schbul.a007090.

    Article  PubMed  Google Scholar 

  40. Koike S, Takizawa R, Nishimura Y, Takano Y, Takayanagi Y, Kinou M, et al. Different hemodynamic response patterns in the prefrontal cortical sub-regions according to the clinical stages of psychosis. Schizophr Res (2011) 132:54–61. https://doi.org/10.1016/j.schres.2011.07.014.

    Article  PubMed  Google Scholar 

  41. Takizawa R, Kasai K, Kawakubo Y, Marumo K, Kawasaki S, Yamasue H, et al. Reduced frontopolar activation during verbal fluency task in schizophrenia: a multichannel near-infrared spectroscopy study. Schizophr Res (2008) 99:250–62. https://doi.org/10.1016/j.schres.2007.10.025.

    Article  PubMed  Google Scholar 

  42. Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. BiolPsychiatry (2004) 55:501–11. https://doi.org/10.1016/j.biopsych.2003.09.008.

    Article  Google Scholar 

  43. Takizawa R, Fukuda M, Kawasaki S, Kasai K, Mimura M, Pu S, et al.: Neuroimaging-aided differential diagnosis of the depressive state. Neuroimage, 2013. https://doi.org/10.1016/j.neuroimage.2013.05.126

  44. Fukuda M, Mikuni M. Clinical application of near-infrared spectroscopy (NIRS) in psychiatry: the advanced medical technology for differential diagnosis of depressive state. Seishin Shinkeigaku Zasshi (2012) 114:801–6.

    PubMed  Google Scholar 

  45. Kameyama M, Fukuda M, Yamagishi Y, Sato T, Uehara T, Ito M, et al. Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study. Neuroimage (2006) 29:172–84. https://doi.org/10.1016/j.neuroimage.2005.07.025.

    Article  PubMed  Google Scholar 

  46. Noda T, Yoshida S, Matsuda T, Okamoto N, Sakamoto K, Koseki S, et al. Frontal and right temporal activations correlate negatively with depression severity during verbal fluency task: a multi-channel near-infrared spectroscopy study. J Psychiatry Res (2012) 46:905–12. https://doi.org/10.1016/j.jpsychires.2012.04.001.

    Article  Google Scholar 

  47. Ohta H, Yamagata B, Tomioka H, Takahashi T, Yano M, Nakagome K, et al. Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy. Depress Anxiety (2008) 25:1053–9. https://doi.org/10.1002/da.20463.

    Article  PubMed  Google Scholar 

  48. Pu S, Matsumura H, Yamada T, Ikezawa S, Mitani H, Adachi A, et al. Reduced frontopolar activation during verbal fluency task associated with poor social functioning in late-onset major depression: multi-channel near-infrared spectroscopy study. Psychiatry Clin Neurosci (2008) 62:728–37. https://doi.org/10.1111/j.1440-1819.2008.01882.x.

    Article  PubMed  Google Scholar 

  49. Pu S, Nakagome K, Yamada T, Yokoyama K, Matsumura H, Mitani H, et al. The relationship between the prefrontal activation during a verbal fluency task and stress-coping style in major depressive disorder: a near-infrared spectroscopy study. J Psychiatry Res (2012) 46:1427–34. https://doi.org/10.1016/j.jpsychires.2012.08.001.

    Article  Google Scholar 

  50. Takizawa R, Kasai K, Kawakubo Y, Marumo K, Kawasaki S, Yamasue H, et al. Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr Res (2008) 99:250–62. https://doi.org/10.1016/j.schres.2007.10.025.

    Article  PubMed  Google Scholar 

  51. Insel TR. Rethinking schizophrenia. Nature (2010) 468:187–93. https://doi.org/10.1038/nature09552.

    Article  CAS  PubMed  Google Scholar 

  52. Quaresima V, Giosue P, Roncone R, Casacchia M, Ferrari M. Prefrontal cortex dysfunction during cognitive tests evidenced by functional near-infrared spectroscopy. Psychiatry Res (2009) 171:252–7. https://doi.org/10.1016/j.pscychresns.2008.02.002.

    Article  PubMed  Google Scholar 

  53. Ikezawa K, Iwase M, Ishii R, Azechi M, Canuet L, Ohi K, et al. Impaired regional hemodynamic response in schizophrenia during multiple prefrontal activation tasks: a two-channel near-infrared spectroscopy study. Schizophr Res (2009) 108:93–103. https://doi.org/10.1016/j.schres.2008.12.010.

