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Abstract Accurate segmentation of organs at risk is an im-
portant step in radiotherapy planning. Manual segmentation
being a tedious procedure and prone to inter- and intra-
observer variability, there is a growing interest in automated
segmentation methods. However, automatic methods fre-
quently fail to provide satisfactory result, and post-
processing corrections are often needed. Semi-automatic seg-
mentation methods are designed to overcome these problems
by combining physicians’ expertise and computers’ potential.
This study evaluates two semi-automatic segmentation
methods with different types of user interactions, named the
Bstrokes^ and the Bcontour^, to provide insights into the role
and impact of human-computer interaction. Two physicians
participated in the experiment. In total, 42 case studies were
carried out on five different types of organs at risk. For each
case study, both the human-computer interaction process and
quality of the segmentation results were measured subjective-
ly and objectively. Furthermore, different measures of the pro-
cess and the results were correlated. A total of 36 quantifiable
and ten non-quantifiable correlations were identified for each
type of interaction. Among those pairs of measures, 20 of the

contour method and 22 of the strokes method were strongly or
moderately correlated, either directly or inversely. Based on
those correlated measures, it is concluded that: (1) in the de-
sign of semi-automatic segmentation methods, user interac-
tions need to be less cognitively challenging; (2) based on
the observed workflows and preferences of physicians, there
is a need for flexibility in the interface design; (3) the corre-
lated measures provide insights that can be used in improving
user interaction design.

Keywords Radiotherapy . Organs at risk . Semi-automatic
segmentation . Human-computer interaction . Evaluation .

Correlations

Introduction

In radiotherapy planning, three fundamental axioms are often
applied [1]: (1) an increased dose to the tumor normally im-
proves the local control; (2) improving local control of tumors
improves overall cure rate, as it prevents metastatic spread
from local recurrence; and (3) sparing normal tissues de-
creases the side effects of radiotherapy. Thus, to maximize
the delivery of radiation dose to the tumor while sparing the
normal tissues, accurate segmentation of tumor and organs at
risk on medical images is a prerequisite.

Manual segmentation performed by experts is often
used as the reference standard in radiotherapy planning
[2]. Using manual segmentation methods, physicians
segment the organs by drawing contours on medical
images slice by slice based on their clinical knowledge.
The process is generally time consuming, demands high
workload due to intensive human-computer interactions
(HCI) and lacks reproducibility [3, 4].
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To overcome the limitations of manual segmentation, au-
tomated segmentation methods have been introduced. These
methods have shown to be an effective solution for various
applications [5, 6] as they are usually faster than manual seg-
mentation methods, and require no or few user interactions
during the segmentation process [7–9]. However, the out-
comes are sensitive to image quality, which highly depends
on the acquisition protocols [10]. In many cases, automatic
segmentationmethods can only be applied successfully within
pre-defined conditions and extensive post-processing is often
needed. For instance, Wu et al. [6] identified that their auto-
matic segmentation method performed well for large organs,
while manual corrections were often required for smaller or-
gans. Sims et al. [11] also concluded that careful review and
manual editing were required for most segmentation results
obtained by automatic methods.

By engaging physicians in between the computational al-
gorithm, semi-automatic segmentation (SAS) methods were
developed. SAS are partially supervised automatic methods
and they provide solutions by combining physicians’ exper-
tise and the computing power of the computer [12–14].
Figure 1 presents a typical information flow of the SAS meth-
od [15, 16]. The flow starts from a physician, who first per-
ceives the information on the dataset to get familiarized with
the case. After acquiring the information from the dataset, the
physician decides on the next step in the segmentation process
and performs the required action. Here the term action refers
to the physical activities performed by the physician such as
moving their hand to choose the input device, scrolling the
mouse button to select the desired plane/tool, pressing the
zoom-in/out button, initializing the segmentation by drawing
contours, and positioning their hand in case of gesture inter-
action. Actions performed by the physician are interpreted by
software via the graphical user interface. Once confirmed, the
medical images are processed by a computational algorithm(s)
utilizing the input(s), and the output data is displayed on the
user interface. This process iterates until a satisfied result is
achieved.

Effectiveness and efficiency of a SAS method depend on
the proper combination of physicians’ expertise and the capa-
bility of the computational method [17]. Though physicians
play a crucial role in the segmentation process, research on the
development of SASmethods has mainly focused on the com-
putational part [18]. The cognitive aspects of physicians and
designed human-computer interaction in the segmentation
process have only been addressed in few works [16, 19, 20].

