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Abstract
Although machine learning (ML) has made significant improvements in radiology, few algorithms have been integrated into
clinical radiology workflow. Complex radiology IT environments and Picture Archiving and Communication System (PACS)
pose unique challenges in creating a practical ML schema. However, clinical integration and testing are critical to ensuring the
safety and accuracy of ML algorithms. This study aims to propose, develop, and demonstrate a simple, efficient, and under-
standable hardware and software system for integrating ML models into the standard radiology workflow and PACS that can
serve as a framework for testing ML algorithms. A Digital Imaging and Communications in Medicine/Graphics Processing Unit
(DICOM/GPU) server and software pipeline was established at a metropolitan county hospital intranet to demonstrate clinical
integration of ML algorithms in radiology. A clinical ML integration schema, agnostic to the hospital IT system and specific ML
models/frameworks, was implemented and tested with a breast density classification algorithm and prospectively evaluated for
time delays using 100 digital 2D mammograms. An open-source clinical ML integration schema was successfully implemented
and demonstrated. This schema allows for simple uploading of custom ML models. With the proposed setup, the ML pipeline
took an average of 26.52 s per second to process a batch of 100 studies. The most significant processing time delays were noted in
model load and study stability times. The code is made available at “http://bit.ly/2Z121hX”. We demonstrated the feasibility to
deploy and utilize ML models in radiology without disrupting existing radiology workflow.
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Background

Machine learning (ML) has made significant advances in radiol-
ogy, especially with the applications of artificial neural networks
to various medical imaging modalities. However, very few of
these algorithms have been integrated into the clinical radiology

workflow [1]. ML algorithms have demonstrated promising per-
formance on a variety of tasks, such as Alzheimer’s prediction,
mammographic risk scoring, tomographic segmentation, and ar-
thritic joint and muscle tissue segmentation [2–6]. Given a two-
fold increase in workload seen by radiologists from 1999 to 2010
[7], ML algorithms have the potential to help radiologists man-
age this burden and improve performance.

Unfortunately, the impact of these algorithms has largely
been limited to pilot experiments and technical discussions in
literature to date. Complex radiology IT system and associated
Picture Archiving and Communication System (PACS) in ac-
tual clinical radiology practice, along with the relative inac-
cessibility of these systems to outside industry and academic
ML engineers, pose unique challenges in creating an efficient,
simple, and practical ML algorithm clinical integration sche-
ma [8]. Accordingly, the 2018 RSNA Artificial Intelligence
Summit emphasized that developing systems to deploy ML
algorithms in clinical practice is now an essential component
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in improving algorithm quality and radiology performance
[9].

Several industry teams have developed custom ML-
focused PACS, but integrating these systems will require ex-
tensive trial and error. Moreover, implementing new PACS is
in itself a challenging task, often requiring retraining staff,
disrupting radiology workflow, and potentially raising data
security concerns with proprietary code integrating with hos-
pital IT [10]. Therefore, we proposed, developed, and demon-
strated a simple and efficient system for integrating ML
models into the standard radiology workflow and existing
PACS that can serve as the basis for testing homegrown or
commercial algorithms.

Methods

DICOM/GPU Server

This institutional review board approved, written informed
consent waived, and HIPAA-compliant study involved the
establishment of a DICOM/GPU server and software pipe-
line at a metropolitan, academic county hospital intranet to
demonstrate proof-of-concept of clinical integration of ML
algorithms in radiology. A free, open-source, and light-
weight Orthanc DICOM server (Orthanc 1.0; University
Hospital of Liége, Belgium) was installed onto the
DICOM/GPU server with a Linux operating system
(Ubuntu 16.04; Canonical, London, England). This server
has a six-core AMD Ryzen 5 2600 processor (clock speed
at 3.4 GHz) (AMD, Santa Clara, Calif), 16 GB of DDR4
SDRAM, and an NVIDIA Titan V Volta graphical pro-
cessing unit (Nvidia Corporation, Santa Clara, Calif) with
CUDA 9.2 and CuDNN 7.5 (Nvidia).

