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Abstract The study aimed to determine if computer vision
techniques rooted in deep learning can use a small set of ra-
diographs to perform clinically relevant image classification
with high fidelity. One thousand eight hundred eighty-five
chest radiographs on 909 patients obtained between January
2013 and July 2015 at our institution were retrieved and
anonymized. The source images were manually annotated as
frontal or lateral and randomly divided into training, valida-
tion, and test sets. Training and validation sets were augment-
ed to over 150,000 images using standard image manipula-
tions. We then pre-trained a series of deep convolutional net-
works based on the open-source GoogLeNet with various
transformations of the open-source ImageNet (non-
radiology) images. These trained networks were then fine-
tuned using the original and augmented radiology images.
The model with highest validation accuracy was applied to
our institutional test set and a publicly available set.
Accuracy was assessed by using the Youden Index to set a
binary cutoff for frontal or lateral classification. This retro-
spective study was IRB approved prior to initiation. A net-
work pre-trained on 1.2 million greyscale ImageNet images
and fine-tuned on augmented radiographs was chosen. The
binary classification method correctly classified 100 %
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(95 % CI 99.73—100 %) of both our test set and the publicly
available images. Classification was rapid, at 38 images per
second. A deep convolutional neural network created using
non-radiological images, and an augmented set of radiographs
is effective in highly accurate classification of chest radio-
graph view type and is a feasible, rapid method for high-
throughput annotation.
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Background

A core task of diagnostic radiology is to identify pathologic
abnormalities in high-resolution images that vary in appear-
ance due to pathology, patient orientation, normal anatomic
variation, prior medical interventions (e.g., pacemaker place-
ment), or from differences in image capture techniques or
machines. A component of initial image interpretation is
performing a set of classification tasks to identify objects in
an image, which machine learning is well suited for. This
suggests that machine learning may be particularly helpful to
assist in identification of features in radiographs [1]. However,
despite decades of effort to help automate image interpretation
[2, 3], relatively few algorithms for computer-aided diagnosis
have been incorporated into widespread clinical use (breast
imaging being a notable exception) [4].

Computer vision underwent a revolution in 2012, when
deep learning approaches that harnessed convolutional neural
networks halved the error rates in standardized image classi-
fication challenges compared to other best competitors [5, 6].
The new approach allowed machine learning systems to op-
erate on raw data rather than manually created features or
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image segments [6, 7], learning multiple levels of abstract
representation of an image. Once trained, it is optimized for
fast and efficient classification of images. However, high-
performing algorithms have hundreds of millions of parame-
ters that must be learned from the data, requiring large num-
bers of images and efficient hardware implementations for
effective training.

The application of deep learning techniques to radio-
logical images is rapidly expanding [8—15], but one
challenge in applying neural networks to radiological
images is obtaining access to sufficient quantities of
image data. It is often difficult for researchers to access
images outside of their institution due to patient privacy
issues. Although a picture archiving and communication
system (PACS) for a single institution may contain sev-
eral million studies, the number of studies of a particu-
lar type is much smaller, and it may not be feasible to
obtain enough images to fully train a network. In con-
trast, non-radiological images are widely available in
much greater numbers. Techniques that leverage the
availability of non-radiological images to assist in build-
ing networks for radiological image classification may
therefore enable creation of larger, more accurate net-
works than would be possible using radiologic images
alone [8, 16].

We have found that even if a large number of radi-
ology images are obtained, another major challenge is
curation of clinical images used as input data. Although
the Digital Imaging and Communications in Medicine
(DICOM) format has the capacity to store images and
accompanying metadata such as patient information and
image modality, this information is inconsistently pres-
ent and can vary by equipment manufacturer. Metadata
that are obvious to a radiologist from cursory inspection
of the image, such as the view orientation, are particu-
larly inconsistent. When metadata needed to identify
appropriate input is missing or inconsistent, the number
of images that can reasonably be manually curated may
be significantly smaller than the number of images that
would otherwise be available. Tools to identify correct
metadata values for large sets of images with little or no
human intervention would therefore facilitate efficient
use of all available image data.

Objective

We sought to develop a deep convolutional neural network to
rapidly and automatically classify view orientation of chest
radiographs, to demonstrate the applicability of these tech-
niques to classification of radiographs, and to provide highly
accurate classification of large numbers of radiographs for use
as input in subsequent machine learning investigations.
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Methods

Image Collection and Training, Validation, and Test Set
Creation

IRB approval was obtained for this HIPAA-compliant study.
One thousand seventy-six one- and two-view chest radio-
graphs obtained at the University of California, San
Francisco (UCSF) between January 2013 and July 2015 were
identified using Softek Illuminate (Version 3.5, Prairie
Village, KS), and corresponding images were extracted from
the PACS. Seven hundred fifty-two studies were two-view
and 324 were single-view; some studies contained multiple
images of the same view. In total, 1885 images from 909
patients were obtained. The images were converted to
greyscale 8-bit lossy JPEG format, and min-max windowing
was applied using DICOM Toolkit (DCMTK) (Version 3.6.0),
which, by visual inspection, preserved enough detail for the
human annotators to confidently classify the images while
reducing the file sizes of the input data to reduce computation-
al requirements and memory use.

