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Uncertainty has been the perceived Achilles heel of the
radiology report since the inception of the free-text
report. As a measure of diagnostic confidence (or lack
thereof), uncertainty in reporting has the potential to
lead to diagnostic errors, delayed clinical decision mak-
ing, increased cost of healthcare delivery, and adverse
outcomes. Recent developments in data mining tech-
nologies, such as natural language processing (NLP),
have provided the medical informatics community with
an opportunity to quantify report concepts, such as
uncertainty. The challenge ahead lies in taking the next
step from quantification to understanding, which
requires combining standardized report content, data
mining, and artificial intelligence; thereby creating
Knowledge Discovery Databases (KDD). The develop-
ment of this database technology will expand our ability
to record, track, and analyze report data, along with the
potential to create data-driven and automated decision
support technologies at the point of care. For the
radiologist community, this could improve report content
through an objective and thorough understanding of
uncertainty, identifying its causative factors, and provid-
ing data-driven analysis for enhanced diagnosis and
clinical outcomes.
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INTRODUCTION

A number of deficiencies exist in current
reporting strategies, which were discussed

in the first article of this reporting series.1 These
reporting deficiencies can be characterized
according to content, communication, analysis,
and organization. Content refers to the facts and
observations the radiologist has identified in
accordance with the imaging data acquired.
Communication refers to the manner in which
this contextual data is presented, so that accurate
and timely clinical action can be initiated, to
effect-optimized clinical outcomes. Analysis is

the method in which the data is interpreted, and
encompasses the combination of imaging, tech-
nical, and clinical data. The goal is to consider
these disparate data elements in combination; so
as to arrive at a reproducible and factual
conclusion. Organization/structure refers to the
manner in which this report content is created,
with the hope that a clear and reproducible
message will be gleaned by the reader, regard-
less of educational, training, and occupational
variability.
As medical practice has become increasingly

dependent upon imaging for clinical diagnosis,
surveillance, and treatment; the criticality of
optimizing imaging report data becomes height-
ened.2,3 Primary care physicians at the point of
care rely on accurate, timely, and unequivocal
imaging reports to guide clinical decision making,
and expect report deliverables to conform to
established best practice standards. The reality
however is far from the ideal, leaving many
clinical practitioners with some degree of uncer-
tainty and lack of confidence in their subsequent
clinical actions. This has the potential to produce a
number of negative “downstream” ramifications
including delayed diagnosis and treatment,
increased cost of care, and adverse clinical actions.
The challenge ahead for medical imaging pro-
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viders is to critically and objectively analyze report
deficiencies, develop community-wide standards
in conjunction with evidence-based medicine
(EBM), utilize technology to automate and refine
data assimilation and analysis, and integrate
clinical and imaging data into reporting. The
ultimate goal is the creation of a dynamic and
intuitive system which can provide real-time
decision support, education and training, and out-
comes analysis. The only practical way to accom-
plish these goals is through report data mining,
which is the subject of this manuscript.

Understanding Uncertainty in Reporting

In addition to the aforementioned four listed
categories of report deficiencies, we must consider
the underlying report requirements of compliance
with standards, diagnostic confidence, clarity, and
reproducibility. In effect, a report should be able to
withstand the test of time. If one was to retro-
spectively review imaging reports after the fact,
one should be able to clearly and unequivocally
understand the data being presented and clinical
recommendations being made. If this report data is
presented in a structured manner, the ability to
analyze this data (both retrospectively and pro-
spectively) provides a mechanism for research,
education, and new technology development.
One of the longstanding and well-reported

deficiencies of radiology reporting is equivoca-
tion and uncertainty, with the “hedge” often
described as the official plant of the radiology
community.4,5 Uncertainty has been described as
“a state of having limited knowledge where it is
impossible to exactly describe existing state or
future outcome”.6