The DICOM/GPU server was placed within the intranet of
the hospital’s radiology IT network and set up to communi-
cate with the hospital PACS. The DICOM/GPU server was
designated an IP address on the PACS virtual routing and
forwarding protocol, which was assigned to the MAC address
of the server, to minimize security and firewall policies if the
server resides on another subnetwork. A static port configura-
tion on a fabric extender (FEX) switch, which was also con-
nected to the PACS servers, was established in the hospital
datacenter. The cluster of servers were connected with a pair
of redundant 10 GB copper connections that correspond to a
pair of redundant FEX switches for business continuity. The
DICOM/GPU server was set up with a single 1 GB connec-
tion, which can be swapped with redundant 10 GB or 4 ×
1 GB network cards to handle increased volume to the
DICOM/GPU server. The Orthanc server was configured by
specifying the PACS alias, IP address, ports and Application
Entity Titles, and a vendor patch parameter in the configura-
tion file [8].

Clinical ML Integration

In the standard data flow, patient imaging data moves from the
medical imaging equipment to the hospital PACS (Fig. 1.1),
where images can then be queried from the radiology work-
stations (Fig. 1.2). The DICOM/GPU server expands the data
flow to incorporate ML algorithms within a standard PACS
environment. Radiologists can transmit studies from PACS to
the Orthanc DICOM server (Fig. 1.3). The GPU server
watches for new instances in Orthanc and sends DICOMs to
appropriate ML models, based on DICOM headers (Fig. 1.4).
Additionally, radiologists can connect to a virtual session in
the GPU server to choose to apply a specific algorithm. The
GPU server transforms outputs into a new series (Fig. 1.5) and
uploads back to the Orthanc DICOM server (Fig. 1.6). The
GPU server transmits new ML series back to the hospital
PACS (Fig. 1.7). All actions by the GPU server to process
and modify DICOM images are conducted via Python code.
A live demo was conducted with a BI-RADS breast density
classification algorithm. One hundred digital screening mam-
mograms from April 1 to April 12, 2019, were transmitted
from a PACS workstation to the DICOM/GPU server to test
implementation and analyze time delays greater than 0.5 s in
the ML pipeline.

ML Model Updates and Intervention

This clinical ML integration was designed to be modular to
allow the ML engineer to easily add or remove ML models
and audit ML outputs. The workflow has three intervention
points: DICOM headers, the deployed ML models, and the
Orthanc server itself (Fig. 2). The DICOM headers (Study
Description, Body Part Examined, Modality, and Series
Description) are used to determine to which ML model to
apply to the study (Fig. 2.1). These ML models can be
custom, pretrained models or industry acquired models
(Fig. 2.2). The Orthanc server can be inspected by the
ML supervisor to perform a quality assurance check on
the ML models (Fig. 2.3).

Results

A Live Demo of Breast Density Classification

As a proof of concept and live demonstration, the clinical ML
integration was tested with a breast density classificationmod-
el. This model was integrated into the ML workflow by
uploading only two files to the DICOM/GPU server: an h5
file containing the model weights and architecture and a
Python script implementing preprocessing, prediction, and
postprocessing steps. The model was used to test the integra-
tion system and any time delays greater than 0.50 s in the ML
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integration pipeline. The code ismade available at http://bit.ly/
2Z121hX.

Machine Learning Model Description

Studies were identified as candidates for the breast density
classification model using DICOM header metadata: Study
Description, Series Description, Modality, and Body Part
Examined. Candidate selection and DICOM image

preprocessing steps are institution- and algorithm-specific pa-
rameters. The DICOM/GPU server did not fail to recognize
any studies when DICOM parsing header metadata. Our mod-
el used Xception architecture to classify the breast density of
2D mammography images using the defined BI-RADS clas-
sifications [11, 12]. This model predicted a probability for
each BI-RADS breast density class (A, B, C, or D) for each
2D mammogram image within the exam, which typically
consisted of two views of each breast for a total of four

Fig. 1 The standard flow of medical imaging data can be expanded to
include the input of machine learningmodels. (1)Medical imaging equip-
ment transfers study to PACS. (2) PACS sends images to radiologist
workstations. (3) Studies from Hospital PACS can be manually or auto-
matically transmitted to the Orthanc DICOM server, situated within the
combined DICOM/GPU server. (4) DICOM server watches for new

instances in Orthanc and sends DICOMs to appropriate ML models,
based on DICOM headers. (5) GPU server transforms outputs into a
new DICOM series and (6) uploads back to the Orthanc DICOM server.
(7) GPU server, either automatically or manually, transmits new ML
series back to hospital PACS

