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Abstract
18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET) is commonly used in clinical practice and clinical drug
development to identify and quantify metabolically active tumors. Manual or computer-assisted tumor segmentation in FDG-
PET images is a common way to assess tumor burden, such approaches are both labor intensive and may suffer from high inter-
reader variability. We propose an end-to-end method leveraging 2D and 3D convolutional neural networks to rapidly identify and
segment tumors and to extract metabolic information in eyes to thighs (whole body) FDG-PET/CT scans. The developed
architecture is computationally efficient and devised to accommodate the size of whole-body scans, the extreme imbalance
between tumor burden and the volume of healthy tissue, and the heterogeneous nature of the input images. Our dataset consists
of a total of 3664 eyes to thighs FDG-PET/CT scans, from multi-site clinical trials in patients with non-Hodgkin’s lymphoma
(NHL) and advanced non-small cell lung cancer (NSCLC). Tumors were segmented and reviewed by board-certified radiolo-
gists. We report a mean 3D Dice score of 88.6% on an NHL hold-out set of 1124 scans and a 93% sensitivity on 274 NSCLC
hold-out scans. The method is a potential tool for radiologists to rapidly assess eyes to thighs FDG-avid tumor burden.
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Introduction

18F-fluorodeoxyglucose positron-emission tomography
(FDG-PET) is a widely used imaging modality in oncology,
where radiolabeled glucose is intravenously administered and
is rapidly taken up by metabolically active tumors. This im-
aging technology provides a means to visualize and quantify
metabolically active tumor burden in patients, and FDG-PET
has been applied to a wide range of cancer types, with differ-
ing degrees of FDG uptake. Some tumors (e.g., prostate can-
cer) exhibit relatively low FDG uptake and, thus, may not be
detectable by FDG-PET, whereas many other tumor types
(e.g., non-small cell lung cancer, non-Hodgkin’s lymphoma)
demonstrate high FDG uptake, making them highly visible in
FDG-PET images [1]. FDG-PET has been found to be

superior to anatomical imaging modalities (cf., MRI, CT,
US) for detection of these FDG-avid tumors [1] and FDG-
PET tumor burden metrics [2] have been shown to be prog-
nostic of clinical outcome [1, 3], Moreover, FDG-PET imag-
ing may provide an early indicator of therapeutic efficacy and
is an established modality in the assessment of response to
treatment in patients with malignant lymphomas [4–6].

Analysis and interpretation of FDG-PET images is per-
formed by trained radiologists or readers who visually
inspect the images for tumors and then define individual
tumor boundaries (region of interest, ROI) manually, or
with the use of semi-automated image analysis software.
Typically, the maximum standardized uptake value (SUV)
within a tumor ROI is recorded along with the tumor
volume and tracked over the course of treatment.
Manually based analyses can be very labor-intensive and
time-consuming, especially in whole-body FDG-PET
scans. Additionally, manually driven analyses will suffer
from intra- and inter-reader variability.

The development of a fully automatic segmentation algo-
rithm, which aims to increase both speed and reproducibility
of scan assessments, faces significant technical challenges.
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For instance, specific FDG uptake occurs in a number of high-
ly metabolic but normal, healthy tissues (e.g., brain and heart)
and intravenous administration of FDG also produces a time-
dependent (relative to time of injection) blood pool signal
along with a strong FDG signal in the liver, kidney, and blad-
der due to the accumulation of the contrast agent in these
organs. Thus, any automatic algorithm would need to be able
to distinguish normal high uptake versus the accumulation of
FDG in tumors that range in value from low to high.
Moreover, the volume of FDG-avid tumors is relatively small
compared with the volume of non-tumor, FDG-positive re-
gions, resulting in a sparse signal for an image segmentation
algorithm to reliably extract. Development of a robust image
segmentation algorithm faces a further challenge in the high
degree of biological intra- and inter-tumor heterogeneity asso-
ciated with tumor structure, perfusion, and metabolism lead-
ing to variability in FDG uptake. In addition, although at-
tempts to standardize imaging protocols have improved acqui-
sition consistency, variability between scans and sites still ex-
ists and contribute to the overall variability in the data.