In this paper, we investigate the effects of user interaction
in SAS methods regarding the segmentation of organs at risk
for radiotherapy planning in order to propose suggestions for
further improvements. To achieve this, two SASmethods with
the same workflow but two different types of user interaction
were developed. A case study was conducted where physi-
cians were asked to segment five organs using the two SAS
methods. In the investigation, both human-computer interac-
tion process and the quality of the segmentation results were
measured subjectively and objectively. To aid in the interpre-
tation of the results, we identified correlations between the
measurements obtained. In this way, we were able to distin-
guish the effectiveness and efficiency of user interactions in
various steps of the SASmethods. Finally, suggestions regard-
ing the design of user interactions in SAS methods are pro-
posed based on these findings.

The remainder of this paper is organized as follows: In
section 2, research regarding the workflow of SAS methods,
HCI in SAS methods and evaluation methods are reviewed.
The two SAS methods used in this research are introduced in
section 3 with the focus on the workflow and the design of
HCIs. Section 4 lists the setup and protocol of the experiment.
Experimental results are analyzed and presented in section 5.
The findings in those results are discussed in section 6 where
suggestions for the design of user interactions are presented as
well. Finally, conclusions are drawn in section 7.

Literature Review

In a SAS method, the workflow is often designed based on
the characteristic of computational algorithms and available
HCI devices. A review of the literature indicates that three
different types of workflow are often implemented [16]. In
the first type, a physician initializes the segmentation algo-
rithm and depending on the outcome, manual editing may
be performed until a satisfactory result is achieved [21]. The
second one is similar to the first: a physician first initializes
the segmentation algorithm and if the result is not satisfac-
tory, instead of editing the result manually, he/she may re-
initialize the segmentation algorithm [19]. In the third type,
the physician modifies the obtained result in a local region
such that only the area where the segmentation is not satis-
factory is indicated by the physician and is corrected auto-
matically using various algorithm [22]. In the workflow of a

Fig. 1 Information flow of human-computer interaction in a SAS
method
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SAS method, mouse, keyboard, and screen are the most
often used human-computer interaction devices. However,
there are many other devices which may facilitate this pro-
cess. For instance, Harders et al. [20] evaluated the value of
haptic feedback in a multimodal setting and found that the
used approach is only applicable to linear structures.
Sherbondy et al. [23] evaluated user input devices such as
trackball, pen-tablet, jog-shuttle wheel, and mouse. They
found that the pen-tablet in two distinct configurations per-
formed faster than the mouse and trackball in a simulated
angiography localization task. Besides those devices, a dif-
ferent approach to interactive segmentation was introduced
by Sadeghi et al. [24], who used eye gaze to guide the
segmentation. However, accurate placement of strokes might
be strenuous on the eyes for complicated medical images.

Using HCI devices, physicians may select different HCI
tools to perform interaction. Olabarriaga et al. [16] investigat-
ed HCI issues in 2D segmentation and one main focus was on
the segmentation tools used, such as deform, edit boundary,
and rectangle. Aselmaa et al. [25] concluded that in manual
segmentation tasks, brush tool, 3D pencil, smart brush, and
nudging were often used. Using these tools, physicians may
perform different types of interactions such as fine tuning
parameters, drawing lines, marking points, and drawing
bounding boxes [26], to provide inputs to computational al-
gorithms. Using HCI tools, various types of user input can be
designed. Yang et al. [27] concluded from their study that the
type of user input is an important factor that has to be taken
into account as it also affects the outcome of the segmentation
result. Hebbalaguppe et al. [28] compared three different types
of user input for semi-automatic segmentation and identified
the relations between them and the segmentation result. The
Lazy Snapping work [26] integrated intuitive user interfaces,
such as foreground/background strokes and boundary poly-
gon editing, to emphasize the desirability of a limited amount
of user inputs.

Another relevant aspect is the HCI patterns observed dur-
ing the process of SAS methods. HCI patterns are a series of
repetitive physical actions that are executed during segmenta-
tion, for instance, continuous zooming in and out, constant
scrolling through a set of images, and constant alteration of
window levels. These patterns are developed based on physi-
cians’ clinical knowledge and personal preferences, and the
outcome of segmentation is influenced by these patterns. A
study conducted by Dalah et al. [29] proved that changes in
window level settings during segmentation produced about
2 mm discrepancies in the outcomes. Other studies [30, 31]
on HCI patterns also revealed the influence while performing
certain tasks. Ju and Leifer [32] discussed that identifying the
HCI patterns can be useful for designers to overcome the
interaction design problems and help them leverage existing
linguistic, sociological, or ethnographic techniques for design-
ing better human-computer interaction.

In order to improve the usability of the input devices, tools,
and types of user input, a proper usability evaluation of current
designs is required. ISO 9241 part 11 [33] defines usability as
Bthe extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use^. Here effectiveness
refers to the degree of completeness and accuracy with which
the work/goal is achieved. Efficiency refers to how much ef-
fort and how much time physicians spent to finish a task.
Satisfaction denotes to what extent physicians are satisfied
with efficiency and effectiveness of the task. Thus, in the
usability evaluation of a SAS method, both the result and the
process should be assessed to measure effectiveness, efficien-
cy, and satisfaction.