    Article  PubMed  Google Scholar 

  54. Janes, A.C., Pizzagalli, D.A., Richardt, S.: Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry 67, 722–729 (2010). https://doi.org/10.1016/j.biopsych.2009.12.034.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Heinz, A., Wrase, J., Kahnt, T., Beck, A., Bromand, Z., Grüsser, S.M., Kienast, T., Smolka, M.N., Flor, H., Mann, K.: Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcohol Clin Exp Res 31, 1138–1147 (2007). https://doi.org/10.1111/j.1530-0277.2007.00406.x.

    Article  PubMed  Google Scholar 

  56. Paulus, M.P., Tapert, S.F., Schuckit, M.A.: Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 62, 761–768 (2005). https://doi.org/10.1001/archpsyc.62.7.761.

    Article  PubMed  Google Scholar 

  57. Grüsser, S.M., Wrase, J., Klein, S., Hermann, D., Smolka, M.N., Ruf, M., Weber-Fahr, W., Flor, H., Mann, K., Braus, D.F.: Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacol 175, 296–302 2004. https://doi.org/10.1007/s00213-004-1828-4.

    Article  CAS  Google Scholar 

  58. Bunce, S.C., Bixler, E.O., Harris, J., Meyer, R.E.: A clinical laboratory model of allostasis of the brain reward system diurnal cortisol and sleep in recently detoxified opioid dependent patients, normal control subjects & patients drug free for 60-90 days. Neuropsychopharmacol 38, S444–S445 (2012). https://doi.org/10.1007/978-3-642-39454-6_26.

    Article  Google Scholar 

  59. Wilson, S.J., Sayette, M.A., Fiez, J.A.: Prefrontal responses to drug cues: a neurocognitive analysis. Nat Neurosci 7, 211–214 (2004). https://doi.org/10.1038/nn1200.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bunce, S.C., Izzetoglu, K., Izzetoglu, M., Ayaz, H., Pourrezaei, K., Onaral, B.: Treatment status predicts differential prefrontal cortical responses to alcohol and natural reinforcer cues among alcohol dependent individuals. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS, vol. 7366, pp. 183–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31561-9_20.

    Chapter  Google Scholar 

  61. Hofmann, J., Herrmann, M. J., Martin, D. I., Obrig, H., Conrad, M., Kuchinke, L., Jacobs A.M., Fallgatter, A. J. (2008). Differential activation of frontal and parietal regions during visual word recognition: an optical topography study. NeuroImage, 40(3), 1340–1349. https://doi.org/10.1016/j.neuroimage.2007.12.037.

    Article  PubMed  Google Scholar 

  62. Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegter, J. (2001). DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol Rev, 108(1), 204–256. https://doi.org/10.1037/0033-295x.108.1.204.

    Article  CAS  PubMed  Google Scholar 

  63. Snowling, M. J. (1995). Phonological processing and developmental dyslexia. J Res Read, 18(2), 132–138. https://doi.org/10.1111/j.1467-9817.1995.tb00079.x.

    Article  Google Scholar 

  64. Sela I, Horowitzkraus T, Izzetoglu M, Shewokis P, Izzetoglu K, Onaral B, & Breznitz Z. Brain activity of young and adult Hebrew speakers during Lexical Decision Task: FNIR application to language. In Schmorrow D & Fidopiastis C (Eds.), Foundations of augmented cognition: Directing the future of adaptive systems (pp. 231–239). Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-21852-1_29

    Chapter  Google Scholar 

  65. Bergmann, J., & Wimmer, H. (2008). A dual-route perspective on poor reading in a regular orthography: evidence from phonological and orthographic lexical decisions. Cogn Neuropsychol, 25(5), 653–676. https://doi.org/10.1080/02643290802221404.

    Article  PubMed  PubMed Central  Google Scholar 

  66. MATAL: Diagnosis of learning disabilities and attention disorders. The National Institute for Testing and Evaluations (NITE). Jerusalem, Israel, 2007

  67. Ziegler JC, & Goswami U: Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychol Bull, vol. 131, 1, pp. 3–29, 2005. https://doi.org/10.1037/0033-2909.131.1.3

    Article  PubMed  Google Scholar 

  68. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 2007; 164: 942-948. https://doi.org/10.1176/ajp.2007.164.6.942.

    Article  PubMed  Google Scholar 

  69. Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, Demler O, et al. The prevalence and correlates of adult ADHD in the United States: results from the national comorbidity survey replication. Am J Psychiatry 2006; 163: 716-723. https://doi.org/10.1176/ajp.2006.163.4.716.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Blume F, Hudak J, Dresler T, Ehlis A-C, KuÈhnhausen J, Renner TJ, et al.: NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial. Trials. 18: 41, 2017. https://doi.org/10.1186/s13063-016-1769-3

    Article  PubMed  PubMed Central  Google Scholar 

  71. Marx A-M, Ehlis A-C, Furdea A, Holtmann M, Banaschewski T, Brandeis D, et al. Near-infrared spectroscopy (NIRS) neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD): a pilot study. Front Hum Neurosci 2015; 8: 1-13. https://doi.org/10.3389/fnhum.2014.01038.