The use and accuracy of convolutional neural networks
(CNN) for image segmentation have increased over the last
few years [7, 8]. The application of CNNs to medical imaging
has also recently grown [9, 10]. While most CNN architec-
tures are applied to 2D images, the increased interest in 3D
medical images has contributed to the development of 3D
CNNs [11]. These 3D CNNs can be used to exploit the 3D
spatial properties of the tissue of interest (e.g., local tumor
environment) to aid in the segmentation task.

This paper presents a novel end-to-end, cascaded 2D to
3D CNN architecture to robustly and automatically iden-
tify and segment tumors in whole-body FDG-PET images.
The overall goal is to provide a tool to efficiently and
accurately quantify total metabolic tumor burden in oncol-
ogy patients. Our algorithm employs a computationally

efficient architecture devised to accommodate the size of
eyes to thighs scans, the extreme imbalance between tu-
mor burden and the volume of healthy tissue, and the
heterogeneous nature of the input images. This fully automat-
ed image segmentation algorithm has been successfully ap-
plied to two different subtypes of NHL: diffuse large B cell
lymphoma (DLBCL) and follicular lymphoma (FL).

Methods

To automate tumor segmentation, we propose a cascaded
2D and 3D architecture (Fig. 1). This architecture is fast
and memory-efficient to deal with the size of the images
and adapted to the highly unbalanced nature of the seg-
mentation problem. For good performance, the latter chal-
lenge can be addressed with very deep networks; howev-
er, deep networks for large inputs are limited by current
GPU memory capacity. The presented algorithm addresses
these competing challenges by performing 2D axial and
sagittal slice-by-slice segmentations, then dividing the
body into three different regions and refining the 2D pre-
dictions with region-specific 3D CNNs. A multi-term loss
and atrous convolutions allows for the detection of small,
localized, and diffuse tumors.

2D Segmentation

Our first step consists of segmenting image slices individually
using a modified U-Net [12]. U-Net has been widely used in
segmentation tasks, especially in medical imaging, where skip
connections link the global context features learned by the
contracting block, while localization are features learned in
the expansion block.

Fig. 1 Model architecture. The full pipeline consists of three steps: a 2D segmentation, connected components labeling in three anatomical regions
(head-neck, chest, abdomen-pelvis), and a refinement of the 2D prediction using a region-specific 3D segmentation for each region
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In our architecture, we replace the convolutional blocks
composed of two convolutional layers in the original U-Net
architecture by two residual blocks [13] with batch normaliza-
tion and separable convolutions at four levels of dilation
(Fig. 2). Empirical evidence [13] shows that residual blocks
allow a gain of accuracy and faster optimization. Separable
convolutions, depth-wise convolutions followed by point-wise
convolutions, have also been shown to provide a large gain in
convergence speed and a significant reduction of the model size
[14]. Further, dilated convolutions [15] expand the receptive
field without loss of resolution, allowing for aggregation of
multi-scale contextual information without downsampling. As
will be shown, this redesign of the convolutional blocks is
effective at extracting very localized and rare information, as
typically encountered in FDG-PET/CT scans. Both the FDG-
PETand co-localized attenuation-corrected CT images are used
as inputs to leverage the structural (CT) and metabolic (FDG-
PET) information provided by each modality. The input size is
448 × 512 × 2 for each imaging slice.

Liver and Lung Detection

CT and FDG-PET images are highly heterogeneous depend-
ing on the location in the body due to variability in structure
and metabolism across tissues. In order to limit the impact of
this variability, we split the body into three anatomical re-
gions: head-neck, chest, and abdomen-pelvis. We automati-
cally assess the location of the liver and the center of mass
of the lungs as reference points.

We detect the liver in the FDG-PET data by using an ap-
proach similar to a previously published method [16]. We first
use the method described in [16] to detect the brain in the
FDG-PET images, where the minimal size of the brain was
set to 500 mL. The liver is detected in the FDG-PET images
by a series of thresholding and morphological operations in

the lower left part of the image relative to the brain. First, a
threshold of 1.0 SUV, reflecting normal uptake in the liver, is
applied to the selected window, followed by a hole filling
operation. The binary mask is then eroded by application of
a spherical structuring element of radius 8 mm. The liver is
identified as the highest connected component with its center
of mass in the left third of the sagittal axis of the image.