This definition brings to light two critical
concepts within medical reporting; knowledge
and outcomes. While it is often stated that knowl-
edge is power (Sir Francis Bacon, Religious
Meditations, Of Heresies, 1597), knowledge in a
vacuum is of limited practical value in medicine.
Knowledge in the context of improving clinical
outcomes is however of extreme value, and can be
thought of as the ultimate goal of all medical
practitioners and the reports they create. How then,
do we go about accomplishing this task?
In order to better understand knowledge, we

must first understand uncertainty, which we will
equate to a lack of diagnostic confidence. There

are a number of causes for uncertainty (or lack of
diagnostic confidence) in medicine, as listed in
Table 1. These can be illustrated by taking a
practical exam from the radiology reporting reper-
toire, the abdominal CT performed in the evalua-
tion of appendicitis. Technical, medico-legal,
psychological, anatomical, and clinical factors
can all come into play when analyzing the
introduction of uncertainty into such a report.
From a technical standpoint, the acquisition
device, acquisition parameters, protocol selection,
image processing, and contrast administration all
have the potential to adversely affect contrast and
spatial resolution, which in turn limits the diag-
nostic confidence on the part of the interpreting
radiologist. From an anatomic standpoint; ana-
tomic variation, patient body habitus, and volume
averaging artifact may adversely affect the radiol-
ogist’s diagnostic confidence in providing a defin-
itive diagnosis. Clinical data related to medical/
surgical history, laboratory data, and physical
exam findings also play an important role in
diagnostic confidence and often lead to the
infamous (and ubiquitous) statement, “clinical
correlation recommended”. Psychological and
medico-legal factors often relate to the personality
and prior experience of the radiologist. A radiol-
ogist who has passive personality traits, a prior
history of medical malpractice, or is anxious or
tired at the time of interpretation may opt to
“hedge” his/her bets through equivocal report
language (e.g., cannot exclude, should be consid-
ered). Regardless of the factors at play in creating
report uncertainty, it is often a source of contention
between the report author (e.g., radiologist) and
reader (e.g., clinician). Clinicians often regard
radiology reports devoid of uncertainty as superior
to those with equivocation. But does report
uncertainty adversely affect clinical outcomes?

Table 1. Factors Contributing to Uncertainty in Reporting

1 Technology limitations
2 Insufficient clinical data
3 Education and training variability
4 Exam parameters
5 Personality
6 Patient non-compliance
7 Medico-legal concerns
8 Anatomic variation
9 Lack of established standards
10 Limited accountability
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Are there situations where the introduction of
uncertainty actually improves outcomes? To
answer these questions, we should look outside
of radiology and better understand the potential
pros and cons of report uncertainty.
Uncertainty has been well studied in medical

laboratory testing, in which uncertainty of mea-
surement and has been described as the doubt
associated with the trueness of a medical labora-
tory result.7 Uncertainty of measurement ulti-
mately allows a clinician better understanding as
to the clinical significance of the reported value.
By looking at uncertainty in this manner, one
could theorize that uncertainty can be both
“positive” and “negative” in perception. The
negative perception of uncertainty relates to the
idea that uncertainty reflects a lack of conviction
or understanding on the part of the reporting
individual. The positive perception of uncertainty
conveys the idea that not all reported observations
are real (or true), but in actuality may represent an
erroneous observation. As such, the uncertainty
alerts the reader that additional data is required
before acceptance of the data and initiation of
clinical action. In the context of laboratory report-
ing, this can take the form of a technical error,
resulting in the creation of a spurious finding (i.e.,
abnormal test result). Before committing to clinical
action (e.g., pharmaceutical administration), the
physician must validate the abnormal test result, in
order to avoid misappropriated clinical therapy and
a potential adverse action.
If one applies this concept of uncertainty to the

medical imaging domain (i.e., doubt associated
with the trueness of a medical imaging finding),
both positive and negative perceptions of uncer-
tainty can be realized. Negative perceptions are
commonly derived from the radiologist who
introduces language aimed at transferring respon-
sibility to the referring physician (e.g., “clinical
correlation recommended”, “cannot exclude malig-
nancy”). Positive perceptions may be derived
when a radiologist attempts to alert the reader that
an observed imaging finding may not necessarily
be pathologic in nature. Examples include ana-
tomic variations, technical deficiencies, and arti-
facts; which can be equated to the errant laboratory
test result due to technical limitations. The end
result is that uncertainty is inevitable in medical
reporting. The key to the successful management
of uncertainty is to reliably differentiate between

“good” and “bad” uncertainty, which can be
facilitated through data mining.

