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Abstract
Emphysema is visible on computed tomography (CT) as low-density lesions representing the destruction of the pulmonary alveoli. To
train a machine learning model on the emphysema extent in CT images, labeled image data is needed. The provision of these labels
requires trained readers, who are a limited resource. The purpose of the study was to test the reading time, inter-observer reliability and
validity of the multi-reader–multi-split method for acquiring CT image labels from radiologists. The approximately 500 slices of each
stack of lung CT images were split into 1-cm chunks, with 17 thin axial slices per chunk. The chunks were randomly distributed to 26
readers, radiologists and radiology residents. Each chunkwas given a quick score concerning emphysema type and severity in the left and
right lung separately. A cohort of 102 subjects, with varying degrees of visible emphysema in the lung CT images, was selected from the
SCAPIS pilot, performed in 2012 in Gothenburg, Sweden. In total, the readers created 9050 labels for 2881 chunks. Image labels were
compared with regional annotations already provided at the SCAPIS pilot inclusion. The median reading time per chunk was 15 s. The
inter-observer Krippendorff’s alpha was 0.40 and 0.53 for emphysema type and score, respectively, and higher in the apical part than in
the basal part of the lungs. The multi-split emphysema scores were generally consistent with regional annotations. In conclusion, the
multi-reader–multi-split method provided reasonably valid image labels, with an estimation of the inter-observer reliability.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a major
respiratory health problem, mainly caused by cigarette

smoking, with high morbidity and mortality. In 2002, COPD
was the fifth leading cause of death worldwide [1]. COPD is
characterized by a variable combination of small airway dis-
ease and emphysema (destruction of the alveoli) [2].

With the variable combination of emphysema and airway
involvement, the same severity of COPD may manifest as
different patterns on computed tomography (CT) images.
Pulmonary function test (PFT) is the standard for diagnosis,
while CT is a complementary method offering additional in-
formation [2, 3].

By giving the volume of the low attenuating area in the
lungs, quantitative CT (qCT) has shown an important corre-
lation to the severity of COPD, and is an independent pre-
dictor of morbidity and mortality in COPD patients [4–6].
However, counting low-density pixels does not gather all
image information, since visual emphysema scoring is an
independent predictor even in models where qCT is includ-
ed, and qCT may show similar results in patients with and
without visual emphysema [6, 7]. Machine learning models
can learn image features from training data, and there are
expectations of improved quantitative emphysema scoring
[8].
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Acquiring annotations for image data is a time-consuming
step in the machine learning pipeline, and is often a bottleneck
in radiological applications [9–11]. In medical imaging, the
labels need to be provided by qualified readers and, depending
on the task, at a sufficiently detailed level. For COPD appli-
cations, labels may be provided at an overall level, for exam-
ple using PFT as a reference test or an overall visual emphy-
sema score, or may be provided in more detail, with pixel-
wise emphysema segmentation or a detailed emphysema
score.

Overall labels provide a coarse annotation, but pixel-wise
segmentation may not be feasible because of the large effort
required, as well as low repeatability [12]. A midway ap-
proach is to obtain visual scores for each slice in the CT scan,
without the need for classification of each pixel. Slice-wise
scores can be combined into an aggregated score for each
patient, for use in correlation with clinical outcomes.

Detailed image labels are commonly provided by one or
several readers [13–15]. Obtaining visual emphysema scores
from only a few readers has some disadvantages, such as that
the generalizability of the annotations and the estimate of
inter-observer reliability may be questioned, and the labeling
may be too much work for a single reader.

A different approach is to split the annotation into a large
number of independent subtasks that are distributed to multi-
ple readers. In the multi-reader–multi-split method, we divide
the annotation of each CT scan into many independent sub-
tasks that are completed by different readers. In many fields,
researchers depend on observational data obtained by ob-
servers. The multi-reader–multi-split method, where the as-
sessment of each subject is divided into multiple subtasks, is
an example of not fully crossed design where multiple readers
rate a subset of tasks [16].