    Article  Google Scholar 

  72. Mayer K, Wyckoff SN, Fallgatter AJ, Ehlis A-C, Strehl U. Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): study protocol for a randomized controlled trial. Trials; 2015; 16: 174. https://doi.org/10.1186/s13063-015-0683-4.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ehlis A-C, Schneider S, Dresler T, Fallgatter AJ: Application of functional near-infrared spectroscopy in psychiatry. Neuroimage. Elsevier Inc. 85 Pt 1: 478-88, 2014. https://doi.org/10.1016/j.neuroimage.2013.03.067

  74. Mehta RK, Parasuraman R, Mckinley A, Neuroscience A. Neuroergonomics. 7: 1-10, 2013. https://doi.org/10.3389/fnhum.2013.00889

    Article  Google Scholar 

  75. Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage. 2002; 17: 719-731. https://doi.org/10.1006/nimg.2002.1227.

    Article  PubMed  Google Scholar 

  76. Radua J, Stoica T, Scheinost D, Pittenger C, Hampson M. Neural correlates of success and failure signals during neurofeedback learning. Neuroscience. 2018 May 15; 378:11-21. https://doi.org/10.1016/j.neuroscience.2016.04.003.

    Article  CAS  PubMed  Google Scholar 

  77. Gruzelier JH. EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci Biobehav Rev 2014 Jul; 44:124-41. https://doi.org/10.1016/j.neubiorev.2013.09.015.

    Article  PubMed  Google Scholar 

  78. Hudak J, Rosenbaum D, Barth B, Fallgatter AJ, Ehlis A-C (2018) Functionally disconnected: a look at how study design influences neurofeedback data and mechanisms in attention-deficit/hyperactivity disorder. PLoS One 13(8): e0200931. https://doi.org/10.1371/journal.pone.0200931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dolu Nazan, Altınkaynak Miray, Güven Ayşegül, Özmen Sevgi, Demirci Esra, İzzetoğlu Meltem & Pektaş Ferhat: Effects of methylphenidate treatment in children with ADHD: a multimodal EEG/fNIRS approach. Psychiatry Clin Psychopharmacol, 2018. https://doi.org/10.1080/24750573.2018.1542779

  80. Monden Y, Dan H, Nagashima M, et al. Clinically-oriented monitoring of acute effects of methylphenidate on cerebral hemodynamics in ADHD children using fNIRS. Clin Neurophysiol 2012; 123:1147–1157. https://doi.org/10.1016/j.clinph.2011.10.006.

    Article  CAS  PubMed  Google Scholar 

  81. Monden Y, Dan H, Nagashima M, et al. Right prefrontal activation as a neuro-functional biomarker for monitoring acute effects of methylphenidate in ADHD children: An fNIRS study. Neuroimage Clin 2012;1(1):131–140. https://doi.org/10.1016/j.nicl.2012.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lynch CL: ‘Functional Electrical Stimulation’, IEEE Control Syst Mag 28, 2, pp. 40-50, 2008. https://doi.org/10.1109/MCS.2007.914689

    Article  Google Scholar 

  83. Palazzo, P., Tibuzzi, F., Pasqualetti, P., Altamura, C., Silvestrini, M., Passarelli, F., Rossini, P.M., Vernieri, F., 2010. Is there a role of near-infrared spectroscopy in predicting the outcome of patients with carotid artery occlusion? J Neurol Sci 292, 36–39. https://doi.org/10.1016/j.jns.2010.02.011.

    Article  PubMed  Google Scholar 

  84. Vernieri, F., Tibuzzi, F., Pasqualetti, P., Rosato, N., Passarelli, F., Rossini, P.M., Silvestrini, M., 2004. Transcranial Doppler and near-infrared spectroscopy can evaluate the hemodynamic effect of carotid artery occlusion. Stroke 35, 64–70. https://doi.org/10.1161/01.STR.0000106486.26626.E2.

    Article  PubMed  Google Scholar 

  85. Aries, M.J., Coumou, A.D., Elting, J.W., van der Harst, J.J., Kremer, B.P., Vroomen, P.C., 2012. Near infrared spectroscopy for the detection of desaturations in vulnerable ischemic brain tissue: a pilot study at the stroke unit bedside. Stroke 43, 1134–1136. https://doi.org/10.1161/STROKEAHA.111.636894.