Quantifying Uncertainty though Data Mining

An example of how report uncertainty can be
objectively analyzed through data mining can be
illustrated in the analysis of mammography
reports.8 A multi-institutional mammography data-
base consisting of 141,787 reports was analyzed,
using natural language processing (NLP) software,
which was externally validated through a manual
report audit. The frequency of uncertainty in
mammography reporting was subsequently ana-
lyzed in order to better understand the context in
which uncertainty is reported.
Uncertainty was recorded in 19.2% of diagnos-

tic mammography reports, versus 2.8% of screen-
ing mammography reports. When correlating with
BIRADS codes (which are an indirect measure of
report clinical significance), terms of uncertainty
were identified in the following order of frequency
(pG0.001):

1. 11.0% of all reports containing findings of
indeterminate clinical significance (BIRADS 0
and 3).

2. 10.5% of all reports containing findings of high
clinical significance (BIRADS 4 and 5).

3. 4.3% of all reports containing findings of low
clinical significance (BIRADS 2).

When analyzing the context in which uncer-
tainty is recorded, it was determined that the type
of finding plays an important role in reporting
uncertainty (pG0.01). Those findings with the
highest frequency of associated uncertainty
included mass (46.0% uncertainty), calcifications
(37.1% uncertainty), and asymmetric density
(13.4% uncertainty).
While these data provide several interesting

insights as to how and when uncertainty is
introduced in radiology reporting, they open the
door to many unanswered questions, which are
currently the subject of ongoing analyses:

1. What impact does individual radiologist educa-
tion and training play in report uncertainty?

2. To what extent is uncertainty dependent upon
institutional and/or geographic variations?

3. What role does technology play in predicting
(and counteracting) report uncertainty?
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4. How does uncertainty translate into clinical
outcomes (e.g., positive and negative predictive
values)?

5. What role to specific imaging characteristics (e.g.,
size, morphology) play in report uncertainty?

Data Mining Today and Knowledge
Discovery Tomorrow

The only reliable manner in which these ques-
tions can be accurately addressed is through large-
scale data mining. Unfortunately, NLP is limited in
its ability to analyze conventional free-text radiol-
ogy reports, which are replete with real world
ambiguity, language complexity, and inferencing.
The same uncertainty which has long been the
anathema of radiology reporting is also one of the
primary detractors for functional data mining using
NLP. In short, NLP is capable of processing report
data, but not necessarily understanding it.9

There is an urgent need for development of a
new generation of computational tools to assist
end-users in the extraction of useful data from the
rapidly expanding volumes of digital data in
medicine (which is textual, numerical, and graph-
ical). Historically, the concept of identifying useful
patterns within large datasets has been referred to
as data mining, which has been largely restricted to
statistical analysis. The preferred concept is that of
knowledge discovery in databases (KDD), which
refers to the use of artificial intelligence techniques
to discover useful knowledge from data, through a
multi-step process (Table 2).10 Data mining repre-
sents one step in the overall KDD process, using
specific algorithms for extracting patterns from
data. KDD, on the other hand, provides additional
and more comprehensive steps in the analytical

process including data preparation, data selection,
data cleaning, incorporation of context-specific
pre-existing knowledge, and proper interpretation
of the results derived through data mining.
One of the most important derived benefits of

KDD (as opposed to statistical data mining alone)
is the mapping of low-level data into other forms
which may be more compact, more abstract, or
more useful. The unifying goal of KDD is the
extraction of high-level knowledge from low-level
data, in the context of large datasets.11

In order to illustrate the potential utility of data
mining and KDDwithin medicine, we will again use
the example of mammography data analysis in the
diagnosis of breast cancer. The multitude of potential
data points for analysis is listed in Table 3, in
conjunction with the various stakeholders, technolo-
gies, and clinical parameters of interest.
On the most superficial level, we can evaluate

radiologist interpretation accuracy, as currently
mandated by the Mammography Quality Standards
Act (MQSA). In these analyses, each radiologist
interpreting mammograms must have periodic
calculation of positive and negative predictive
values, which is analyzed and cross-referenced
with local and national peer statistics. Suppose for
example, one or more radiologists within an
imaging department are shown to have interpreta-
tion scores outside of the norm (e.g., higher than
normal number of “missed” breast cancer cases).
In order to ascertain, the potential contributing
factors, a number of radiologist-specific data are
selected for analysis. These may include the
radiologist education (e.g., general versus sub-
specialty trained), continuing education, and exam
volume. The null hypotheses would presume that
radiologists with advanced training, higher mam-
mography exam volumes, and frequent continuing