Avariety of usability evaluationmethods have been used to
detect the usability problems related to technology. They are
the following: heuristic evaluation [34], cognitive
walkthrough [35], cognitive task analysis [36, 37], think-
aloud protocol [38], usability surveys [39], etc. Most of the
usability studies include subjective and objective measures,
some quantifying the HCI process, others quantifying the re-
sult. Among those studies, objective measures of the HCI
process have gradually gained attention. For instance, Coen
[40] evaluated the HCI input devices by measuring the num-
ber of mouse clicks, mouse movement, zooming, panning,
scrolling, corrections, and related the interaction patterns re-
garding the segmentation result. A similar study in radiother-
apy conducted by Kotani and Horii [41] compared interac-
tions between the pen-tablet and the mouse. In their study,
the error rate was a measure of the result and electromyogra-
phy was a measure of the process. Hebbalaguppe et al. [29]
assessed the cognitive workload by means of electroencepha-
logram signals. In their study, electroencephalogram signals
were found to be correlated to attention, emotion, and
decision-making of the users. Olabarriaga and Smeulders
[16] evaluated the effectiveness of HCI by measuring the ac-
curacy and reproducibility of the system. McGuinness and
O’Connor [42] compared four interactive segmentation tech-
niques by comparing users’ perception and the measurement
result. Though considerable effort has been devoted to this
area, the use of the subjective or/and objective measures in
usability evaluation is still a challenging question [43, 44]. For
instance, Hornbæk [45] concluded that identifying relations
between the HCI process and the outcomes from the measure-
ment are relevant direction for future research.

Two Types of User Interaction in the Proposed SAS
Methods

In the proposed research, two SAS methods with the same
workflow but different interactions were developed. The first
SAS method, which is referred as the Bcontour^ method,
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requires the physician to draw contours in a limited number of
slices as shown in Fig. 2a and the algorithm then computes the

segmented volume in 3D. Physicians are often familiar with
the contour method, as it is used for segmentation in their

Fig. 2 User interfaces of the proposed two SAS methods. a User Interface of the contour method b User Interface of the strokes method
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clinical routine. Using this method, physicians were instructed
to trace the boundary of the organ accurately on the slice they
select. It is assumed that the interaction can be physically and
mentally demanding for the physician. In this context physical
demand refers to the laborious and time-consuming
contouring. Mental demand refers to the task which involves
considerable thinking and scrolling, in which the physician
needs to be more focused.

The second SAS method is the Bstrokes^ method which is
designed to reduce the physical and mental demands of phy-
sicians. The physician draws strokes to indicate the fore-
ground (as the two red strokes in Fig. 2b) that represents the
region the physician wants to include as an organ and the
background strokes (as the four blue strokes in Fig. 2b) that
distinguishes the areas which should not be included in the
organ contour. The algorithm then computes the segmentation
volume. With strokes interaction, physicians may indicate the
region of interest by drawing a line or placing some dots, and
it is expected that the physical and mental demands are lower
than using the contour method. However, compared to con-
tour method, strokes method is not widely used in
radiotherapy.

In order to make a valid comparison of the effects of user
interactions in using SAS methods, the second type of
workflow presented in section 2 was adopted in both methods
as Fig. 3. The reason for using this workflow is to maximally
preserve the combined effects of HCI and the algorithm. If
manual modifications were allowed, then the quality of the
outcome would be hard to judge, as it would be unclear
whether it was produced by the SAS method or manual mod-
ifications. In the workflow, after the physician loads a new
dataset, he/she can choose either the contour or the strokes
method to segment the organ. Physicians can perform actions
on axial, sagittal, or coronal planes with the help of HCI tools.
The physician may scroll through all the slices, provide certain
input on the desired slices and modify until a satisfied input
for the algorithm is achieved. Then the physician runs the
algorithm with the provided input and evaluates the outcome.
If the outcome is not satisfactory, the physician may re-define
the inputs of the algorithm and re-run the segmentation pro-
cess. Maximally five iterations for each organ were given to
the physician and if the result is not satisfactory after the fifth
iteration, the segmentation is considered to be unsuccessful.

