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Abstract
Assess the efficacy of deep convolutional neural networks (DCNNs) in detection of critical enteric feeding tube malpositions on
radiographs. 5475 de-identified HIPAA compliant frontal view chest and abdominal radiographs were obtained, consisting of
174 x-rays of bronchial insertions and 5301 non-critical radiographs, including normal course, normal chest, and normal
abdominal x-rays. The ground-truth classification for enteric feeding tube placement was performed by two board-certified
radiologists. Untrained and pretrained deep convolutional neural network models for Inception V3, ResNet50, and DenseNet
121 were each employed. The radiographs were fed into each deep convolutional neural network, which included untrained and
pretrained models. The Tensorflow framework was used for Inception V3, ResNet50, and DenseNet. Images were split into
training (4745), validation (630), and test (100). Both real-time and preprocessing image augmentation strategies were per-
formed. Receiver operating characteristic (ROC) and area under the curve (AUC) on the test data were used to assess the models.
Statistical differences among the AUCs were obtained. p < 0.05 was considered statistically significant. The pretrained Inception
V3, which had an AUC of 0.87 (95 CI; 0.80–0.94), performed statistically significantly better (p < .001) than the untrained
Inception V3, with an AUC of 0.60 (95 CI; 0.52–0.68). The pretrained Inception V3 also had the highest AUC overall, as
compared with ResNet50 and DenseNet121, with AUC values ranging from 0.82 to 0.85. Each pretrained network outperformed
its untrained counterpart. (p < 0.05). Deep learning demonstrates promise in differentiating critical vs. non-critical placement with
an AUC of 0.87. Pretrained networks outperformed untrained ones in all cases. DCNNs may allow for more rapid identification
and communication of critical feeding tube malpositions.
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Purpose

Clinicians employ enteral nutrition (EN) by feeding tubes as
the primary method of nutritional supplementation for critical-
ly ill patients unable to feed themselves. Nasogastric or
nasoenteric feeding tubes preserve the integrity of the intesti-
nal microvilli and decrease the risk of bacterial transfection
and thrombotic events associated with parenteral nutrition [1].
A malpositioned feeding tube in a mainstem bronchus of the
lung presents with possible tracheopleuropulmonary compli-
cations including pneumonia, pleural effusions, respiratory

failure, bronchopleural or pleurocutaneous fistulae, empyema,
and death [2]. Thus, nasoenteric feeding tube placement is
commonly confirmed by radiography after insertion and be-
fore the commencement of tube feeding. Many protocols for
confirmation of nasoenteric tube placement include both chest
x-ray (CXR) and abdominal x-ray (AXR) [3].

Radiologists are then responsible for accurately identifying
the presence and placement of enteric feeding tubes and pre-
cluding the severe consequences associated with bronchial
insertions. Because clinical demands often delay the review
of these radiographs until hours after the studies are per-
formed, a computer-aided detection (CAD) system that could
expedite detection of critical results and triage patient care
appropriately would be invaluable. In the past, conventional
computer-aided detection (CAD) solutions often required
hand-engineered rules, significant image-preprocessing and
feature extraction [4]. For example, one CAD study achieved
approximately 84% sensitivity for feeding tube position on
radiography, but with lower specificity with up to 0.02 false
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positives per image, limiting its suitability for clinical use [5].
Recent significant advances in artificial intelligence using
deep learning to classify images using multi-layered neural
networks make an automated solution for nasoenteric feeding
tube placement detection possible [6–8]. In the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), all of
the solutions since 2012 have used Deep Convolutional
Neural Networks (DCNNs) [9]. More recently, the error rate
of the best deep neural networks (< 4% percent) has exceeded
that of human performance (error rate ~ 5%) [10]. A prior
study evaluated the efficacy of DCNNs in the detection of
endotracheal tube presence and positions on radiography
[11]. However, there has not been a study evaluating the effi-
cacy of DCNNs in classification of enteric feeding tubes on
radiography. Thus, the primary goal of this study is to assess
the efficacy of deep convolutional neural networks in the clas-
sification of nasoenteric feeding tube position on radiography,
and specifically to distinguish between a critical bronchial
insertion and a non-critical placement.