We follow a similar procedure to [17] to detect the center of
mass of the lungs. We threshold the image at – 300 Hounsfield
Units (HU) to obtain a binary mask and keep only the 8 largest
connected components. In each axial slice, we remove the se-
lected regions adjacent to the slice boundaries, erode the re-
maining connected components to avoid any leakage, keep
only the two largest connected components, and select the cen-
ter of mass of the 2 largest remaining connected components.

3D Segmentation

Given the outputs of the 2D segmentation and depending on
their relative location to our references in the liver and chest, we
label connected components in the 2D tumor masks. For each
of the three anatomical regions, we use a V-Net [11] to refine
the 2D segmentation. The network contains four downsampling
blocks (16, 32, 64 and 128 filters) and three upsampling blocks.
The layers use a ReLU activation and a 3 × 3 × 3 kernel size.
We use patches from FDG-PET and CT as a 2-channel input,
where the patches are 32 × 32 × 32 × 2 in the head or neck,
64 × 64× 64 × 2 in the chest, and 96 × 96 × 96 × 2 in the abdo-
men. The different patch sizes were chosen empirically based
on investigating the sizes of lesions in each of the regions.

The final mask is obtained by averaging the tumor masks
obtained with 2D and 3D segmentations. Experiments on the
training set show that averaging the 2 masks produces better
results than solely using the 3D masks. Total metabolic tumor
volume and the SUVmax are derived from these masks.

Fig. 2 Layer architecture. Our
layer contains two residual blocks
(on the right). Convolutional
layers of the residual block use
atrous, separable convolutions at
four different scales (on the left).
Here, a layer is represented with
eight filters
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Training Loss

In order to deal with the unbalanced nature of the im-
ages, where the average proportion of negative voxels

in a volume is 99.5% and often higher than 80% in a
single slice, we use the Dice Similarity Coefficient
(DSC) [18] and a weighted cross-entropy in 2D:

L ¼ 1−
2 P∩Tj j
Pj j þ Tj j

� �
− ∑v∈V

Vj j
∑v∈Vyv

yvlog byv
� �

þ 1−
Vj j

∑v∈Vyv

� �
1−yvð Þlog 1−byv

� �� �� �
ð1Þ

In (1), V denotes the voxels in an image, T the set of pos-
itive voxels, P refers to the set of predicted positive voxels, yv
the value of voxel v in the tumor mask, and byv the value of
voxel v in the predicted tumor mask.

Similarly, in 3D, we use the DSC, the sensitivity and the
mean absolute error in the loss function (2) to minimize the
number of false negatives and to avoid the concentration of
outputs around 0.5.

L ¼ 1−
2 P∩Tj j
Pj j þ Tj j

� �
þ 1−

P∩Tj j
Tj j

� �

þ 1

Vj j ∑v∈V yv−byv
��� ���

� �
ð2Þ

Data and Preprocessing

Our complete dataset consists of 3664 eyes to thighs
FDG-PET/CT scans collected from multiple imaging sites
in three different clinical trials (Goya, N = 1418,
NCT01287741 [19]; Gallium, N = 1401, NCT01332968
[20]; and OAM455g, N = 137, NCT00854308). All scans
were acquired at baseline and end of treatment with stan-
dardized image acquisition protocols and were centrally
reviewed by an independent review committee. Each trial
had a different independent review committee. This
dataset contains scans of 1695 previously untreated pa-
tients with Non-Hodgkin’s lymphoma: 1135 diffuse large
B cell (DLBCL) and 562 follicular lymphoma (FL) pa-
tients. For these scans, radiologist-reviewed annotations
of full tumor burden in 3D were available and served as
“ground truth.” Additionally, scans from 137 non-small
cell lung cancer (NSCLC) patients with annotations of
up to five lesions, i.e., “partial ground truth,” were avail-
able. Pre-processing steps include overlaying the PET and
CT, resampling scans to a constant isotropic voxel size of
2 × 2 × 2 mm, deriving the SUV for PET scans based on
information in the DICOM header, and creating coronal
and sagittal reformations from the axial acquisitions.

Radiologist-derived tumor masks were reconstructed from
the available tumor annotation files.

The training dataset consisted of 2266 scans from the
DLBCL patients, yielding a total of 861,053 coronal,
770,406 sagittal, and 971,265 axial slices and 13,942
individual tumors. Scans from FL (1124) and NSCLC
(274) patients served as the test dataset, approximately a
60:40 split with training data. NSCLC patient scans
were excluded from the training set in order to avoid
training on data with false negatives. Dividing the data
by studies also allows us to test and validate that the
model, trained on one cancer type, can be extended to
other types of cancer.