A prototype of both SAS methods was developed as a
plug-in on the medical imaging and interaction toolkit
(MITK) platform, version 2013.09.0 [45]. For both SAS
methods, a combination of graph-cut and watershed-based
algorithms was developed by Dolz et al. [46, 47], and was
implemented as the computational part in the prototype.
Figure 2 shows screenshots of two methods in the prototype.
The left window of the display contains the data manager,
which allows the physician to select and view the dataset.
The main rendering window is presented at the center with

four quadrants, three of them displaying different orthogonal
views. The bottom right quadrant shows the segmentation
result as a 3D rendering. 2D HCI inputs can be performed in
the axial, the coronal, and the sagittal view with a mouse.
Tools which can be used for drawing and modifications are
on the right side of the interface. In the contour method, a Bfree
hand^ tool can be selected by clicking the Badd^ button on the
interface. Besides, physicians can also use a Bpaint^
(paintbrush) tool, with adjustable brush size. In the strokes
method, the accuracy requirement of the interaction is not
high, thus the Bpaint^ was the only tool that was provided.

Similar to the prototype developed by Heckel et al. [21],
the prototype used in this research is designed in such a way
that physicians can give their inputs in any orthogonal planes.
Currently in clinical practice, physicians often use only axial
view to give their inputs and the other views are often used to
check if the segmentation result is satisfactory. By giving the
freedom to draw in any orthogonal planes, physicians may
choose the plane which requires few HCI. For instance, when
segmenting the spinal cord, physicians can segment in the
sagittal or coronal planes. It is expected that this design may

Fig. 3 Workflow of the proposed SAS methods
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reduce the number of user inputs, as well as the time taken for
drawing the contours/strokes due to fewer slices.

User Testing Setup and Protocol

For a better preparation of user testing, a series of evalu-
ations were performed as shown in Fig. 4. The evaluation
started with functional testing. Functional testing refers to
the test of computational algorithms to evaluate their sta-
bility and accuracy. Only after a satisfactory functional
testing, usability inspection was performed. Problems
identified in the usability inspection were also reported
to the developers. Once the issues were fixed, a pilot
study [48] was conducted to: (a) verify the experimental
setup and protocols; (b) overcome the learning curve of
physicians, especially for using the strokes method and
giving input in different orthogonal planes. After testing
the protocols, the case studies were performed and mea-
surements regarding the process and result were collected.

Materials

The pilot study was conducted at the Department of Radiation
Oncology, University Medical Center Freiburg, Freiburg,
Germany in February 2014. Table 1 presents the materials
used for pilot and follow-up case studies. Utilization of the
datasets for this study was approved by the Ethics Committee
of the University Medical Center, Freiburg. Before the test, a
senior physician was asked to manually segment the organs in
each dataset and the outcomes were used as the reference
standards.

Test Setup and Protocol

The case studies were also conducted at the Department of
Radiation Oncology, University Medical Center Freiburg,
Freiburg, Germany in May 2014 and August 2014. The same
study was conducted twice to assess the reproducibility of the
findings. Figure 5 shows the experimental setup. In the exper-
iment, the prototype was installed on a laptop. The laptop
display (Screen 1) was mirrored on a 22-inch monitor
(Screen 2), which is the screen size that physicians are familiar
with. A camera was setup in front of the laptop screen to
record the complete interaction process.

Prior to the study, both physicians signed an informed con-
sent form. Subsequently, physicians were informed that this
prototype has two SAS methods, and the designed user inter-
actions in the prototype were explained. During the user test-
ing, physicians were given 10 min to get familiarized with the
prototype. The sequence of the segmentation task was per-
formed based on the types of organ, i.e., physicians were
asked to segment one organ for all the cases using both SAS
methods and afterwards, physicians moved to the next type of
organ. In case of uncertainty regarding the anatomical exten-
sion of the organs, a Radiation Therapy Oncology Group
(RTOG) [49] atlas was provided. As the user interface was
new for the physicians compared to their daily work, a flow
chart of the workflow was provided as well.

Evaluation Method and Measures

As the main objectives of this study are to identify the rela-
tions of the HCI process and the quality of the result, the
presented evaluation of the SAS methods focused on two
aspects: (1) measurement of process (HCI actions) and (2)
measurement of the result. For both of them, subjective and
objective measures were deployed.

a. Objective measure of the process
In the evaluation of the HCI process, efficiency was

measured from two different aspects: (1) the time taken
for performing interaction and (2) the thinking/scrolling
time. The time necessary for interaction is related to the
physical workload, while thinking or scrolling is related to
the cognitive workload of physicians during segmenta-
tion. These two measures were identified from the video
analysis. From the video analysis, we also acquired data
regarding other objective measures, such as interaction
patterns. The interaction patterns in this experiment refer
to the order of selection of the slice for segmenting, tools
selection, and selection of different orthogonal planes.
This provided insights whether there were any variations
in the interaction patterns and if that variation was associ-
ated with the segmentation result.Fig. 4 The evaluation methods applied in this research
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b. Subjective measure of the process
In the experiment, the NASA-TLX questionnaire was

used in each case study to determine the physical demand,
mental demand, temporal demand, performance, effort,
and frustration of the physician from a subjective point
of view. The NASA-TLX [50] is a self-reported subjec-
tive technique for assessing mental workload and was
developed by NASA.