Methods

The Tensorflow framework (Tensorflow 1.4, Google LLC,
Mountain View, CA) and the Keras library (Keras v 2.12,
https://keras.io) were used for training all networks in study.
Naive and pretrained deep convolutional neural network
models for Inception V3, ResNet50 and DenseNet 121 were
each employed. The pretrained models leveraged training on
1.2 million color images (from ImageNet) while the naive
models did not undergo any pretraining. 5475 de-identified
HIPPA compliant radiographs were collected from the (insti-
tution blinded) picture archiving and communication system
(PACS), composed of 5301 non-critical insertions (1314 with
the tip in the duodenum, 707 with tip in the esophagus, 1350
with tip in the stomach, 355 normal abdominal x-rays, 300
normal chest x-rays, and 1275 normal course with the tip out
of view), and 174 critical insertions (61 left and 113 right
bronchial insertions). Two board-certified radiologists per-
formed the ground-truth classifications. Images were aug-
mented to mitigate model overfitting. Image preprocessing
techniques consisted of horizontal and vertical translations,
rotations (± 10 degrees), shear, and horizontal flipping. The
images were split into training (4745 images), validation (630

images), and test (100 images: 50 bronchial insertions and 50
non-critical placements). The images were partitioned as such
to provide sufficient data for training and enough images to
validate model selection and obtain reasonable confidence
intervals when evaluating model accuracy on test cases. A
dropout rate of 0.5 (50%) was used in the final fully connected
layers for regularization. Because there were far more images
of non-critical than critical placements, oversampling was per-
formed for critical placements.

Each architecture was used as a binary model used to dis-
tinguish between critical and non-critical findings. The top
fully connected layers of the pretrained network were set to
random initialization. For test cases, receiver operating char-
acteristic (ROC), area under the curves (AUC), and 95% con-
fidence intervals were calculated using the Bexact^ Clopper-
Pearson method. Statistical significance of the ROC curves
was assessed using a non-parametric approach using the
PROC package within the R programming language (R foun-
dation, Vienna, Austria).

Results

In Table 1, for the holdout test dataset for binary classification
between critical and non-critical feeding tube placement be-
tween pretrained and naive networks, the pretrained networks
of Inception V3, ResNet50, and DenseNet121 outperformed
each corresponding naive model. The pretrained Inception V3
had an AUC of 0.87 (95 CI; 0.80–0.94), statistically signifi-
cantly greater than the naive model AUC of .60 (95 CI; 0.52–
0.68) (p < 0.001). The pretrained ResNet50 had an AUC of
0.82 (95 CI; 0.75–0.89), statistically significantly greater than
the naive model AUC of 0.60 (95 CI; 0.48–0.71) (p < 0.001).
The pretrained DenseNet121 had an AUC of 0.85 (95 CI;
0.77–0.92), statistically significantly greater than the naive
model AUC of 0.51 (95 CI; 0.45–0.58) (p < 0.001). There
were no statistically significant differences among the AUC
values between tested pretrained architectures. The pretrained
ResNet model outperformed the other models by way of sen-
sitivity with a value of 100% (95 CI; 93–100). The pretrained
Inception V3 and DenseNet 121 models demonstrate higher
specificities of 76% (95 CI; 62–87) and 74% (95 CI; 60–85),
respectively (Figures 1, 2 and 3).