    Article  PubMed  Google Scholar 

  86. Pizza, F., Biallas, M., Kallweit, U., Wolf, M., Bassetti, C.L., 2012. Cerebral hemodynamic changes in stroke during sleep-disordered breathing. Stroke 43, 1951–1953. https://doi.org/10.1161/STROKEAHA.112.656298.

    Article  PubMed  Google Scholar 

  87. Vasdekis, S.N., Tsivgoulis, G., Athanasiadis, D., Andrikopoulou, A., Voumvourakis, K., Lazaris, A.M., Stamboulis, E., 2012. Cerebrovascular reactivity assessment in patients with carotid artery disease: a combined TCD and NIRS study. J Neuroimaging 22, 261–265. https://doi.org/10.1111/j.1552-6569.2011.00595.x.

    Article  PubMed  Google Scholar 

  88. Murata, Y., Sakatani, K., Katayama, Y., Fukaya, C., 2002. Increase in focal concentration of deoxyhaemoglobin during neuronal activity in cerebral ischaemic patients. J Neurol Neurosurg Psychiatry 73, 182–184. https://doi.org/10.1136/jnnp.73.2.182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murata, Y., Sakatani, K., Hoshino, T., Fujiwara, N., Kano, T., Nakamura, S., Katayama, Y., 2006. Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients. Stroke 37, 2514–2520. https://doi.org/10.1161/01.STR.0000239698.50656.3b.

    Article  PubMed  Google Scholar 

  90. Nakamura, S., Sakatani, K., Kano, T., Hoshino, T., Fujiwara, N., Murata, Y., Katayama, Y., 2010. Effects of revascularisation on evoked cerebral blood oxygenation responses in stroke patients. Adv Exp Med Biol 662, 525–530. https://doi.org/10.1007/978-1-4419-1241-1_76.

    Article  PubMed  Google Scholar 

  91. Murata, Y., Katayama, Y., Oshima, H., Kawamata, T., Yamamoto, T., Sakatani, K., Suzuki, S., 2000. Changes in cerebral blood oxygenation induced by deep brain stimulation: study by near-infrared spectroscopy (NIRS). Keio J Med 49 (Suppl. 1), A61–A63.

    PubMed  Google Scholar 

  92. Sakatani, K., Katayama, Y., Yamamoto, T., Suzuki, S., 1999. Changes in cerebral blood oxygenation of the frontal lobe induced by direct electrical stimulation of thalamus and globus pallidus: a near infrared spectroscopy study. J Neurol Neurosurg Psychiatry 67, 769–773. https://doi.org/10.1136/jnnp.67.6.769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mihara, M., Miyai, I., Hatakenaka, M., Kubota, K., Sakoda, S., 2007. Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? Neuroimage 37, 1338–1345. https://doi.org/10.1016/j.neuroimage.2007.06.014.

    Article  PubMed  Google Scholar 

  94. Miyai, I., Yagura, H., Hatakenaka, M., Oda, I., Konishi, I., Kubota, K., 2003. Longitudinal optical imaging study for locomotor recovery after stroke. Stroke 34, 2866–2870. https://doi.org/10.1161/01.STR.0000100166.81077.8A.

    Article  PubMed  Google Scholar 

  95. Miyai, I., Yagura, H., Oda, I., Konishi, I., Eda, H., Suzuki, T., Kubota, K., 2002. Premotor cortex is involved in restoration of gait in stroke. Ann Neurol 52, 188–194. https://doi.org/10.1002/ana.10274.

    Article  PubMed  Google Scholar 

  96. Miyai, I., Suzuki, M., Hatakenaka, M., Kubota, K., 2006. Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res 169, 85–91. https://doi.org/10.1007/s00221-005-0123-x.

    Article  PubMed  Google Scholar 

  97. Lin PY, Chen JJ, Lin SI: The cortical control of cycling exercise in stroke patients: an fNIRS study. Hum Brain Mapp, 2012. https://doi.org/10.1002/hbm.22072

  98. Arenth, P.M., Ricker, J.H., Schultheis, M.T., 2007. Applications of functional near-infrared spectroscopy (fNIRS) to neurorehabilitation of cognitive disabilities. Clin Neuropsychol 21, 38–57. https://doi.org/10.1080/13854040600878785.

    Article  PubMed  Google Scholar 

  99. Obrig, H., Steinbrink, J., 2011. Non-invasive optical imaging of stroke. Philos Transact A Math Phys Eng Sci 369, 4470–4494. https://doi.org/10.1098/rsta.2011.0252.