Two authors (A.R., a hospitalist with 3 years of experience
and A.T., a board-certified radiologist with 5 years of experi-
ence) independently labeled every JPEG image as frontal or
lateral view; any conflicting assignments were resolved by
A.T. Three images were excluded due to uninterpretable im-
age quality.

Each image was resized to 256 by 256 pixels using
ImageMagick (Version 6.7.7-10); non-square images were
squashed to this size. The images were then randomly split
into training, validation, and test sets with 1129, 376 and 377
images, respectively.

The training and validation sets were augmented by apply-
ing a number of image transformations: horizontal and vertical
reflection, rotation by 2 or 90°, translation of 3 pixels in car-
dinal or ordinal directions, pixel spread (swap each pixel with
a random adjacent pixel), noise reduction (replace each pixel
with the value just before or after the median value in a neigh-
borhood of 2 or 5 pixels), and random noise addition. In total,
each image served as the progenitor of 106 child images with
the label inherited from the parent image. This resulted in a
total of 119,674 training images and 39,856 validation images.

To serve as an independent test set, we obtained a publicly
available set of anonymized chest radiographs in PNG format
[17]. We randomly selected 1000 of those images and manu-
ally annotated each as frontal or lateral using the procedure
outlined above.

Model Creation and Selection

Models were trained and developed using the NVIDIA Deep
Learning GPU Training System (DIGITS) DevBox (Version
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3), which employs the Caffe framework [18]. The results of
the model were analyzed using Python (Version 2.7).

The initial model was adapted from the base
GoogLeNet convolutional neural network created by
Szegedy et al. [19]. This model, which we refer to as
“color ImageNet,” uses 22 convolutional layers including
9 inception modules and was trained on over 1.2 million
color images from the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2015 repository [20].

Since the radiographs of interest are greyscale images, we
created two additional models trained on greyscale images.
For the “full-greyscale ImageNet” model, we converted all
images in the ILSVRC 2015 repository to greyscale and used
these to retrain the initial model. We also created a “subset-
greyscale ImageNet” model by retraining color ImageNet
with a greyscale subset of 100 image classes from five cate-
gories in the ILSVRC 2015 repository that we felt were most
similar to our images: plants, geologic formations, natural
objects, fungi, and random artifacts. The subset contained a
total of 128,769 images in the training set and 5000 images in
the validation set. In both cases, we retrained the initial
GoogLeNet model for 30 epochs with a base learning rate of
0.0005 that was reduced tenfold every ten epochs. The param-
eters were optimized using a Nesterov solver with a mini-
batch size of 24, momentum of 0.9, and weight decay of
0.0005. We allowed all layers to be fine-tuned. We refer to
these three models as “pre-trained.”

We transferred these networks and their newly learned pa-
rameters to apply them to the training and validation images
from our chest radiograph data. We retrained each of the three
pre-trained models—the color ImageNet model, full-
greyscale ImageNet, and subset-greyscale ImageNet mod-
el—using three different methods, resulting in nine candidate
models, which we refer to as “fine-tuned” models. The three
methods were fine-tuning only the fully connected layers of
the model using only original radiograph images (no augmen-
tation); fine-tuning only the fully connected layers using the
augmented image sets; and fine-tuning all layers of the net-
work using the augmented image sets. We did not attempt to
fine-tune all layers of the networks using only the original
radiograph training set (without augmentation) because there
were too few images compared to the number of parameters
that would be involved in such a retraining. For this transfer
learning, a learning rate of 0.005 was used to fine-tune only
fully connected layers and 0.0005 to fine-tune all layers.
Stochastic gradient descent was used, with all other parame-
ters identical to those in the previous training step.

Validation performance between models was assessed
using chi-squared statistics with a significance level of 5 %.
To assess the effect of pre-training and different fine-tuning,
we pooled the validation accuracy of relevant models; for
example, the validation performance of a pre-trained color
ImageNet model was obtained by pooling the performance

of the three fine-tuned models that used the model pre-
trained on the color ImageNet data.