Table 1 Results
Network Naive AUC Pretrained AUC Significance Sensitivity

(pretrained)
Specificity
(pretrained)

Inception V3 0.60 (0.52–0.68) 0.87 (0.80–0.94) p < 0.001 88 (76–95) 76 (62–87)

ResNet50 0.60 (0.48–0.71) 0.82 (0.75–0.89) p < 0.001 100 (93–100) 62 (47–75)

DenseNet121 0.51 (0.45–0.58) 0.85 (0.77–0.92) p < 0.001 92 (81–98) 74 (60–85)

Numbers in the parenthesis represent the 95% confidence interval
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Discussion

Nasoenteric feeding tube placement must be confirmed prior to
the commencement of tube feeding to subvert the catastrophic
complications of bronchial or esophageal placement, which in-
clude aspiration, pneumonia, respiratory failure, pulmonary fis-
tula formation, empyema, and death [1, 12]. Radiologists are
entrusted with the imperative radiographic confirmation of tube
placement and the prevention of possible complications of tube
malposition, but are often delayed in their review of these high-
volume studies due to clinical workflow demands. A concerted
human-machine approach with a validated, accurate network
classifier to triage and prioritize critical findings for radiologist
review could improve the detection time of bronchial insertions
and clinical workflow.

Inception V3 demonstrated an AUC of .87, outperforming
DenseNet121 and ResNet50, with respective AUC values of
.85 and .82, although this was not statistically significant.
The most sensitive model was ResNet50, which was 100%
sensitive but only 62% specific. While a triage tool often
demands high sensitivity at the expense of lower specificity,
a model greater specificity is also important, since a high
number of false positives can mitigate the efficacy of such
algorithms, particularly given the relatively high-volume por-
table chest radiographs in most hospitals. Cascading, or the
use of an ensemble of a high-sensitivity network followed by
a subsequent high-specificity network, represents a potential

strategy to improve statistical performance and clinical appli-
cability [13].

Figures 4 and 5 represent class activation maps (CAMs)
from the Inception V3 network. CAMs are determined from
the final convolutional layer of the neural network through
direct visualization of the predicted class scores and are uti-
lized to identify features most relevant to the prediction class
[14]. Figure 4 demonstrates correct class predictions from the
Inception V3 model, including the predictions of critical (4A,
left bronchus), non-critical (4B, normal course, tip out-of-
view), and non-critical (4C, duodenum). The CAMs in Fig.
4 demonstrate appropriate fitting of the network to features of
the feeding tube and accurate class predictions.

Figure 5 demonstrates incorrect class predictions from the
Inception V3 model, including a non-critical prediction for a
critical right bronchial insertion (5A) and a critical prediction
for a non-critical tip out of view (5B). In Fig. 5a, the CAM
demonstrates that the network is incorporating the features of
the right bronchial insertion into its class prediction, but erro-
neously and unaccountably predicts a non-critical placement.
It is possible that the network in this case may have been
negatively affected by the extreme patient rotation in the im-
age. The CAM in Fig. 5b demonstrates that the network is
incorporating features of the radiograph not relevant to tube
position into its prediction class and a critical prediction for a
benign tube placement. One possible explanation for the erro-
neous prediction in Fig. 5b is model fitting to the patient’s

Fig. 1 Left bronchial insertion
(left) and right bronchial insertion
(right)

Fig. 2 Tube normal courses with
tip out of view (left) and
duodenum (right)
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blanket present in the radiograph, which represents a feature
not characterized or underrepresented in the training dataset.
The integration of a companion model with object detection
outputs and saliency features could potentially focus network
predictions towards the tube region of interest and away from
irrelevant features of the radiograph. Direct feeding tube ob-
ject detection outputs would also direct radiologists and clini-
cians to exact tube position in both critical and non-critical
predictions. Another potential method to improve accuracy
of the model is to first segment the mediastinum and central
airways using a deep learning approach, followed by a classi-
fication model.

The smaller datasets accessible in medical imaging impose
the risk of model overfitting, which results in an inaccurate
classifier generalizing poorly to test datasets and novel

radiographs. Dropout for regularization was a major strategy
used in this study to mitigate model overfitting. Another strat-
egy that was employed to combat overfitting including aug-
mentation of the images using various transformations, such
as translation, sheer, rotation, and horizontal flipping.

DCNNs provide an encouraging solution in the binary clas-
sification of critical vs. non-critical tube placement with an
AUC of 0.87 to automate the prevention of the devastating
consequences associated with feeding tube malpositions.
Other ways to improve the feeding tube placement classifier
include using other neural network architectures, ensembling
multiple deep convolutional neural networks, acquiring a larg-
er dataset, and employing strategic preprocessing techniques
well-suited to assist DCNNs in radiographic feature
extraction.