Table 2. 10 Step Overview of KDD Process

1 Defining the goals of the knowledge discovery process.
2 Identifying relevant prior knowledge.
3 Access of the dataset (in which discovery is to be performed).
4 Data cleaning and pre-processing (e.g., account for noise, handling of missing data fields, processing of time-sequence

informational changes).
5 Data reduction and projection (finding useful features to represent data depending upon the overall goal).
6 Matching the goals of the KDD process to a specific data mining method (e.g., summarization, classification, regression, clustering).
7 Exploratory analysis (deciding which data models and parameters are appropriate).
8 Data mining (applying data analysis and discovery algorithms in order to produce a particular enumeration of patterns of the data).
9 Interpretation of data mining patterns.
10 Action (acting upon the discovered knowledge).
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medical education (CME) would tend to demon-
strate the highest performance metrics (as deter-
mined by positive and negative predictive values).
These analyses could readily be performed using

data mining techniques, assuming the requisite data
is available in a reliable and standardized format.
While this data would not be expected to be included
in a traditional radiology report database, it could be
available in an administrative radiology database,
which could in turn be cross-referenced with the
pertinent radiology report database.
An additional analysis aimed at analyzing radiol-

ogist report accuracy could utilize standardized data
within the report database to ascertain which specific
report findings have the greatest impact on individual
radiologist report accuracy. As an example, a
radiologist may have low diagnostic accuracy mea-
sures for one finding (e.g., micro-calcifications), as
opposed to another finding (e.g., mass), in which his/
her accuracy measures exceed his/her peers. In this
scenario, analysis of the report database can be used
to identify technology and educational interventions

to improve performance. In addition to focusing
CME programs on evaluation of micro-calcifica-
tions, the radiologist may also elect to integrate
computer-aided detection (CAD) software into his/
her mammography interpretation workflow. An
additional level of data-driven analysis can further
target improved performance by identifying specific
morphologic and distribution characteristics (e.g.,
pleomorphic) of micro-calcifications which tend to
pose the greatest interpretation challenge for the
radiologist. If the CAD raw data was made available,
the radiologist could evaluate competing CAD
vendors to assess the sensitivity/specificity of each
competing software program, as it specifically relates
to diagnostic assessment of pleomorphic micro-
calcifications. The report database can go one step
further and provide a pathology proven image
database, which can be queried according to finding
(e.g., micro-calcifications), pathology (e.g., ductal
carcinoma in situ [DCIS], morphology (e.g., pleo-
morphic) and BIRADS code (e.g., BIRADS 4). In
this manner, the report database has the potential to

Table 3. Data of Interest in Analysis of Breast Cancer Detection Using Mammography

Individual steps Technologies employed Clinical stakeholders Data for analyses

Ordering/scheduling CPOE, RIS Clerical staff Compliance with recommended guidelines
Is historical imaging data being
made available?
Patient follow-through

Clinical data input EMR, MIS Clinician Lab and genetic data
Historical medical/surgical data
Physical exam data
Patient demographic data

Image acquisition Mammographic device Technologist Acquisition parameters
Spatial and contrast resolution
Radiation dose
Patient body habitus
Breast size and density

Image processing Image processing software Technologist, radiologist Contrast optimization
Noise reduction

Quality assurance/quality
control

QA/QC monitor and phantoms Administrative technologist,
QA specialist

QC testing data
QA analysis
Artifacts

Interpretation PACS, CAD Radiologist Correlation with historical imaging data
Monitor resolution/ QC
CAD performance and utilization
Radiologist education/training
Radiologist exam volume
Pathology correlation

Reporting PACS, Reporting system Radiologist BIRADS compliance
Image annotation

Communication Registered/electronic mail
(with receipt confirmation)