    Article  Google Scholar 

  100. Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, Okibayashi M, Danjo N, Ishikawa A, Inoue Y, Kubota K: Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. PLoS One 7, e32234, 2012. https://doi.org/10.1371/journal.pone.0032234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Muller, K.R., Blankertz, B., 2012. Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage 59, 519–529. https://doi.org/10.1016/j.neuroimage.2011.07.084.

    Article  PubMed  Google Scholar 

  102. Atsumori, H., Kiguchi, M., Obata, A., Sato, H., Katura, T., Funane, T., Maki, A., 2009. Development of wearable optical topography system for mapping the prefrontal cortex activation. Rev Sci Instrum 80, 043704. https://doi.org/10.1063/1.3115207.

    Article  CAS  PubMed  Google Scholar 

  103. Lareau, E., Lesage, F., Pouliot, P., Nguyen, D., le Lan, J., Sawan, M., 2011. Multichannel wearable system dedicated for simultaneous electroencephalography near-infrared spectroscopy real-time data acquisitions. J Biomed Opt 16, 096014. https://doi.org/10.1117/1.3625575.

    Article  PubMed  Google Scholar 

  104. Jung CE, Strother L, Feil-Seifer DJ, Hutsler JJ: Atypical asymmetry for processing human and robot faces in autism revealed by fNIRS. PLoS One, vol. 11(7), 1-13, 2016. https://doi.org/10.1371/journal.pone.0158804

    Article  CAS  Google Scholar 

  105. Li Y & Yu D: Variations of the functional brain network efficiency in a young clinical sample within the autism spectrum: a fNIRS investigation. Front Physiol, 9: 67, 2018. https://doi.org/10.3389/fphys.2018.00067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Siddiqui, M.F., Lloyd-Fox, S., Kaynezhad, P., Tachtsidis, I., Johnson, M.H., Elwell, C.E., 2017. Non-invasive measurement of a metabolic marker of infant brain function. Sci Rep 7, 1330. https://doi.org/10.1038/s41598-017-01394-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gervain J: Near-infrared spectroscopy: recent advances in infant speech perception and language acquisition research. Front Psychol 5: 1–2, 2014. https://doi.org/10.3389/fpsyg.2014.00916

    Article  Google Scholar 

  108. Gervain J, Mehler J, Werker JF, Nelson CA, Csibra G, Lloyd-Fox S, Shukla M, Aslin RN: Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Dev Cogn Neurosci, 2011 https://doi.org/10.1016/j.dcn.2010.07.004

  109. Lloyd-Fox, S., Blasi, A., Elwell, C.E., 2010. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 34, 269–284. https://doi.org/10.1016/j.neubiorev.2009.07.008.

    Article  CAS  PubMed  Google Scholar 

  110. Wilcox, T., Biondi, M., 2015. fNIRS in the developmental sciences. Wiley Interdiscip Rev Cogn Sci 6, 263–283. https://doi.org/10.1002/wcs.1343.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bölte, S., Marschik, P.B., Falck-Ytter, T., Charman, T., Roeyers, H., Elsabbagh, M., 2013. Infants at risk for autism: a European perspective on current status, challenges and opportunities. Eur Child Adolesc Psychiatry 22, 341–348. https://doi.org/10.1007/s00787-012-0368-4.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C.M., Reichenberg, A., 2014. The familial risk of autism. JAMA 311, 1770–1777. https://doi.org/10.1001/jama.2014.4144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ernst, L.H., Schneider, S., Ehlis, A.C., Fallgatter, A.J., 2012. Functional near infrared spectroscopy in psychiatry: a critical review. J Near Infrared Spectrosc 20, 93–105. https://doi.org/10.1255/jnirs.970.

    Article  CAS  Google Scholar 

  114. Iwanaga, R., Tanaka, G., Nakane, H., Honda, S., Imamura, A., Ozawa, H., 2013. Usefulness of near-infrared spectroscopy to detect brain dysfunction in children with autism spectrum disorder when inferring the mental state of others. Psychiatry Clin Neurosci 67, 203–209. https://doi.org/10.1111/pcn.12052.

    Article  PubMed  Google Scholar 

  115. Zhu, H., Fan, Y., Guo, H., Huang, D., He, S., 2014. Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies. Biomed Opt Express 5, 1262. https://doi.org/10.1364/BOE.5.001262.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wijeakumar, S., Spencer, J.P., Bohache, K., Boas, D.A., Magnotta, V.A., 2015. Validating a new methodology for optical probe design and image registration in fNIRS studies. NeuroImage 106, 86–100. https://doi.org/10.1016/j.neuroimage.2014.11.022.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Baik SY, Kim JY, Choi J, et al.: Prefrontal asymmetry during cognitive tasks and its relationship with suicide ideation in major depressive disorder: an fNIRS study. Diagnostics (Basel). 9(4):193, 2019. https://doi.org/10.3390/diagnostics9040193