Experiments

Learning rate, kernel size, and network depth were con-
sidered for hyper parameter tuning. We varied the learn-
ing rate and tested a variable learning rate (cosine an-
nealing) for each network. For 2D CNNs, our experi-
ments included testing 3 × 3 and 5 × 5 kernels. Neither a
kernel of 5 × 5 nor an increase in depth from 6 to 7
lead to significant performance gains. We note that al-
most 90% of the coronal and sagittal slices do not con-
tain tumors; thus, in order to avoid converging to null
predictions, we rebalanced the dataset so that approxi-
mately 10% of slices did not contain tumors (98,000
training slices).

Table 1 Summary of eyes to thighs results on DLBCL, FL, and
NSCLC datasets

Dataset Number of scans Dice score Sensitivity

DLBCL (training) 2266 0.895 93.2

Follicular lymphoma (test) 1124 0.886 92.6

Lung cancer (test) 274 – 93.0

Only a partial “ground truth” is available for the NSCLC test set. Thus,
only sensitivity is being reported for these scans
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2D networks were trained on 2 Nvidia Quadro P6000
graphical processing units using the RMSProp optimiz-
er, 25 epochs, and a batch size of 16. We set the learn-
ing rate at 10−5 for 13 epochs and divided by 2 after
every 3 epochs. The V-Nets were trained using the
Adam [21] optimizer for 100 epochs with a batch size
of 4. The learning rate was set at 10−4 for 50 epochs,
10−4/2 for 25 epochs, and 10−4/4 for 25 epochs.

Results

Segmentation results are presented in Table 1 and
Fig. 3. As illustrated by the examples in Fig. 3, the
predicted masks (green) have good spatial agreement
with the ground truth (blue), although there are exam-
ples where small lesions tend to be underestimated (e.g.,
Figure 3, neck lesions in Patient 1). Overall, this meth-
od produced a DSC of 0.886 (0.862 when only using
the 2D masks, 0.873 when only using the 3D masks) on
the FL test dataset and a voxel level sensitivity of
92.6% and 93.0% for each test set (cf. Table 1). This
level of performance was obtained on eyes to thighs
datasets where overall lesion burden is sparse and

anatomical background is highly heterogeneous.
Previous published work ([22, 23], with DSC of 0.732
and 0.85, respectively) was based on more limited, less
sparse, and more homogeneous regional scans.

Total metabolic tumor volume and SUVmax were cal-
culated from the predicted tumor masks for each scan. As
demonstrated in Fig. 4, the derivation of these metabolic
tumor burden metrics yields very precise estimates com-
pared with ground truth with Spearman’s correlations re-
spectively of 0.97 and 0.96. This level of accuracy pro-
vides confidence that this novel, automated tool may be
used to accurately and rapidly determine the burden of
metabolically active disease in patients with solid tumors
or lymphomas. The SUVmax correlation plot in Fig. 5 is
performed at the patient level. A small fraction of the
points does not lie close to the diagonal (90% of the
predictions fall within 11.4% of the reported SUVmax)
and they all lie above the diagonal line. Possible explana-
tions for these points fall into two general categories.
Firstly, max-statistics are subject to large variability, and
thus, reported SUVmax values could be underestimated,
and SUVmax are very sensitive to noise in the predictions
(overlap with physiological noise); in addition, artifacts in
the image can cause ringing during resampling; this also
elevates the SUVmax for correctly classified tumors.

Fig. 4 Comparison of automated total metabolic tumor volume with
“ground truth” values in patients with FL

Fig. 5 Comparison of automated SUVmax with “ground truth” values in
patients with FL

Fig. 3 Eyes to thighs FDG-PET/
CT fused coronal images from
three different patient scans,
showing ground truth ROIs in
blue (left subpanel) and model
predicted ROIs in green (right
subpanel)
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Conclusion