Administrator, radiologist,
clinician

Follow-up recommendations
Critical results communication
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provide several complementary roles; as a facilitator
of targeted education and training, data-driven tech-
nology selection, and user-specific outcomes analysis.
As previously mentioned, many of the data

contained within Table 3 would not be expected to
be contained within the report database, but none-
theless have the potential to have an important role
in data analysis. As an example, if one was to try
to identify contributing factors to explain one
imaging department’s clinical performance in
breast cancer detection through screening mam-
mography, they would undoubtedly want to know
what role image quality may play. In order to
assess image quality, a number of disparate data
elements must be considered relating to quality
assurance, image acquisition, and image process-
ing. One could not reliably analyze these data
accurately without analyzing the impact technol-
ogy and individual stakeholders have in contribu-
ting to overall image quality. Suppose for example,
one of the mammography acquisition devices
provides lower contrast and/or spatial resolution
than a competing unit within the same department.
Alternatively, one could see where different levels
of technologist education and training could have
an effect on QA assessment, where departmental
workflow calls for the technologist performing
each study also provide QA assessment of the
images obtained. Lastly, we may identify that
image quality variability is most affected in
patients with large and dense breasts. One can
easily see that the potential number of confounding
variables becomes exponential, as we increase the
breadth and depth of data collection and analysis.

Creating Knowledge Infrastructure

In order to optimize uncertainty in reporting, we
must accomplish the following:

1. Understand its use (when, where, why, and by
whom).

2. Categorize in an objective and hierarchical
method (degree, good vs. bad).

3. Develop data mining technology to record,
track, and analyze.

4. Correlate with clinical outcomes.
5. Provide point-of-care feedback for real-time

decision support.

Uncertainty in radiology reporting can be
categorized according to the clinical context in

which it is manifested. Uncertainty can arise
during visual inspection of the imaging dataset,
in determining the validity of an observation. In
viewing a mammographic image, is the perceived
abnormality real or artifactual (e.g., summation
artifact)? The next item for consideration is
whether the observed finding is normal or patho-
logic (e.g., anatomic variant)? The third consid-
eration is determination of the clinical significance
of the finding (e.g.. diagnosis).
In order to reliably answer these questions, the

radiologist can turn to the knowledge database for
assistance. This database would consist of techni-
cal, imaging, and clinical data directly attributable
to the examination being interpreted.
The clinical database would include the following:

1. Historical patient medical and surgical data.
2. Clinical indication prompting the ordered exam.
3. Supporting laboratory and pathology data.
4. Molecular data, providing genetic predisposi-

tion to disease states.
5. Physical exam findings.
6. Clinical test data.
7. Pharmacology.

The next database available for decision support
would be the imaging database, which would
include the following:

1. Anatomic–pathologic correlation (e.g., spe-
cific disease entities based upon anatomic
localization).

2. Image-centric decision support (e.g., morphologic/
textural analysis, computer-aided diagnosis).

3. Atlas of anatomic variants.
4. Historical imaging data/reports.
5. Pathology-specific electronic teaching files.
6. Appropriateness criteria.

The third database would be technical and
include the following data:

1. Image quality assessment (e.g., motion, posi-
tioning, contrast/spatial resolution)

2. Anatomy and disease specific image processing
3. Protocol optimization (e.g., acquisition param-

eters, collimation
4. Noise reduction filters
5. Quality control (e.g., monitors, acquisition device)
6. Contrast optimization

By leveraging these databases, the interpreting
radiologist could objectively determine whether
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the clinical and imaging data submitted for interpre-
tation are sufficient, what specific limiting factors
exist (and to what degree), and what specific tools
can be used to improve diagnostic confidence. The
database might even have the capability of mathe-
matically calculating a degree of diagnostic confi-
dence score by correlating the observed metrics from
the study being interpreted, with reference exam data
contained in the database. In this manner, a radiol-
ogist could objectively determine the degree of
uncertainty (i.e., diagnostic confidence) based upon
available data and incorporate this into the report. In
the event that the recorded uncertainty differs from
the calculated uncertainty, the radiologist will be
alerted as to the discrepancy, and elect to modify the
report accordingly.
Here is a hypothetical example as to how the

Knowledge Database would be of use in the
interpretation of a radiology exam, determination
of uncertainty, and clinical care decision making.
The case involves a patient seen in the emergency
room for an acute neurologic deficit, suspicious for
stroke. The sequence of events is as follows:

1. The emergency room (ER) physician places an
order for a non-contrast head CT, with the
clinical indication “rule out stroke”.

2. The patient is transported to the radiology
department, where he/she undergoes the
requested head CT, with the images compro-
mised by motion artifact.

3. The radiologist interpreting the CT imaging
study notices a subtle poorly defined area of
decreased attenuation in the left parietal lobe,
and reports as follows:

subtle, poorly defined hypodensity left parietal
lobe, cannot exclude acute ischemic infarct….
follow-up MRI is recommended, as clinically
indicated”

4. The ER physician reads the report and elects to
consult a neurologist before ordering additional
imaging or clinical tests.