    Article  CAS  Google Scholar 

  118. Li Jiangxue, Zhu Huilin, Li, Xinge, Peng, Hongjun, Xu Jie, Cai Tingting & He Sailing: Spontaneous hemodynamic activity in prefrontal cortex of depression patients assessed with functional near-infrared spectroscopy, 2015

  119. Anna M., Theodore J. H., Erin R., Holly A. S., Mary L. P., The role of the right prefrontal cortex in recognition of facial emotional expressions in depressed individuals: fNIRS study, J Affect Disord, Vol. 258, Pages 151-158, 2019. https://doi.org/10.1016/j.jad.2019.08.006.

    Article  Google Scholar 

  120. Nishizawa Y, Kanazawa T, Kawabata Y, Matsubara T, Maruyama S, Kawano M, Kinoshita S, Koh J, Matsuo K, & Yoneda H: fNIRS assessment during an emotional stroop task among patients with depression: replication and extension. Psychiatry Investig, 16(1), 80–86, 2019. https://doi.org/10.30773/pi.2018.11.12.2

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schecklmann M, Dresler T, Beck S, et al. Reduced prefrontal oxygenation during object and spatial visual working memory in unipolar and bipolar depression. Psychiatry Res 2011;194(3):378-384. https://doi.org/10.1016/j.pscychresns.2011.01.016.

    Article  PubMed  Google Scholar 

  122. Duncan, J.S., Sander, J.W., Sisodiya, S.M., Walker, M.C., 2006. Adult epilepsy. Lancet 367, 1087–1100. https://doi.org/10.1016/S0140-6736(06)68477-8.

    Article  PubMed  Google Scholar 

  123. Villringer, A., Planck, J., Stodieck, S., Botzel, K., Schleinkofer, L., Dirnagl, U., 1994. Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy. Adv Exp Med Biol 345, 559–565. https://doi.org/10.1007/978-1-4615-2468-7_74.

    Article  CAS  PubMed  Google Scholar 

  124. Adelson, P.D., Nemoto, E., Scheuer, M., Painter, M., Morgan, J., Yonas, H., 1999. Noninvasive continuous monitoring of cerebral oxygenation periictally using near-infrared spectroscopy: a preliminary report. Epilepsia 40, 1484–1489. https://doi.org/10.1111/j.1528-1157.1999.tb02030.x.

    Article  CAS  PubMed  Google Scholar 

  125. Saito, S., Yoshikawa, D., Nishihara, F., Morita, T., Kitani, Y., Amaya, T., Fujita, T., 1995. The cerebral hemodynamic response to electrically induced seizures in man. Brain Res 673, 93–100. https://doi.org/10.1016/0006-8993(94)01408-A.

    Article  CAS  PubMed  Google Scholar 

  126. Watanabe, E., Nagahori, Y., Mayanagi, Y., 2002. Focus diagnosis of epilepsy using near-infrared spectroscopy. Epilepsia 43 (Suppl. 9), 50–55. https://doi.org/10.1046/j.1528-1157.43.s.9.12.x.

    Article  PubMed  Google Scholar 

  127. Nguyen DK, Tremblay J, Pouliot P, Vannasing P, Florea O, Carmant L, Lepore F, Sawan M, Lesage F, Lassonde M: Noninvasive continuous functional near-infrared spectroscopy combined with electroencephalography recording of frontal lobe seizures. Epilepsia, 2012b. https://doi.org/10.1111/epi.12011

  128. Moeller, F., Siebner, H.R., Wolff, S., Muhle, H., Boor, R., Granert, O., Jansen, O., Stephani, U., Siniatchkin, M., 2008. Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage 39, 1839–1849. https://doi.org/10.1016/j.neuroimage.2007.10.058.

    Article  PubMed  Google Scholar 

  129. Slone, E., Westwood, E., Dhaliwal, H., Federico, P., Dunn, J.F., 2012. Near-infrared spectroscopy shows preictal haemodynamic changes in temporal lobe epilepsy. Epileptic Disord 14, 371–378. https://doi.org/10.1684/epd.2012.0535.

    Article  PubMed  Google Scholar 

  130. Watanabe, E., Maki, A., Kawaguchi, F., Takashiro, K., Yamashita, Y., Koizumi, H., Mayanagi, Y., 1998. Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci Lett 256, 49–52. https://doi.org/10.1016/S0304-3940(98)00754-X.

    Article  CAS  PubMed  Google Scholar 

  131. Watson, N.F., Dodrill, C., Farrell, D., Holmes, M.D., Miller, J.W., 2004. Determination of language dominance with near-infrared spectroscopy: comparison with the intracarotid amobarbital procedure. Seizure 13, 399–402. https://doi.org/10.1016/j.seizure.2003.09.008.