We present a novel memory-efficient NN architecture that
enables a robust and rapid automated segmentation of tu-
mors from 3D eyes to thighs FDG-PET/CT scans without
need of downsampling. The automatic tumor segmentation
showed strong agreement with radiologist’s segmentation
used as ground truth (Table 1). The derived estimates of
TMTV and SUVmax were highly correlated with the corre-
sponding ground truth metrics (Fig. 4). Our experiments
show that this model, trained solely on a large dataset of
DLBCL patient scans, produces robust results in FL and
NSCLC patient scans. These results are encouraging for
the general application to other cancers, but specific appli-
cation of this methodology to other cancer types will likely
offer unique challenges associated with the specific cancer.
Biological factors such as FDG avidity of a particular cancer
type, common locations of metastatic disease, may require
methodology differences in pre-processing, training, and
post-processing. False positives that are likely physiologi-
cal noise (e.g., misclassified heart or bladder uptake), where
the SUV values were high, especially in patients with low
tumor burden, may also need to be further investigated and
addressed in future development. In future work, the model
will be tested and adapted for scans acquired in other solid
tumor cancer types, such as metastatic breast cancer and
melanoma, and for longitudinal analysis. In addition, this
architecture will be tested on other highly heterogeneous
scans, such as diagnostic CT scans used for periodic tumor
assessments in clinical trials.

The assessment of metabolic tumor burden by FDG PET
has been found to be prognostic in many cancer types [3] and
may be used to help inform and assess treatment decisions.
Generally, total metabolic tumor burden is not measured in
routine clinical practice, but having a fully automated meth-
odology could provide radiologists and hematologists/
oncologists with a rapid assessment of tumor burden which
could inform risk stratification and potentially guide clinical
patient management in the future. Our method demonstrates
potential to provide radiologists with an automated, accurate,
and rapid assessment of metabolic tumor burden in NHL and
NSCLC patients. Future development is necessary to extend
and validate this tool to other cancers and could provide radi-
ologists with a valuable improvement to the radiologist
workflow in assessing metabolic tumor burden.

Compliance with Ethical Standards

Conflict of Interest Skander Jemaa report being an employee of
Genentech, Inc.; Jill Fredrickson, Richard AD Carano, Alex de Crespigny,
and Thomas Bengtsson report being employees of Genentech, Inc. and
owning equity in F. Hoffman-La Roche; Tina Nielsen being an employee
of and owning equity in F. Hoffman-La Roche.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Kello G et al: Progress and Promise of FDG-PET Imaging for
Cancer Patient Management and Oncologic Drug Development.
Clin Cancer Res 2005;11(8):2785–2808

2. St-Pierre F, Broski SM, LaPlant BR, et al: Detection of extranodal
and spleen involvement by FDG-PET imaging predicts adverse
survival in untreated follicular lymphoma. Am J Hematol
2019;94:786–793. https://doi.org/10.1002/ajh.25493

3. Chen HHW, Chiu N-T, et al: Prognostic Value of Whole-Body
Total Lesion Glycolysis at Pretreatment FDG PET/CT in Non-
Small Cell Lung Cancer. Radiology 2012;264(2):559–566

4. Young H, et al: Measurement of clinical and subclinical tumor
response using [18F]-fluorodeoxyglucose and positron emission
tomography: review and 1999 EORTC recommendations. Eur J
Cancer 1999;35(13):1773–1782

5. Cheson B, et al: Revised Response Criteria for Malignant
Lymphoma. J Clin Oncol 2007;25(5):579–586

6. Cheson B, et al: Recommendations for Initial Evaluation, Staging,
and Response Assessment of Hodgkin and Non-Hodgkin
Lymphoma: The Lugano Classification. J Clin Oncol
2014;32(27):3059–3067

7. Long J, Shelhamer E, Darrell T: Fully convolutional networks for
semantic segmentation,CVPR. IEEE Computer Society, 2015, pp
3431–3440

8. He K, Gkioxari G, Dollar P, Girshick P: Mask R-CNN, In: 2017
IEEE International Conference on Computer Vision. IEEE, 2017,
pp 2980–2988. https://doi.org/10.1109/ICCV.2017.322

9. Yan K, et al: DeepLesion: automated mining of large-scale lesion
annotations and universal lesion detection with deep learning. J
Med Imag 2018;5(3):1–11. https://doi.org/10.1117/1.JMI.5.3.
036501

10. Kamnitsas K, et al: Efficient multi-scale 3D CNN with fully con-
nected CRF for accurate brain lesion segmentation, Med Image
Anal 2017;36:61–78