c. Objective measure of the result
For each type of user interaction, the Dice similarity

coefficient (DSC) [51] between the outcome and the ref-
erence standard was computed to measure the accuracy of
the segmentation result. Dice similarity coefficient is de-
noted as S=2c/(a+b), where a is the volume of segmen-
tation result, b is the volume of the reference standard and
c is the intersection of a and b. Besides, the Wilcoxon-

signed rank test was also used to find out if there are any
statistically significant differences in the result.

d. Subjective measure of the result
A semi-structured interview was conducted at the end

of the testing to find out if physicians were satisfied with
the result and also to find out about the preference of the
two SAS methods.

e. Correlations of subjective and objective measures regard-
ing the process and the result

Table 2 lists the subjective and objective measures
that were used in the presented research. To gain addi-
tional insights, correlations between the process and the
result measures were computed using the Pearson prod-
uct–moment correlation coefficient. These correlations
could be (1) correlated; (2) inversely correlated; or (3)
not correlated. This study considered 0.7–0.99 as

Fig. 5 Setup of the user test

Table 1 Materials used in the pilot testing and case studies

Pilot testing Case studies Details

Time February 2014 May 2014 and August 2014

Datasets 7 datasets (lung region) who
underwent planning CT

5 datasets (lung region)
who underwent planning CT

All the five datasets were acquired on a
Philips® Gemini TF Big Bore PET/CT.
Every scan was taken based on the lung
protocol followed in the University Medical
Center Freiburg, Germany.

Participants 2 physicians 2 physicians (P1, P2) Clinicians with 7.5 years and 5 years of
experience respectively, both from University
Medical Center Freiburg, Germany.

Types of SAS methods Strokes only Strokes and contour

Number of organs to
be segmented

Spinal cord, lung, heart, trachea
and proximal bronchial
tree (5 organs)

Spinal cord, lung, heart, trachea
and oesophagus (5 organs)

Each physician contoured 42 (21+21)
case studies using both methods. Due to time
constrains the lung and oesophagus were
segmented only in 3 datasets and rest of the
organs were segmented in 5 datasets
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strongly correlated, 0.4–0.69 as moderately correlated,
and 0.1–0.39 as weakly correlated [52].

Results

In this section, the subjective and objective measures of both
the process and results are presented. In total, 42 segmentation
results from physicians were compared. Out of 42 cases, 18
segmentations were rejected by physicians because of unsat-
isfactory outcomes. In the rejected segmentations, 14 were
using the contour interaction method, while the rest, four were
using the strokes interaction method.

Drawing and Scrolling time of the Strokes
and the Contour Methods

The drawing time of both physicians is shown in Table 3.
When the two methods were compared against each other
for both physicians, lung segmentation showed significant
difference in drawing time (p=0.0007, p=0.0001) using the
Wilcoxon two sampled test, where the strokes method was
much faster than the contour method. Even though there was
difference in the mean oesophagus segmentation time for phy-
sician 2, there was no statistical difference (p=0.7, p=0.5). It
was found that the mean drawing time for physician 2 was

always higher than for physician 1 in all the cases with both
methods. In addition the contour method took longer time
than strokes method in almost all cases.

Table 3 shows the average scrolling time of strokes and
the contour methods for both physicians, respectively. The
scrolling time for segmenting the spinal cord with the
strokes method was statistically significant different between
physician 1 and 2 (p=0.0002). For the rest of the organs,
there was no statistically significant difference in using both
methods. When the two methods were compared against
each other, the time spent in segmenting the trachea has
statistically significant difference for physician 1 (p=0.04)
and the time spent in segmenting the spinal cord and
segmenting the lung showed statistically significant differ-
ences for physician 2 (p=0.03, p=0.008). Even though there
was difference in the mean segmentation time for other or-
gans, it is not statistically significant.

Interaction Pattern

The interaction pattern of contour and the strokes method
were analyzed during the first initialization step for both phy-
sicians. A consistent drawing pattern was observed for physi-
cian 2 in using both methods. For instance, in the use of the
strokes method, physician 2 often drew on the first slice, the
middle, and the last slices of the dataset. Therefore, the phy-
sician only interacted with three or maximum four slices dur-
ing the first initialization. In using the contour method for
heart segmentation, physician 2 contoured in every third or
fourth slice, which is similar to the pattern observed in using
the strokes method. In the case of segmenting the trachea
using the contour method, physician 2 performed interactions
in every other fifth slice. Even though physician 1 often
started with the center slice, no real pattern could be observed
in segmenting the spinal cord, lung, trachea, and oesophagus.
In the process of segmenting the heart, physician 1 placed five
strokes in almost all the cases. The five strokes were drawn in