To the best of our knowledge, there is no previous report in
CT imaging on trying a method for acquiring image labels,
where different slices in a single CT scan are labeled by dif-
ferent readers. With the overall aim of testing the multi-read-
er–multi-split method and its inter-observer reliability for an-
notating CT image data, the objectives of the present study
were to evaluate (1) the duration of the reading sessions; (2)
the inter-observer reliability in emphysema classification and
scoring; and (3) the validity of the annotations by comparing
the multi-reader–multi-split annotations with conventional re-
gional annotations.

Material and Methods

SCAPIS Pilot Image Data and Annotations

The Swedish CArdioPulmonary bioImage Study (SCAPIS) is
a national, multi-center, cross-sectional cohort study including
cardiac and thoracic CT scans, vascular ultrasound, blood

samples, and functional tests of more than 30,000 individuals
aged 50–64. The aim of SCAPIS is to predict and prevent
cardiovascular disease and COPD [17].

Preceding SCAPIS, the SCAPIS pilot included 1111 par-
ticipants in Gothenburg, Sweden, between February and
November 2012 [17]. At inclusion in the SCAPIS pilot, the
emphysema extent in the CT images was assessed for each
patient and registered in an electronic case report form
(eCRF). The emphysema extent was annotated in three sepa-
rate regions in each lung, at each examination: upper lung
(between apex and carina), middle lung (from carina to the
lower pulmonary vein), and lower lung (between the pulmo-
nary vein and the lung base). The emphysema type was deter-
mined using the classifications “none,” “centrilobular,”
“paraseptal,” “combined centrilobular and paraseptal,”
“panlobular,” and “bullae.” For any emphysema type, the de-
gree was assessed as mild (1–25%), moderate (> 25–50%), or
severe (> 50%). These regional annotations were obtained pri-
or to the present study, by experienced senior thoracic radiol-
ogists, and were used for comparison with the multi-reader–
multi-split annotations obtained in this study [7].

The study protocol was approved by the regional research
ethics board. Informed consent was signed at inclusion in the
SCAPIS pilot.

Image Data and Chunk Preparation

From the SCAPIS pilot, thoracic CT scans from a subset of
100 subjects with visible emphysema, and 100 matched con-
trols without emphysema, have previously been selected [7].
The images in the present study were extracted from these
scans. In total, CT images of 102 subjects were included in
the study, 96 with emphysema and six controls. In four sub-
jects in the pre-selected emphysema cohort, thin-slice CT im-
ages were not available; these patients were excluded. The
severity of emphysema in most patients in the emphysema
cohort was mild, with many regions without emphysema ac-
cording to the eCRF [7]. To avoid worsening the skewed
distribution of regional emphysema scores, only six randomly
selected subjects from the matched controls were included in
the present study.

The CT images were acquired on a Siemens Somatom
Definition Flash (Siemens, Erlangen, Germany), reference
tube voltage and reference mAs for CARE dose 4D, 120
kVp and 25 mAs, respectively. The median effective dose
was 2 mSv. Images were reconstructed as 0.6-mm contiguous
slices with a soft tissue algorithm (B31 (n = 42), I31f2 (n =
12), or I31f3 (n = 48)).

From each CT stack, all slices between the pulmonary apex
and base were extracted using a software developed for the
study. Each examination was split into 1-cm chunks (17 slices
of 0.6 mm, per chunk). The mean number of chunks per
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examination was 28 (range 23–33), giving 2881 separate
chunks in total.

Three chunks per examination formed the multi-reader
chunks. These were located in the middle of each of the upper,
middle, and lower lung zone (see Fig. 1). These 306 multi-
reader chunks were annotated by up to 13 readers (median
six). The remaining 2575 single-reader chunks were annotat-
ed by one reader each.

Image Review

Twenty-six readers were included in the study, comprising
radiologists and radiology residents. The task for each reader
was to assess the type and degree of emphysema in the left and
right lung in 175 CT chunks; 75 chunks were randomly se-
lected from the multi-reader chunks, and 100 chunks were
randomly selected from the single-reader chunks.