    Article  PubMed  Google Scholar 

  132. Gallagher, A., Bastien, D., Pelletier, I., Vannasing, P., Legatt, A.D., Moshe, S.L., Jehle, R., Carmant, L., Lepore, F., Beland, R., Lassonde, M., 2008a. A noninvasive, presurgical expressive and receptive language investigation in a 9-year-old epileptic boy using near-infrared spectroscopy. Epilepsy Behav 12, 340–346. https://doi.org/10.1016/j.yebeh.2007.10.008.

    Article  PubMed  Google Scholar 

  133. Gallagher, A., Beland, R., Lassonde, M., 2012. The contribution of functional near-infrared spectroscopy (fNIRS) to the presurgical assessment of language function in children. Brain Lang 121, 124–129. https://doi.org/10.1016/j.bandl.2011.03.006.

    Article  PubMed  Google Scholar 

  134. Knecht, S., Deppe, M., Ebner, A., Henningsen, H., Huber, T., Jokeit, H., Ringelstein, E.B., 1998. Noninvasive determination of language lateralization by functional transcranial Doppler sonography: a comparison with the Wada test. Stroke 29, 82–86. https://doi.org/10.1161/01.STR.29.1.82.

    Article  CAS  PubMed  Google Scholar 

  135. Gallagher, A., Lassonde, M., Bastien, D., Vannasing, P., Lesage, F., Grova, C., Bouthillier, A., Carmant, L., Lepore, F., Beland, R., Nguyen, D.K., 2008b. Non-invasive presurgical investigation of a 10 year-old epileptic boy using simultaneous EEG NIRS. Seizure 17, 576–582. https://doi.org/10.1016/j.seizure.2008.01.009.

    Article  PubMed  Google Scholar 

  136. Machado, A., Lina, J.M., Tremblay, J., Lassonde, M., Nguyen, D.K., Lesage, F., Grova, C., 2011. Detection of hemodynamic responses to epileptic activity using simultaneous electroencephalography (EEG) / near infrared spectroscopy (NIRS) acquisitions. Neuroimage 56, 114–125. https://doi.org/10.1016/j.neuroimage.2010.12.026.

    Article  CAS  PubMed  Google Scholar 

  137. Chen, W.T., Wang, S.J., Fuh, J.L., Lin, C.P., Ko, Y.C., Lin, Y.Y., 2011. Persistent ictal-like visual cortical excitability in chronic migraine. Pain 152, 254–258. https://doi.org/10.1016/j.pain.2010.08.047.

    Article  PubMed  Google Scholar 

  138. Tietjen, G.E., 2009. Migraine as a systemic vasculopathy. Cephalalgia 29, 987–996. https://doi.org/10.1111/j.1468-2982.2009.01937.x.

    Article  CAS  PubMed  Google Scholar 

  139. Laurell, K., Artto, V., Bendtsen, L., Hagen, K., Kallela, M., Meyer, E.L., Putaala, J., Tronvik, E., Zwart, J.A., Linde, M., 2011. Migrainous infarction: a Nordic multicenter study. Eur J Neurol 18, 1220–1226. https://doi.org/10.1111/j.1468-1331.2011.03364.x.

    Article  CAS  PubMed  Google Scholar 

  140. Kruit MC, Launer LJ, Ferrari MD, van Buchem MA: Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study Brain 128, 2068–2077, 2005. https://doi.org/10.1093/brain/awh542

    Article  PubMed  Google Scholar 

  141. Akin, A., Bilensoy, D., Emir, U.E., Gulsoy, M., Candansayar, S., Bolay, H., 2006. Cerebrovascular dynamics in patients with migraine: near-infrared spectroscopy study. Neurosci Lett 400, 86–91. https://doi.org/10.1016/j.neulet.2006.02.016.

    Article  CAS  PubMed  Google Scholar 

  142. Liboni, W., Molinari, F., Allais, G., Mana, O., Negri, E., Grippi, G., Benedetto, C., D'Andrea, G., Bussone, G., 2007.Why do we need NIRS in migraine? Neurol. Sci. 28 (Suppl. 2), S222–S224. https://doi.org/10.1007/s10072-007-0782-4.

    Article  Google Scholar 

  143. Shinoura, N., Yamada, R., 2005. Decreased vasoreactivity to right cerebral hemisphere pressure in migraine without aura: a near-infrared spectroscopy study. Clin Neurophysiol 116, 1280–1285. https://doi.org/10.1016/j.clinph.2005.01.016.