Fig. 2 Hospital ML administrators and radiologists have 3 key points to
assess and intervene in the ML workflow. (1) They can determine which
algorithms will be applied to which DICOM series by modifying body
part, modality, and series description that should be identified in the

DICOM header information; (2) upload new ML pretrained algorithms
to be integrated into the clinical workflow; and (3) audit the DICOM
server to perform quality assurance checks
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images. This model averaged the probabilities to predict an
output. The detailed description of the ML model is outside
the scope of this manuscript, since the described model is
diagnosis and team specific, and can be substituted with a
different model.

The model then generated a new DICOM file with an im-
age detailing the model and its predictions (Fig. 3). This
DICOM is appended as a new series, titled “ML_models”
within the same study. The outputs of future ML models ap-
plied to this study would be appended to this series to avoid
disrupting existing workflows and allow the radiologist to
incorporate model findings at their discretion.

ML Server Times Delays

Significant time delays in clinical ML integration can
reduce its utility in certain time-sensitive cases.
Although the exact time delay will depend on compute
power, model architecture, and network speed, measured
times in our set up were reported to provide an esti-
mate. Table 1 lists delays greater than 0.50 s in pro-
cessing time on the DICOM/GPU server. The mean
time required to analyze one study was 86.27, 32.45,
and 26.52 s when processing studies in batch of 1,
10, and 100 studies, respectively. The batch size affect-
ed the study stability time, which is the time required to
ensure no new DICOMs will be loaded into Orthanc as
part of the study. Orthanc defaulted to waiting 60 s for
new DICOM files for a specific study, but this can be
configured as necessary. Because Orthanc received stud-
ies in parallel, batching studies led to smaller mean
delay times. Study stability time was recorded as
60.83, 6.34, and 0.62 s for batch sizes of 1, 10, and

100 studies, respectively. The Xception model load
time, the time required to load the Xception architecture
into GPU memory, averaged 26.52 s. The instance anal-
ysis time, the time for the server to read, preprocess,
and output a prediction, averaged 0.91 s. Model load
time and study stability time were the bottlenecks in
this workflow.

Fig. 3 Output of BI-RADS
density classification algorithm
via clinical ML pipeline
integrated with PACS. Study was
transmitted from PACS
workstation to DICOM/GPU
server for analysis. Output was
generated as a new series, “ML_
models,” and transmitted back to
PACS. Output DICOM originally
appeared as a thumbnail in left
sidebar without interfering with
mammography hanging protocols

Table 1 DICOM/GPU server mean time delays for breast classification
model

Category Delay time (s) N

Xception model load time 19.40 100

Single image analysis time 0.91 559

PACS upload time 0.97 100

Study analysis times

Batch size = 1 study 86.27 10

Batch size = 10 studies 32.45 100

Batch size = 100 studies 26.52 100

Study stability times

Batch size = 1 study 60.83 10

Batch size = 10 studies 6.34 100

Batch size = 100 studies 0.62 100

Time delays greater than 0.50 s in DICOM/GPU server when processing
studies transmitted from PACS. Single image analysis time is the time
required to preprocess and performance inference on a single DICOM
image and does not include model load time. PACS upload time is the
time required to send the output DICOM file from the DICOM/GPU
server to the hospital PACS and is a measure of network delay. Study
analysis time is the total time for the pipeline to process one study, starting
from when a study is received on the DICOM/GPU server and ending
when the model output has been successfully uploaded to PACS. Study
stability time is the time required to ensure no more DICOMs will be
loaded into Orthanc as part of the study
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Discussion

We developed a simple, efficient, and open-source pipeline
for integrating ML algorithms into clinical radiology
workflow using a DICOM/GPU server that minimizes disrup-
tion to the existing PACS system and radiologists’ diagnostic
work. This pipeline, which is agnostic to hospital IT systems,
would allow for easy supervision, modification, and analysis
by radiologist and radiology IT administrators to both pro-
spectively and retrospectively monitor the performance and
utility of ML algorithms.