11. Milletari F, Navab N, Ahmadi S: V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation, in
Proc. Fourth International Conference on 3D Vision (3DV), 2016,
pp 565–571. https://doi.org/10.1109/3DV.2016.79

12. Ronneberger O, Fischer P, Brox T: U-Net: Convolutional Networks
for Biomedical Image Segmentation. In: Navab N, Hornegger J,
Wells WM, Frangi AF Eds. MICCAI 2015. LNCS, 9351, 2015,
pp. 234–241. Springer, Cham. https://doi.org/10.1007/978-3-319-
24574-428

13. He K, Zhang X, Ren S, Sun J: Deep Residual Learning for Image
Recognition, 2015. https://arxiv.org/abs/1512.03385

14. Chollet F: Xception: Deep learning with depthwise separable con-
volutions. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017

893J Digit Imaging  (2020) 33:888–894

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/ajh.25493
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1117/1.JMI.5.3.036501
https://doi.org/10.1117/1.JMI.5.3.036501
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1007/978-3-319-24574-428
https://doi.org/10.1007/978-3-319-24574-428
http://creativecommons.org/licenses/by/4.0/


15. Yu F, Koltun V: Multi-Scale Context Aggregation by Dilated
Convolutions, 2016. https://arxiv.org/abs/1511.07122

16. Bauer C, Sun S, SunW, et al. Automated measurement of uptake in
cerebellum, liver, and aortic arch in full-body FDG PET/CT scans.
Med Phys 2012;39(6):3112–23. https://doi.org/10.1118/1.4711815.

17. Mathworks: Segment Lungs from 3-D Chest Scan and Calculate
Lung Volume https://www.mathworks.com/help/images/segment-
lungs-from-3-d-chest-mri-data.html. Accessed 25 Oct 2019

18. Zou KH, Wareld SK, Bharatha A, et al: Statistical validation of
image segmentation quality based on a spatial overlap index.
Acad Radiol 2004;11(2):178–89. https://doi.org/10.1016/S1076-
6332(03)00671-8

19. Vitolo U, Trněný M, Belada D, Burke JM, Carella AM, Chua N,
Abrisqueta P, Demeter J, Flinn I, Hong X, Kim WS, Pinto A, Shi
YK, Tatsumi Y, Oestergaard MZ, Wenger M, Fingerle-Rowson G,
Catalani O, Nielsen T, Martelli M, Sehn LH. Obinutuzumab or
Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and
Prednisone in Previously Untreated Diffuse Large B-Cell
Lymphoma. J Clin Oncol 2017;35(31):3529–3537

20. Marcus R, Davies A, AndoK,KlapperW, Opat S, Owen C, Phillips
E, Sangha R, Schlag R, Seymour JF, Townsend W, Trněný M,

Wenger M, Fingerle-Rowson G, Rufibach K, Moore T, Herold M,
Hiddemann W. Obinutuzumab for the First-Line Treatment of
Follicular Lymphoma. N Engl J Med 2017;377(14):1331–1344

21. Kingma DP, Ba J: Adam: a method for stochastic optimization. In:
2015 Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2015. Preprint at http://arxiv.org/abs/1412.
6980

22. Huang, B., Chen, Z., Wu, P.-M., et al: Fully Automated Delineation
of Gross Tumor Volume for Head and Neck Cancer on PET-CT
Using Deep Learning: A Dual-Center Study. Contrast Media Mol
Imaging 2018. https://doi.org/10.1155/2018/8923028

23. Teramoto A, Fujita H, Yamamuro O, TamakiT: Automated detec-
tion of pulmonary nodules in PET/CT images: Ensemble false-
positive reduction using a convolutional neural network technique.
Med Phys 2015;49(6):2821–2827. https://doi.org/10.1118/1.
4711815

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

894 J Digit Imaging  (2020) 33:888–894

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1118/1.4711815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S1076-6332(03)00671-8
https://doi.org/10.1016/S1076-6332(03)00671-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/8923028
https://doi.org/10.1118/1.4711815
https://doi.org/10.1118/1.4711815

	Tumor Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D Convolutional Neural Networks
	Abstract
	Introduction
	Methods
	2D Segmentation
	Liver and Lung Detection
	3D Segmentation
	Training Loss
	Data and Preprocessing
	Experiments

	Results
	Conclusion
	References