From the nine fine-tuned models, we chose a final model
based primarily on validation accuracy and secondarily on the
number of images used for pre-training. We then applied the
network to our separate test set of 377 images and to the 1000-
image test set from the publicly available data. We evaluated
model speed based on time required to classify the 1377 test
images. We also tested the robustness of the network on trans-
formed versions of one frontal and one lateral test image, with
modifications of text labels, rotation, obscuring half the im-
age, and cropping.

The training and evaluation process is summarized in
Fig. 1.

Model Assessment

The models returned two complementary predictions for each
image: the probability of a frontal image or a lateral image. For
consistency, we used the probability of an image being a fron-
tal image (PFI) for analysis. We calculated a cutoff that max-
imizes the Youden Index [21] (J) such that images with a
PFI>J would be classified as a frontal image; otherwise, an
image would be classified as a lateral. A range of PFI values
maximized the Youden Index, and we chose the higher end of
the range as the cutoff.

We used a standard two-by-two table to assess model ac-
curacy, which we defined as the proportion of images correct-
ly classified. 95 % confidence intervals (CI) were calculated
conservatively using the Clopper and Pearson method [22].

Results
Model Selection

The effects of pre-training with ImageNet data and fine-
tuning with augmented radiology data are shown in
Fig. 2. Pre-training with greyscale ImageNet data (either
full or subset) led to higher validation accuracy on chest
radiographs compared to the standard models that were
trained with color ImageNet data (99.5 vs 93.2,
p<0.001). Further, pre-training with the full-greyscale
ImageNet data led to a statistically higher validation ac-
curacy compared to pre-training with the subset-greyscale
ImageNet data (99.6 vs 99.3, p<0.001).

Fine-tuning the fully connected layers with the aug-
mented training set produced better validation perfor-
mance than the non-augmented (95.2 vs 93.4,
p<0.01). When using the augmented training set, vali-
dation accuracy was higher when all layers were fine-
tuned compared to when only the fully connected layers
were fine-tuned (99.6 vs 95.2, p<0.001). When limited
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Fig. 1 Methodology and data
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Transfer Learning

to the greyscale models, augmentation and fine-tuning
of all layers led to better performance than fine-tuning
of just the fully connected layers (99.7 vs 99.2,
p<0.001; not shown in figure).

We proceeded with the full-greyscale ImageNet model that
had all layers fine-tuned with the augmented chest radiograph
images, which had a validation accuracy of 99.73 % (95 % CI
99.67-99.78 %).

93.2

99.5

Model Assessment

Our algorithm correctly classified 100 % (95 % CI 99.73—
100 %) of both the UCSF test images and the publicly avail-
able images, based on the Youden Index binary classification
scheme. Figure 3 is a histogram of the PFI for the test images,
which demonstrates that the network was able to separate the
frontal and lateral images. There were several lateral
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Fig. 2 Validation accuracy for nine models. Classification accuracy,
based on top prediction, of the UCSF chest radiograph validation set is
graphed for the nine different models, grouped by pre-training and fine-
tuning methods. Error bars mark 95 % confidence intervals. Labels
above the graph and to the right of the legend show pooled comparisons
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and chi-square test results. For the models fine-tuned on original
radiographs, validation sets consisted of 376 original radiographs. For
models fine-tuned on augmented radiographs, validation sets consisted
0f 39,856 augmented radiographs
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Fig. 3 Histogram of test set classification results. Graph shows
frequency of images by predicted probability of frontal images, using
bins of size 1. Shading indicates actual class of images. Images from
both the UCSF test set and publicly available set were included

radiographs that were less confidently predicted to be a lateral;
despite this, there was still complete separation of classes.
Figure 4 demonstrates examples taken from the UCSF and
publicly available test sets and the classification probabilities
produced by the algorithm.

The cutoff was set to J=99.6. The Youden Index was
maximized for PFI between 14.3 and 99.6 %, and no images
in either test set had a PFI in this range (Fig. 5).

The model classified the test images at a rate of 38 per
second.

Transformed images and their classification results are
shown in Fig. 6.

Discussion

We demonstrate that non-radiological images used in concert
with a relatively small number of radiologic images,

Classified No images in test set with Classified
as lateral predictionslin this range as frontal
r 1 [
1 .
3 0.99 1
°
£
5
< 0.98 -
3
>
0.97 A
14.3% 99.6%
0.96 T r
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Cutoff for frontal image prediction (%)
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Fig. 5 Classification cutoff determination using Youden Index. Youden
Index is plotted against cutoffs determined using predicted probability of
being a frontal image (PFI), incremented by 0.1 % in the range 0 to
100 %. Images from both the UCSF test set and publicly available set
were included. Labels above plot indicate true image labels: true lateral
images in the test sets all had PFI< 14.3 %, true frontal images all had
PFI1>99.6 %, and no test images had PFI in the intermediate range

augmented through standard techniques, are effective in cre-
ating a deep learning network that performs with very high
accuracy on classification of chest radiograph view
orientation.