5. Due to the fact that the neurologist is in his/her
office and unable to examine the patient
immediately, they ask the ER physician to
order the recommended MRI.

6. The patient is subsequently transported back to
the radiology department and undergoes an
MRI of the brain with diffusion imaging, to
evaluate for stroke.

7. The radiologist reviews the MRI images in
conjunction with the earlier CT exam and
determines that the area of prior concern (left
parietal lobe) is not reproduced on MRI. He/
she does however identify two abnormal areas
within the right frontal and left occipital lobes
on the diffusion images and reports as follows:

two areas of abnormal signal intensity are
identified within the right frontal and left
occipital lobes, suggestive of acute ischemic
events. The multi-vascular distribution of these
infarcts would be suspicious for embolic dis-
ease, correlation with MR or CT angiography is
recommended.

8. Upon return to the ER, the nurse notes that the
patient’s clinical status has deteriorated, and
places the patient on cardiac monitoring.

9. The neurologist arrives and conducts a bedside
neurologic exam, discovering that the patient
has a profound weakness on her left side along
with a visual field deficit. While examining
the patient he/she also sees that the cardiac
rate and rhythm is abnormal and suggests a
cardiology consultation. His/her additional
request for MR angiography is placed on hold,
due to the patient’s declining status.

10. When the cardiologist arrives, he/she learns
(from an old hospital discharge summary) that
the patient has a pre-existing diagnosis of atrial
fibrillation, which was treated with medication
to control the heart rate. This is confirmed by the
cardiologist on physical exam and review of the
cardiac monitor tracing.

11. The cardiologist performs a portable bedside
echocardiogram and learns that the patient has
a thrombus in the left atrium, in association
with the atrial fibrillation.

12. Definitive diagnosis is now established (i.e.,
embolic stroke), and appropriate treatment is
begun.

In reviewing the sequence of events, several
observations can be made with regards to the
deficient access, ordering, communication, inter-
pretation, and analysis of data.

1. There was deficient clinical data provided to
facilitate CT and MRI interpretation. Physical
exam findings, focality, and duration of symp-
toms, and the pre-existing cardiac history
would have significantly altered report content.
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2. The CT exam initially ordered by the ER
physician was not the optimum imaging study
to evaluate acute stroke, and resulted in delayed
diagnosis.

3. The equivocation of the radiologist in both the
CT and MRI reports was in part due to the lack
of supporting clinical data and limitations in
image quality (i.e., motion).

4. The failure to engage in direct communication
between the radiologist and clinician further
exacerbated the errors and delays in diagnosis
and treatment.

5. Multiple consultations were ordered prior to a
complete and thorough review of the data,
which led to a diffusion of clinical responsi-
bility and lack of accountability.

In the interpretation of any imaging exam,
supporting clinical data is of great importance in
determining whether a given imaging abnormality
has clinical relevance. For stroke evaluation, the
following data may be of value to the interpreting
radiologist:

1. Clinical indication: the exact nature and dura-
tion of symptoms.

2. Physical exam findings: deficits on neurologic
exam which assist in anatomic localization.

3. Clinical test data: ancillary test data to improve
diagnostic confidence (e.g., transcranial Dop-
pler, echocardiography).

4. Laboratory data: lab tests which help define
stroke risk (e.g., cholesterol profile)

5. Molecular data: genetic/proteomic data defining
patient’s genetic predisposition to disease.

6. Pharmacology: current drugs which may influ-
ence stroke risk or alter therapeutic options.

7. Past medical/surgical history: prior history of
ischemic events (e.g., TIAs)

8. Lifestyle: factors related to lifestyle altering stroke
risk (e.g., exercise, obesity, smoking, stress).

The greater availability of supporting clinical
data at the time if image interpretation, the greater
degree of diagnostic confidence (i.e., certainty),
which will in turn impact the success and time-
liness of treatment. Multiple studies have shown
diagnostic accuracy of stroke improves in the
presence of supportive clinical data.12–14 At the
same time, optimization of the imaging data also
plays a significant role in report optimization and
improved diagnostic confidence.15,16 Optimizing

exam selection, image quality, protocol refine-
ment, image processing, and use of decision
support technologies all play a potential role. The
key is to develop supporting technologies which
can record, track, and analyze image data in order
to provide assistance to the technologist and
radiologist in real-time.
Current computerized physician order entry