Current challenges of deploying ML models in existing IT
infrastructures have limited the utility of ML in clinical radi-
ology workflow. NVIDIA released the Clara SDK in 2019,
which allows the engineers to deploy ML radiology algo-
rithms in the clinic. This SDK offers a parallel implementation
of clinicalML integration and is a positive step for clinicalML
integration (NVIDIA Clara, 2019). While the library offers
advanced features and GUIs, it further abstracts the ML inte-
gration implementation, thus adding complexity for complex
use cases that may not follow traditional ML pipelines, and
relies on NVIDIA for maintenance and upkeep. Existing lit-
erature on ML studies that have prospectively analyzed
models in radiology often involved third-party software to
display the results or adopted outside infrastructure into the
clinical data center [13–15]. This could affect clinical
workflow and create barriers for researchers to properly eval-
uate the algorithms. Furthermore, implementation of outside
industry hardware and software at the core of clinical radiol-
ogy data center, with little control by the department, could
raise concerns over data security and patient confidentiality.
By open-sourcing the clinical ML integration architecture, we
enabled radiologists and PACS engineers to integrate existing
algorithms into the workflow, identify new opportunities to
utilize ML in radiology, and test ML models in real world
environments while retaining full control of the environment
and ML models.

In clinical practice, constant evaluation of model accuracy
and shortcomings, in conjunction with model calibration and
fine-tuning, is necessary to arrive at the best possible solution.
Misclassification and measurement errors will inevitably exist
in ML models, and both over-reliance on ML models and
complete mistrust/avoidance of them can both reduce the ef-
fectiveness of radiologists [16]. We support the implementa-
tion of quality assurance (QA) systems when deploying ML
models and suggest a three-pronged approach for QA (Fig. 4).
Radiologists who notice a mislabeled instance may access a
survey or webform to report misclassifications (Fig. 4.1).
Additionally, certain PACS viewers can be configured to em-
bed radiology annotations in DICOM headers and transmit
them back to the DICOM/GPU server [17]. Radiologists can
directly correct the annotation and send the correction back to
the Orthanc/GPU server (Fig. 4.2). Embedding annotations, if

possible with given PACS, can be an efficient QAmechanism
because it reduces the number of steps required for a radiolo-
gist to provide feedback. Lastly, existing QA checks can also
catch ML output mistakes (Fig. 4.3). This three-pronged QA
framework can be integrated with a future schema to retrain
the ML models and improve performance.

Loading the ML model at the start of a study rather than
before each instance reduced delay times significantly. When
scaling a successful, high-impact model, a dedicated DICOM/
GPU server with the ML model preloaded can be established
to process those DICOM images. Study stability time can be
reduced by having the DICOM/GPU server automatically
query PACS for new studies at fixed time intervals. Studies
would be analyzed prior to radiologists opening the study, and
batched queries would increase the batch size and reduce de-
lay times.

Our study has several limitations. First, our approach re-
quires extra storage because it sends an additional DICOM
image to the existing PACS infrastructure. However, the extra
DICOM image allows vendor-neutral integration and

Fig. 4 Three-pronged framework for performing quality assurance (QA)
check on an incorrect output by ML model. (1) Radiologist enters patient
accession number and model name into intranet webform. (2) Radiologist
makes text and/or visual annotations in a PACS viewer and saves this
information to DICOM header with corrections. Radiologist transmits
back to DICOM/GPU Server, which reads annotations and notes incor-
rect ML output. (3) The hospital’s standard radiology QA protocol
catches the ML output error. All identified outputs are stored in an ML
QA database
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becomes easily visible to the radiologist. Second, our demo
reads the DICOM header to determine the most appropriate
ML algorithm, and this parameter must be tailored to each
individual institution’s protocol.

Conclusion

Overall, our study provides a technical framework for
deploying ML algorithms in radiology and tested this frame-
work at our host institution with a breast density classification
algorithm. This framework is modular, open-source, and ven-
dor agnostic, allowing it to be adapted for a wide variety of
ML applications in radiology. Furthermore, QA checks are
essential to ensuring an ML model’s clinical performance,
and our framework provides the flexibility for researchers to
implement model-specific and hospital-specific QA systems.
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