For each chunk, the reader provided two assessments—for
the right and left lung parenchyma separately. The emphyse-
ma type and degree was assessed using the same classification
as used for the regional assessment at inclusion in the SCAPIS
pilot described above. The readers received a written instruc-
tion including images with examples of all emphysema scores
for all emphysema subtypes, and a short oral instruction.

The assessment of each chunk was performed in an appli-
cation where the readers could scroll through the 17 axial
slices similar to a standard radiological workstation (see
supplementary material). The CT slices were displayed in
lung window setting (C-500/W 1500) and were zoomed ×
1.5 from pixel-to-pixel size. The application was custom-
built for the study in Matlab R2018b (The Mathworks,
Natick, MA, USA).

Reading Time Analysis

For each annotated chunk, the reading time was recorded. The
per chunk reading time for chunks with and chunks without
emphysema was compared using Wilcoxon’s rank sum test.
Reading times > 3 min/chunk were considered pauses and
excluded from the reading time analysis.

Inter-observer Reliability—Mutli-Reader Chunks

Krippendorff’s Alpha

The inter-observer reliability in the emphysema type and score
for the mult i - reader chunks was analyzed using
Krippendorff’s alpha, where alpha = 0 represents no agree-
ment and alpha = 1 represents perfect agreement [18–20]. In
contrast to the more common Cohen’s kappa, Krippendorff’s
alpha can handle any number of readers, missing values and
data on both nominal and numerical scales. A rule for
interpreting Krippendorff’s alpha for a specific context is
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difficult to find. For reliability data, alpha > 0.66 is sometimes
considered acceptable, but requires interpretation depending
on context [18].

Confidence intervals (CIs) were obtained through
bootstrapping with 1000 replicates using the K_alpha script
provided by Zapf et al. [19].

Systematic Differences Between Readers

The tendency for each reader to assign a certain type and score
was analyzed by counting the numbers of scores assigned to
each class for each reader in the multi-reader chunks. The
distribution of eCRF regional scores in the chunks for each
reader was also analyzed to assess whether the random assign-
ments of chunks were homogeneous between the readers.

The differences in emphysema type and score, and the
distribution of eCRF regional scores between readers were
tested for homogeneity with chi squared tests, with the null
hypothesis of equal distributions independent of reader.

Consistency Between Adjacent Chunks

Emphysema scores for adjacent chunks are expected to show
a smooth variation in the cranio-caudal direction due to the
diffuse nature of emphysema. The consistency in emphysema
score between adjacent chunks was analyzed on an ordinal
scale by counting the difference between the emphysema
score provided in a chunk and the adjacent chunks.

The difference between severe emphysema and no emphy-
sema received absolute difference 3; the difference between
severe and mild emphysema and between moderate and no
emphysema received difference 2; and the difference between
severe and moderate emphysema, between moderate and mild
emphysema and between mild and no emphysema, received
difference 1.

Validity of Annotations—per Chunk vs. Regional
Annotation

The per chunk emphysema scores were compared with the
eCRF regional emphysema score assigned at inclusion in
SCAPIS pilot in the corresponding region [7]. For each
eCRF emphysema score (no emphysema, mild, moderate,
and severe emphysema), the number and proportion of

corresponding per chunk emphysema scores were computed.
The proportion of per chunk emphysema scores for the eCRF
regional scores were tested for homogeneity using chi squared
test with the null hypothesis of equal distributions indepen-
dent of eCRF score.

Statistics

Matlab was used for statistics, except for computation of
Krippendorff’s alpha CIs, where an R (R Foundation for
Statistical Computing, Vienna, Austria) script (K_alpha) was
used [19].

Results

Baseline Characteristics

Baseline characteristics of included patients are given in
Table 1.