Table 2 Subjective and objective measures of the process and the result

Objective Subjective

Process Drawing time
Scrolling/thinking time
Use of tools
Drawing

NASA-TLX questionnaire (mental
demand, physical demand,
temporal demand, performance,
effort, frustration)

Results Dice coefficient Subjective preference

Table 3 The drawing and
scrolling time (in seconds) of
physicians’ using the strokes and
the contour methods

Physician 1 Physician 2

Organs Strokes (s) Contour (s) Strokes (s) Contour (s)

SC Drawing time 71±10 135±20 135±15 157±40

Scrolling time 91±30 342±21 151±26 191±51

Lungs Drawing time 91±8 554±98 95±12 1256±176

Scrolling time 106±14 116±13 143±10 790±241

Heart Drawing time 136±15 196±32 209±30 216±31

Scrolling time 155±19 244±32 143±48 222±33

Trachea Drawing time 127±21 153±7 184±36 192±43

Scrolling time 72±34 149±15 162±28 149±49

Oesophagus Drawing time 258±89 225±56 400±127 300±36

Scrolling time 193±74 473±29 320±183 434±62
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such a way that the physician started the segmentation on the
middle slice in all the cases, moving afterwards to one of the
extremes. Figure 6 shows the interaction pattern observed for
both physicians of using the contour method in segmenting
the spinal cord. In the figure, the horizontal axis represents the
intervals between the consecutive slices in which physicians
performed interactions, the vertical axis indicates the frequen-
cy. The blue bar represents physician 1 while the green repre-
sents physician 2. It can be seen in Fig. 6 that almost for every
12 slice intervals, physician 2 performed interactions by draw-
ing the succeeding contours. It was also found that physician 1
did not have a clear drawing pattern and the interactions were
performed in random slices.

Usage of the HCI Tools

The strokes method had only one tool for drawing.Most of the
time spent by physicians was related to a consistent usage of
this tool, i.e., physicians placed the foreground strokes first
and subsequently the background. When advancing to the
next slice they started with the background, followed by the
foreground to save time. For the contour method, both the
Bfree hand^ tool and the Bpaint^ tool are used. The time spent
in using the Bpaint^ tool was 3–4 s less than the Bfree hand^
tool in each slice for both physicians. It is also worth mention-
ing that both physicians needed a certain amount of time to get
acquainted with the tools. For instance, physician 1 used the
Bfree hand^ tool to correct the segmented boundary where as
the Bpaint^ tool was more efficient for this action.

NASATask Load Questionnaire

The NASA task load (NASA-TLX) indices of workload as-
sociated with each case study for each physician are shown in
Fig. 7. In the figure, the horizontal axis indicates the different
types of workload and the vertical axis shows the demand
levels ranging from 0–100. For physician 1, the overall work-
load for oesophagus segmentation was found to be the highest
with both methods. For physician 2, the overall workload for
segmenting the spinal cord was highest for the strokes method
and for the contour method, though the workload for
segmenting the lung was highest; there was only a marginal
difference over the workload of segmenting the oesophagus.

Physicians’ Subjective Preference

Table 4 shows the subjective preferences of the physicians for
each method in experiment 1. The only difference between
experiment 1 and 2 is that physician 2 also preferred the
strokes method for the spinal cord in experiment 2.

Dice Similarity Coefficients of the Result

Using the reference standards of each organ, the Dice similar-
ity coefficients of all the organs segmented in experiment 1 are
computed as shown in Table 5. P1S indicates physician 1
using the strokes method and P1C refers to physician 1 using
the contour method. The Dice similarity coefficients of the
spinal cord, the lung, and the heart are higher than 0.8 in
almost all cases.

Correlations

Table 6a–c shows the correlations between measures of the
HCI process and performance criteria of the segmentation. For
the nine quantitative measures used in the HCI process eval-
uation, we paired each measure to the others for both types of
interaction. A total of 36 pairs were identified for each meth-
od. The Pearson correlation coefficient of those pairs is pre-
sented in Table 6a, b, regarding the contour method and the
strokes methods, respectively. Among those pairs of mea-
sures, 20 of contour method and 22 of strokes methods were
strongly or moderately correlated, either directly or inversely.

Table 6c shows the correlations of non-quantifiable pairs.
A total of ten non-quantifiable pairs were identified for both
interactions. The first three pairs are subjective and objective
measures in the process and the remaining seven are paired
between measures in the process and the result.

Discussion

In this study, we identified the impact of user interactions on
the segmentation result using two interactive segmentation
methods. The user interactions were evaluated subjectively
and objectively.