This study demonstrates that retraining of pre-existing,
more general networks using greyscale images improves per-
formance of classification of features in radiographs. Prior
studies suggest that transfer learning, or using networks
trained on one set of images to classify a separate set of im-
ages, is most effective when the sets are similar [16], and we
hypothesized that convolutions trained to optimize classifica-
tion of color images may not be as effective on greyscale
images. We also demonstrate that significant improvements
in pre-training with greyscale images can be achieved by
using only a subset of ImageNet rather than its entirety, which
reduces the time necessary to pre-train the networks.

Fig. 4 Example test images and Total number 730
classification results. Examples of _
frontal and lateral images are *g
shown with their frontal and ug . : R\
lateral prediction probabilities 4 Example image B
listed underneath each. Images ]
are all from either the UCSF test §
set or publicly available set S Frontal prediction (%) 99.63 99.99 100.00 100.00
2 Lateral prediction (%)
=100 - frontal 0.37| 0.01 0.00 0.00
prediction
Total number 647
s
2
5
ﬁ Example image
8
o
E
2 Frontal prediction (%) 14.20 0.01 0.00 0.00
Lateral prediction (%) 85.80 99.99 100.00 100.00
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Fig. 6 Transformed images and Image type Original Labeled Rotated 45°, Top half Top left crop
classification results. One frontal zoomed 1.5x | obscured
and one lateral image from the test
sets and four transformed 5 |
versions of each are shown with € Image
. o <]
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each. Transformations are g Frontal 100.00
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2 prediction (%) 0.00 0.00 2.90 0.45 11.18]
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s
3
8 Image
¥
7]
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o
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prediction (%)

Our report also demonstrates the effectiveness of augmenting
radiology images to improve classification performance. Given
the millions of parameters available to be tuned for the network,
and the limited number of curated radiographs we had available
for training, we augmented the training set data to reduce
overfitting. Further, this training set based on a modest number
of images from a single center was able to generate algorithms
that generalized well, as we were able to achieve 100 % accuracy
on a test set of images obtained from a different medical center.

Even without pre-training on greyscale images, a network
pre-trained on color images can achieve high accuracy
through training on an augmented set generated from a limited
number of radiology images. However, we show that this
performance is improved when all layers are allowed to fine-
tune using the augmented images rather than just the fully
connected layers, which we suspect is due to a better deep
representation of the images.

Our work extends prior studies on image classification ap-
plied to chest radiography, and for a new application. Boone
et al. [23] used a neural net to make predictions about image
rotation and flipping of chest X-rays by making inferences
about features such as the location of the mediastinum. The
algorithm evaluated column and row vectors of summed
pixels from the images, rather than classifying the entire raw
image, a reasonable approach given the computational power
available at the time. The goal of this work was to automate
the task of correctly orienting scanned film images that were
converted to digital images at the beginning of the PACS era.
Although the application for the algorithm was different, the
underlying challenge was the same: the need for a method to
minimize human curation of a very large image dataset with
incomplete and often unreliable metadata. Other groups have
recently used explicit image analysis and anthropometric al-
gorithms to handle chest X-ray view classification [24]. Our
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approach requires minimal pre-processing of images and
operates on an open-source software stack that is robust, easy
to implement, and has higher accuracy. Other recent uses of
recurrent neural networks to caption chest radiographs have
assumed a dataset with correct and pre-defined metadata,
which we have not found in our clinical database [15], or have
used orders of magnitude fewer images than our work [8].

This study was limited in scope given the relatively simple
task of classifying orientation of chest radiograph images as
frontal or lateral. This task does not require detection of subtle
abnormalities, such as a pneumothorax, so the ability of deep
learning to identify pathology has not yet been proven.
However, an end-to-end solution requires safeguards that the
network is fed image data appropriate for the classification
task at hand, so ensuring the correct metadata is a critical first
task. It is not widely appreciated that large repositories of
images may have incorrect metadata that may preclude or
confound creation of more sophisticated algorithms.
Moreover, we hand-labeled images rather than extracted labels
automatically from radiology reports, which implies an impor-
tant role for natural language parsing in future refinements of our
image processing workflow.

Conclusion

In summary, we report a method to automate metadata anno-
tation using deep learning methodology. We also demonstrate
the effectiveness of network pre-training using non-radiology
images and of augmentation of radiology images to achieve
high-fidelity classification and generalizable accuracy. This is
proof of concept that deep learning, which has revolutionized
computer vision research, may drive advances in analysis of
radiologic images.
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