Between May and September 2019, altogether, 26 readers
provided a total of 9050 separate assessments of emphysema
type and severity in 2881 separate chunks from 102 partici-
pants. The number of assessments exceeded the number of
chunks because the left and right lungs were separately rated,
and several readers rated the same multi-reader chunks.
Fifteen of the participating readers were radiologists, with a
median of 8 (range 0–33) years’ experience after certification.
Eleven readers were radiology residents, median third year
(range 0–6 years).

Reading Time

Themedian number of reading sessions for annotating the 175
chunks was two (range one to four). The median reading time
per chunk was 15 s (interquartile range 17 s). The median
reading time was longer for chunks with emphysema com-
pared with that of chunks assessed as normal (p < 0.001),
20 s vs. 10 s.

Table 1 Baseline characteristics of included subjects

Background data

Participants, n (male/female) 102 (55/47)

Age (years) 58 ± 5

Body weight (kg) 76 ± 16

Height (m) 1.70 ± 0.1

BMI (kg/m2) 26 ± 5

Values are given as mean ± standard deviation. BMI body mass index

�Fig. 1 Multi-reader–multi-split annotation in one subject. The overall
electronic case report form (eCRF) emphysema type was centrilobular.
The multi-split emphysema score is color-coded and type is abbreviated.
(a) Coronal minimum intensity (MinIP) projection demonstrating the 28
chunks from this subject. The multi-reader chunks are indicated by blue
lines. The regional eCRF score is color-coded. The reader variations in
the top, middle, and bottom multi-reader chunks are shown in Fig. 1b–d.
The number of readers in the multi-reader chunks varies because of the
random sampling. The MinIP images were not available for the readers
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Inter-observer Reliability

Multi-Reader Chunks—Emphysema Type

The overall Krippendorff’s alpha for the nominal-scaled em-
physema type was 0.40 (95% CI 0.37–0.43). The agreement
was higher in the upper than that in the lower part of the lungs.
For multi-reader chunks in the upper, middle, and lower part
of the lung, alpha (95% CI was) was 0.45 (0.40–0.49), 0.31
(0.26–0.35), and 0.29 (0.23–0.35), respectively.

The confidence intervals for the upper part of the lungs did
not overlap with the mid or lower part, indicating significant
difference at p < 0.05 level.

Multi-Reader Chunks—Emphysema Score

The overall Krippendorff’s alpha, for the ordinal-scaled em-
physema score (0–3), was 0.53 (95% CI 0.49–0.57). Similar
to the assessment of emphysema type, the agreement was
higher in the upper than that in the lower part of the lungs.
For multi-reader chunks in the upper, middle, and lower part
of the lung, alpha (95% CI) was 0.59 (0.53–0.65), 0.45 (0.37–
0.52), and 0.39 (0.30–0.47), respectively.

The confidence intervals for the upper part of the lungs did
not overlap with the mid or lower part, indicating significant
difference at p < 0.05 level.

Systematic Differences Between Readers

There was a systematic difference between readers in the as-
sessment of emphysema type and emphysema score, both
p < 0.001 according to chi squared test. Some readers tended
to report lower emphysema scores, while others reported
higher scores. Figure 2 a and b shows the systematic differ-
ences between readers in the assessment of emphysema score
and emphysema type. There was no systematic difference in
eCRF score in the random assignment of the multi-reader
chunks, p = 0.09 (see Fig. 2c).

Consistency Between Adjacent Chunks

Figure 3 shows the emphysema score in all chunks for the
right and left lungs, sorted according to the total emphysema
score for the patient.

The median absolute difference between the scores on ad-
jacent chunks was zero, demonstrating that, in the majority of
assessments, the score was identical for adjacent chunks. A
visual assessment of Fig. 3 reveals the expected, predominant-
ly apical distribution of emphysema and a general consistency
between adjacent chunks.

There are, however, several distinctive annotations that
clearly differ from adjacent annotations, for example, for sin-
gle chunks graded as severe emphysema among chunks

graded as normal. The identification of outlying annotations
indicates where additional measures to reduce variation can be
directed. However, this step is beyond the scope of the present
manuscript.