Fig. 6 Interaction pattern of the contour method to segment the spinal cord during the initialization
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The Use of Correlated Measures

Table 2 provides both objective and subjective measures for
evaluating the interactive segmentation procedure. We corre-
lated those measures and identified the strong, moderate, and
weakly correlated pairs. With the paired combinations, it is
possible to identify how much effect the designed user inter-
action has on the HCI process and result. Also the correlated
measures provide insights that can be used in improving user
interaction design. For example, based on the correlated mea-
sures, it was clear that mental demand, physical demand. and
temporal demand are correlated to the efforts in both types of
interactions and efforts have a direct correlation with frustra-
tion. In the use of the contour method, it was observed that
frustration and the Dice similarity coefficient are inversely
correlated. Hence, efforts and frustration of the users affect
the segmentation outcome, as the Dice coefficients represent
the quality of the outcome. Thus in future design, the demands
of physicians regarding these two aspects should be as low as
possible in order to achieve a satisfactory segmentation
procedure.

The Workflow

In the study design, it was assumed that the mental demand is
related to the scrolling or thinking time. However, this cannot
be verified in this study using the correlations. The physicians

indicated that with this prototype they scrolled more than they
did in the clinical practice. This could be due to the workflow
design. In each iteration of the proposed methods, physicians
need to scroll through the entire dataset to evaluate the result
and if the result was not satisfactory, they had to scroll again to
give the inputs. This should be taken into consideration in the
future design of the workflow of SAS methods, as increased
mental demands will lead to increased efforts. One way of
avoiding this is by showing the result on the current slice
and by predicting the result in the next slice. In this way
physicians can correct the outcome while scrolling through
slices. Another way could be to use the third type of SAS
workflows as mentioned in section 2. Using this workflow,
the algorithmwill re-compute the result only in a small region,
rather than re-computing for the whole dataset. It may reduce
the processing time of the algorithm and physicians only need
to visualize the result in limited regions. However, it will take
physicians extra efforts in specifying those Bproblem^
regions.

The Tools

In the experiment, it was identified that the choice of the inter-
action tools has some effects on the drawing time, e.g., using
the Bpaint^ tool the segmentation time was less than using the
Bfree hand^ tool. However, this study did not identify any
correlation between the use of a certain tool and the physical

Fig. 7 NASA task load of
physician 1 (a) and physician
2(b). Contour method is indicated
using light color and strokes
method using dark color for
various segmented organs (blue
spinal cord, pink lungs, yellow
heart, brown trachea, and green
oesophagus)
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demand or efforts. It was also identified that physicians used
combinations of different tools while segmenting, for instance,
one tool for drawing and another one to adjust the boundary.
However, frequent shifting between tools is considered cogni-
tively demanding. Thus, the usage of combined tools may lead
to undesired effects, such as an increase in the drawing time and
higher mental demand. Hence in the future design, providing a
suitable tool for continuous usage is necessary.

Drawing Pattern

The drawing pattern was another measure which was evaluated
in this study. However, only for one physician we identified
some systematic drawing patterns. As there was no statistically
significant difference on the Dice similarity coefficient we could
not conclude that the drawing pattern affects segmentation result.

Subjective Preference

The subjective preferences of both physicians were the same
for all the cases except in segmenting the spinal cord. In
segmenting the spinal cord and the lung, the subjective pref-
erences of the physicians were directly correlated with the
NASA-TLX indices. For instance, in segmenting spinal cord,
physician 2 mentioned that it was easier to draw only contours
rather than drawing both the foreground and background
strokes. In the case of segmenting the heart, physicians did
not give a concrete preference. They felt that with the strokes
method they need to increase the size of their paint brush and
should contour the whole region in order to get the perfect
shape of the organ. Another finding is that when segmenting

organs such as the trachea and the oesophagus, physicians
always included the cartilage or the organ wall in their clinical
routine. In the developed two SAS methods, this was only
possible with the contour method. The strokes method was
only able to detect the empty volume insides the trachea and
the oesophagus. This made the physicians prefer using the
contour method for the trachea and the oesophagus, which is
different from other OARs. This finding confirms that in the
development of the SAS method, physicians should be en-
gaged in the early stage of the development as indicated by
Freudenthal et al. [53].

Differences in Using the Strokes and the ContourMethods

Most of the correlations were nearly the same for using either
the contour or the strokes method. However, there are excep-
tions. One major difference is that drawing time and the sub-
jective performance measure from the questionnaire are
strongly correlated for using the strokes method, but not for
contour. Also we noticed that the drawing time and efforts are
strongly correlated in the use of the strokes method. From
Table 3 it can be seen that the drawing time is less for the
strokes interaction in almost all the cases except for
segmenting the oesophagus. This concludes that the
strokes method was more efficient and effective than
contour method. However it was mentioned by the phy-
sicians during the experiment that the cognitive demand
of drawing background strokes are higher than drawing
foreground strokes. In some case, this higher cognitive
demand shifted their preference from using the strokes
method to the contour method.