Fig. 3 Tube placement in
stomach (left) and esophagus
(right)

Fig. 4 Class activation maps
(CAMs) of correct class
predictions. a Left bronchus. b
Tip out of view. c Duodenum

Fig. 5 Class activation maps
(CAMs) of incorrect class
predictions. a Right bronchus. b
Tip out of view
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Conclusion

Deep learning demonstrates promise in differentiating critical
from non-critical placement with an AUC of 0.87. Increases in
training data set size, airway and mediastinal segmentation,
and incorporation of companion DCNNs hold potential in
improving the performance of future models.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Tuna QM, Latifi R, El-Menyar A et al.: Gastrointestinal tract access
for enteral nutrition in critically ill and trauma patients: indications,
techniques, and complications. Eur J Trauma Emerg Surg 39:235–
242, 2013. https://doi.org/10.1007/s00068-013-0274-6.

2. Odocha O, Loweery, Jr RC, Mezghebe HM, Siram SM, Warner
OG: Tracheopleuropulmonary Injuries Following Enteral Tube
Insertion. J Natl Med Assoc 81:3

3. Nayak SK, Shercan M, Paudel SD et al: Assessing placement of
nasoduodenal tube and its usefulness in maintaining nutrition in
critically ill patients.

4. Sheng C, Li L, Pei W: Automated Detection of supporting device
positioning in intensive care unit radiography. Int J Med Rob
Comput Assoc Surg 5:3, 2009

5. Ramakrishna B, Brown M, Goldin J, Cagnon C, Enzmann D: An
improved automatic computer aided tube detection and labeling
system on chest radiographs. InSPIE Medical Imaging 23:
83150R, 2012 International Society for Optics and Photonics

6. Krizhevsky A, Sutskever I, Hinton GE: Imagenet Classification
with Deep Convolutional Neural Networks. Advances in Neural
Information Processing Systems, 2012.

7. Lakhani P, Sundaram B: Deep Learning at Chest Radiography:
Automated Classification of Pulmonary Tuberculosis by Using
Convolutional Neural Networks. Radiology. 284(2):574–582, 2017

8. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura
D, Summers RM: Deep convolutional neural networks for
computer- aided detection: CNN architectures, dataset characteris-
tics and transfer learning. IEEE Trans Med Imaging 35(5):1285–
1298, 2016

9. Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification
with deep convolutional neural networks. Adv Neural Inf Proces
Syst:1097–1105, 2012

10. He K, Zhang X, Ren S, Sun J: Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2016, pp. 770–778.

11. Lakhani P: Deep Convolutional Neural Networks for Endotracheal
Tube Position and X-ray Image Classification: Challenges and
Opportunities. J Digit Imaging 30(4):460–468, 2017 Aug. https://
doi.org/10.1007/s10278-017-9980-7

12. Sorokin R, Gottlieb JE: Enhancing patient safety during feeding-
tube insertion: a review of more than 2,000 insertions. JPEN J
Parenter Enteral Nutr 30(5):440–445, 2006

13. Lisowska A, Beveridge E, Muir K, Poole I: Thrombus Detection in
CT Brain Scans using a Convolutional Neural Network.
InBIOIMAGING:24–33, 2017

14. Zhou B, Khosla A, Lapedriza A, Olivia A, Torralba A: Learning
Deep Features for Discriminative Localization. arXiv:1512.04150.
2015.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

J Digit Imaging (2019) 32:651–655 655

https://doi.org/10.1007/s00068-013-0274-6.
https://doi.org/10.1007/s10278-017-9980-7
https://doi.org/10.1007/s10278-017-9980-7

	Assessment of Critical Feeding Tube Malpositions on Radiographs Using Deep Learning
	Abstract
	Purpose
	Methods
	Results
	Discussion
	Conclusion
	References