Validity of Annotations—per Chunk vs. Regional
Annotation

For multi-reader chunks, the median score of the most com-
mon emphysema type was used. Most subjects from the em-
physema cohort had several segments without emphysema,
according to the eCRF classification. In addition, the six sub-
jects from the control group had no segments with emphyse-
ma. Consequently, the most common emphysema score, as
given on the eCRF, was no emphysema (327 regions), follow-
ed by mild, moderate, and severe emphysema (in 245, 35, and
three regions, respectively). The number of multi-split assess-
ments for no emphysema, as per the eCRF, was 3119, com-
pared with 2253 for mild, 344 for moderate, and 28 for severe
emphysema. Since the eCRF score was missing for two re-
gions, the number of comparisons using the eCRF is lower
than twice the number of chunks in the study.

The multi-reader–multi-split labels were related to the
eCRF scores according to chi squared test, (p < 0.001) (see
Fig. 4); for example, in regions that had the eCRF classifica-
tion “mild emphysema,” 50% of multi-split labels indicated
mild emphysema and 39% said no emphysema. Considering
the expected cranio-caudal distribution of emphysema, as
shown in Fig. 3, many multi-split assessments in regions with
mild emphysema are expected to be normal. The concordance
with the eCRF indicates that the multi-reader–multi-split an-
notations measured the same entity as the regional emphyse-
ma scores, and therefore suggests that the labels are valid.

Discussion

In the present study, we investigated the feasibility of the
multi-reader–multi-split method for annotating emphysema
in pulmonary CT. The coherence to the eCRF annotations
indicated that the multi-split annotations were valid. The
inter-observer reliability analysis, based on a large number
of included readers, revealed a variability with a cranio-
caudal gradient within the lungs. The inter-observer reliability
may serve as a benchmark for future machine learning
approaches.

Several aspects need to be analyzed here, considering the
feasibility of the method for acquiring annotations. Among
these aspects are how to recruit readers, how to make the
annotation session tolerable for the readers, and the generaliz-
ability, validity, and precision of the labels.

Labeled images are needed for the development of machine
learning methods. In medical applications, they need to be
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provided by qualified readers, who are a limited resource [9,
10]. Compared with normal clinical work, image labeling may
also be a tedious task, which may hamper the recruitment of
readers. In the present study, we overcame these limitations by
introducing the multi-reader–multi-split method. The large
workload of providing detailed emphysema scores was split
into more than 9000 separate assessments randomly distribut-
ed to 26 readers, where each label required only a few
seconds.

The multi-reader–multi-split method is, to the best of our
knowledge, a new application in radiology of a method where
different parts of the same CT examination is labeled by dif-
ferent readers. Besides lowering the workload for each reader,
the multi-reader–multi-split method also enabled the analysis
of the inter-observer reliability.

A machine learning method aimed to add information to
the PFT and qCT in predicting the clinical outcome in COPD
patients is the next phase of the project, but this is beyond the
scope of the present study. The absence of difference in qCT
values between cases and controls in the same cohort empha-
sizes the need for an automated method that coheres to the
visual scores [7].

Although more detailed annotation levels capture more in-
formation, pixel-wise annotations in diffuse pulmonary dis-
ease are generally not achievable because there is no distinct
border between healthy and unhealthy lung tissue [12]. In the
present study, we instead used a visual emphysema score ob-
tained for each centimeter on the z-axis of the thoracic CT
image. These can be aggregated into a more detailed score
for the patient than the regional eCRF scores.
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Fig. 2 Systematic differences between readers in (a). emphysema score
and (b). emphysema type, and (c). Absence of systematic difference in
corresponding eCRF score. Each bar represents a reader. The colors
represent the relative frequencies of the classifications for the reader.

The 26 readers are sorted according to the proportion of normal lung
parenchymas, with maintained positions in (a), (b) and (c). Lung
parenchyma in both sides in multi-reader chunks are included
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Per chunk vs. eCRF regional emphysema score
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Labels provided by expert readers are often used as ground
truth [10]. The systematic differences between readers, as
demonstrated by Fig. 2, emphasize the importance in the se-
lection of the reader if a single reader labels images. In con-
trast, with the multi-reader method, the impact of each reader
is smaller.