Different from the study conducted byYurko et al. [54], our
study did not show a strong correlation between mental de-
mand and performance. From Fig. 7, it is clear that the frus-
tration level of the contour methods is always higher than the
strokes method. Also the frustration level and the Dice simi-
larity coefficient were inversely correlated in using the con-
tour method. With the inverse correlation and from Table 5, it
can be seen that outcomes from the contour method are not as
good as the strokes method for all the cases and the mental
demand, performance and effort were low in using the strokes

Table 4 Physicians’ subjective preference

Organs Physician 1 Physician 2

Spinal cord Strokes Contour

Lung Strokes Strokes

Heart Strokes or contour Strokes or contour

Trachea Contour Contour

Oesophagus Contour Contour

Table 5 Dice similarity coefficient of experiment 1

Spinal cord Lung Heart Trachea Oesophagus

Dataset P1S P2S P1C P2C P1S P2S P1C P2C P1S P2S P1C P2C P1S P2S P1C P2C P1S P2S P1C P2C

Pt 01 0.89 0.87 0.88 0.87 0.97 0.97 0.72 0.97 0.93 0.93 0.93 0.94 0.61 0.62 0.68 0.62 0.75 0.64 0.44 0.29

Pt 02 0.87 0.86 0.87 0.86 0.95 0.95 0.94 0.94 0.90 0.90 0.90 0.91 0.61 0.63 0.68 0.60 0.66 0.68 0.22 0.47

Pt 03 0.84 0.85 0.84 0.26 0.95 0.96 0.96 0.39 0.93 0.93 0.93 0.94 0.57 0.57 0.69 0.33 0.75 0.69 0.49 0.33

Pt 04 0.88 0.88 0.88 0.88 0.98 0.98 0.93 0.93 0.94 0.90 0.71 0.62 0.48 0.54

Pt 05 0.90 0.88 0.72 0.89 0.98 0.97 0.95 0.92 0.94 0.58 0.63 0.69 0.73 0.66
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Table 6 Correlations among different measures in using the contour and the strokes methods

     Subjective and objective
process and result correlations

(a) The correlations of using the contour method. Green: strongly correlated, light green: inversely strongly correlated, orange: moderately correlated and
light orange: inversely moderately correlated

(b) The correlations of using the strokes method. Green strongly correlated, light green inversely strongly correlated, orange moderately correlated and
light orange inversely moderately correlated

(c) List of correlated measures

J Digit Imaging (2016) 29:264–277 275



method. Hence, strokes can be considered as a preferred in-
teraction in future prototypes.

Limitations

First, only two participants were included in the study, which
limits the study regarding inter-observer variation. Second,
due to the novelty of the strokes method, we only introduced
mouse as the HCI device. If new input devices were intro-
duced, it would have been difficult to identify the cause of
changes in the process and the result. Coen [39] discussed that
HCI input devices may also influence the segmentation. Thus,
different types of input devices should be considered after
physicians are familiar with this method.

Conclusion

In the proposed research, we investigated the role of user
interaction in SAS methods for segmenting the organs at risk
in radiotherapy planning. In total, 42 case studies were con-
ducted on five organs with two different SAS methods.
Thirty-six quantifiable and ten non-quantifiable correlations
were identified for each interaction. Among those pairs of
measures, 20 of the contour method and 22 of the strokes
methods were strongly or moderately correlated, either direct-
ly or inversely. Those correlated measures helped us to con-
firm that besides the performance of the algorithm, the quality
of the segmentation also depends on the physician and the
HCI process. Furthermore, the direct and inverse correlated
measures provide useful insights for future user interaction
design in interactive segmentation. Among the two developed
SAS methods, it is clear that the strokes method is more effi-
cient, less cognitively demanding, and requires less effort than
the contour method. However it is hard to replace physicians’
subjective preference since cognitively, drawing a contour at
the boundary ensures correct segmentation of organs and
drawing background strokes was more cognitively demand-
ing. Besides, it is also identified that random and regular draw-
ing pattern did not influence the quality of the result and the
duration of the process. These findings suggest that in the
future HCI design of SAS methods, user interactions need to
be less cognitively challenging and there is a need for flexi-
bility in the interface design.

Current research is directed towards further development of
the HCI designs of SAS methods. More HCI devices, for
instance, pen-tablet and touch screen, will be introduced to
the study. New measures, such as eye tracking, will be intro-
duced as well. The results from the current study will be used
to design novel HCI tools in the future studies to improve the
effectiveness and efficiency of user interaction.
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