    Article  PubMed  Google Scholar 

  144. Wolf, T., Lindauer, U., Obrig, H., Dreier, J., Back, T., Villringer, A., Dirnagl, U., 1996. Systemic nitric oxide synthase inhibition does not affect brain oxygenation during cortical spreading depression in rats: a noninvasive near-infrared spectroscopy and laser-Doppler flowmetry study. J Cereb Blood Flow Metab 16, 1100–1107. https://doi.org/10.1097/00004647-199611000-00003.

    Article  CAS  PubMed  Google Scholar 

  145. Viola, S., Viola, P., Litterio, P., Buongarzone, M.P., Fiorelli, L., 2010. Pathophysiology of migraine attack with prolonged aura revealed by transcranial Doppler and near infrared spectroscopy. Neurol Sci 31 (Suppl. 1), S165–S166. https://doi.org/10.1007/s10072-010-0318-1.

    Article  PubMed  Google Scholar 

  146. Liboni, W., Molinari, F., Allais, G.B., Mana, O., Negri, E., D'Andrea, G., Bussone, G., Benedetto, C., 2008. Patent foramen ovale detected by near-infrared spectroscopy in patients suffering from migraine with aura. Neurol Sci 29 (Suppl. 1), S182–S185. https://doi.org/10.1007/s10072-008-0920-7.

    Article  PubMed  Google Scholar 

  147. Viola, S., Viola, P., Litterio, P., Buongarzone, M.P., Fiorelli, L., 2012. Stroke risk and migraine: near-infrared spectroscopy study. Neurol Sci 33 (Suppl. 1), S173–S175. https://doi.org/10.1007/s10072-012-1077-y.

    Article  PubMed  Google Scholar 

  148. Watanabe, Y., Tanaka, H., Dan, I., Sakurai, K., Kimoto, K., Takashima, R., Hirata, K., 2011. Monitoring cortical hemodynamic changes after sumatriptan injection during migraine attack by near-infrared spectroscopy. Neurosci Res 69, 60–66. https://doi.org/10.1016/j.neures.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  149. Griffin, M., Prior, D., Cooper, C.E., Wilkins, A.J., Elwell, C.E., 2006. Near infrared spectroscopy as a noninvasive assessment of cortical abnormality in migraine? Adv Exp Med Biol 578, 203–208. https://doi.org/10.1007/0-387-29540-2_33.

    Article  PubMed  Google Scholar 

  150. Tisdall, M.M., Tachtsidis, I., Leung, T.S., Elwell, C.E., Smith, M., 2007. Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia. J Biomed Opt 12, 024002. https://doi.org/10.1117/1.2718541.

    Article  CAS  PubMed  Google Scholar 

  151. Al-Rawi, P.G., Kirkpatrick, P.J., 2006. Tissue oxygen index: thresholds for cerebral ischemia using near-infrared spectroscopy. Stroke 37, 2720–2725. https://doi.org/10.1161/01.STR.0000244807.99073.ae.

    Article  PubMed  Google Scholar 

  152. Pocivalnik, M., Pichler, G., Zotter, H., Tax, N., Muller, W., Urlesberger, B., 2011. Regional tissue oxygen saturation: comparability and reproducibility of different devices. J Biomed Opt 16, 057004. https://doi.org/10.1117/1.3575647.

    Article  CAS  PubMed  Google Scholar 

  153. Pennekamp, C.W., Bots, M.L., Kappelle, L.J., Moll, F.L., de Borst, G.J., 2009. The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38, 539–545. https://doi.org/10.1016/j.ejvs.2009.07.008.

    Article  CAS  PubMed  Google Scholar 

  154. Vohra, H.A., Modi, A., Ohri, S.K., 2009. Does use of intra-operative cerebral regional oxygen saturation monitoring during cardiac surgery lead to improved clinical outcomes? Interact Cardiovasc Thorac Surg 9, 318–322. https://doi.org/10.1510/icvts.2009.206367.

    Article  PubMed  Google Scholar 

  155. Zheng F, Sheinberg R, Yee MS, Ono M, Zheng Y, Hogue CW: Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: a systematic review. Anesth Analg, 2012 https://doi.org/10.1213/ANE.0b013e318277a255

  156. Smith, M., 2011. Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy. Philos Transact A Math Phys Eng Sci 369, 4452–4469. https://doi.org/10.1098/rsta.2011.0242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Asadur Rahman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Siddik, A.B., Ghosh, T.K. et al. A Narrative Review on Clinical Applications of fNIRS. J Digit Imaging 33, 1167–1184 (2020). https://doi.org/10.1007/s10278-020-00387-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-020-00387-1

Keywords

Navigation