In the present study, we analyzed the validity by comparing
the multi-reader annotations to the independent eCRF annota-
tions [7]. Figure 4 shows that 98% of the chunks in regions
assessed as normal using the eCRF were labeled as no or mild
emphysema, and 93% of the chunks in regions assessed as
severe emphysema in the eCRF were labeled as moderate or
severe emphysema. Complete agreement between the multi-
reader–multi-split labels and the eCRF for the diffusely dis-
tributed lung disease is not desirable, since the eCRF annota-
tions are regional—each region approximately 9 cm—while
the multi-split annotations are created for each centimeter.
Instead, the reasonable agreement found in the present study
indicates that the annotations are reasonably valid, and that the
slice-wise labels may be combined into a more detailed score
compared with that of the regional eCRF scores.

The precision of the labels refers to the repeatability. By
acquiring labels from multiple readers, the inter-observer reli-
ability has been quantified. The inter-observer reliability re-
quires an interpretation beyond a single statistic measure.
Although Krippendorff’s alpha in the present study is gener-
ally below what is considered acceptable repeatability, the
reason for inter-observer variations must be taken into
account.

In the present study, Krippendorff’s alpha concerning em-
physema score was 0.39, 0.45, and 0.59 on the multi-reader
chunks in the lower, mid, and upper parts of the lungs, respec-
tively. In a previous study concerning the eCRF regional
scores in the same cohort, the corresponding inter-observer
alpha for two included readers was between 0.51 and 0.76,
while the intra-observer alpha for three readers was between -
0.07 and 0.90 [7].

A lower agreement in the present study was anticipated
since the readers only had access to very limited data, 1 cm
per chunk. Importantly, the wide range of Krippendorff’s al-
pha in the present study and in the previous study illustrates
that complete agreement between visual emphysema score is
not achievable. Complete agreement is only possible if there is
an objective correct emphysema score, but visual scoring is
subjective and the cutoff points are arbitrary. The distribution
of scores from many readers in the present study illustrates
that rather than estimating the correct score for a given chunk,
a given score should be seen as an observation of the distri-
bution of possible scores from qualified readers for the chunk
(see Fig. 1, 2, and 3). With several readers, this distribution
can be estimated.

For use in machine learning, a discrete classification of
emphysema, rather than a distribution, for a given chunk is

necessary, but the discrete classes rely on a simplification of
the radiological interpretation. To interpret the outcome of a
machine learning algorithm, the estimation of the inter-
observer reliability between radiologists is therefore
necessary.

Consistent with previous findings, the inter-observer vari-
ations were largest in the basal part of the lungs [7]. Multiple
factors may have contributed to this finding. In the basal part
of the lung, there are more motion artifacts. In the apical part
of the lungs, the emphysema may have a more typical appear-
ance, and the cross-sectional area of the lung is smaller.

This study has several limitations. For efficient sequential
viewing of multiple chunks from different examinations, a
custom graphical user interface was required. Although the
viewer was designed to resemble a standard radiological
workstation, its functionality was limited. The limited number
of 17 axial slices per chunk, without multiplanar reformats,
may not be ideal for evaluation. Although the number of
chunks was large, all chunks originated from 102 subjects.
A larger patient cohort may be necessary for improved gener-
alizability. The intra-observer reliability could not be assessed.

The study provided a visual method for identifying outly-
ing annotations. Before starting the machine learning process,
improvement of the data including outlying chunk labels may
be necessary. A further development would also be to create a
web-based annotation tool, which would provide more con-
venient access for the readers, and enable recruitment of
readers from multiple sites.

Conclusions

The present study indicates that the multi-reader–multi-split
method for acquiring medical image is tolerable for the
readers, leads to reasonably valid image labels, and enables
an important analysis of the inter-observer reliability.
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