(CPOE) systems exist which can assist clinicians
in order entry, define the optimal imaging exam
based upon clinical context, and track utilization
data.17,18 This can in effect create an important
accountability measure at the first step in the
imaging process. At the time of order entry, the
clinician can be forced to provide context-specific
clinical data before an order can be placed. Those
clinicians who attempt to “game the system” by
entering insufficient or erroneous data in order to
complete the order will ultimately be exposed
through data mining and outcome analysis. The
system could in turn place heightened surveillance
on the physician in question and/or mandate
additional education and training prior to contin-
ued use. In the example cited, the ER physician
ordering the head CT to “rule out stroke”, could
have been presented data as to the comparative
diagnostic efficacy of CT and MRI, along with the
recommendation for MRI. Based upon the sup-
porting clinical data entered, the database could
assist the technologist and radiologist in protocol
optimization. Had the prior history of atrial
fibrillation been reported, additional MR or CT
angiographic sequences may have been selected to
better delineate the intracranial arterial anatomy
and potential embolus.
One of the cardinal rules in radiology is that

anatomy often predicts the diagnosis. If one
were to localize an imaging abnormality on an
anatomic reference map (i.e., brain mapping), a
differential diagnosis could in turn be generated.
This is the concept behind the probabilistic brain
atlas.19–21 If the radiologist interpreting the CT
or MRI exam had mapped the imaging abnor-
mality onto a reference image, the computer
could provide anatomic and pathologic data to
assist in the interpretation process. In the cited
example of the CT scan, if the radiologist
marked the area of suspicion (left parietal lobe),
the computer could in turn provide the expected
neurologic deficit. In this particular case, where
the neurologic deficit did not match this area and
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the radiologist would have realized the imaging
finding was inconsistent with the clinical pre-
sentation. Alternatively, if the clinical data was
input into the brain map, it would visually
display which region of the brain would account
for such a deficit, which in effect would visually
outline the expected stroke territory. When the
imaging data “matches” the clinical data, the
radiologist would be able to render an interpre-
tation with a high degree of confidence. An
imaging finding which does not match the
clinical data (e.g., neurologic deficit) would suggest
one of two possibilities; either the clinical data is
incorrect or the imaging finding is incidental in
nature. This ability to visually cross reference clinical
and imaging data provides the radiologist and
clinician with an interesting and informative decision
support tool, which can in turn improve diagnostic
confidence.
Another opportunity for imaging technology

development lies in the assessment and character-
ization of image quality. A poor quality image
(e.g., motion artifact) leads to uncertainty (i.e., lack
of diagnostic confidence) and potential for mis-
diagnosis. If computer-based algorithms were
developed to automatically record image quality
parameters at the point of image capture, both
qualitatively and quantitatively, an objective image
quality database could be derived.22 This would
create an educational resource for technologists,
identify optimal exposure parameters, provide
immediate feedback for repeating poor quality
images, and create an objective means with which
radiologists can use in reporting. Instead of
subjective and nonspecific terms in current report-
ing (e.g., interpretation accuracy is limited by
technical deficiencies), the report can contain
objective quality-centric data derived from the
image quality database. This also provides for a
measure for accountability on the parts of the
technologist and radiologist, whom are expected to
continuously monitor and intervene in poor quality
imaging studies.
In the end, the goal of the Knowledge

Discovery database is to create an automated
mechanism for tracking clinical, technical, and
imaging data with the goal of optimizing clinical
outcomes. This clinical improvement is derived
from the ability to improve diagnostic confi-
dence and holding stakeholders and technologies
accountable.

CONCLUSION

Data mining represents the future in medical
innovation, by providing data-driven analysis for
optimizing clinical diagnosis and treatment and the
development of medicine (EBM) standards and
guidelines. In their present free-text form, radiol-
ogy reports limit large-scale data mining, although
search technologies such as natural language
processing (NLP) offer some utility in the statis-
tical analysis of report data. If and when structured
reporting solutions become widely adopted by the
radiologist community, data mining capabilities
will be greatly expanded, and eventually lead to
the creation of KDD. These technologies have the
potential to transcend medical practice, through the
creation of automated decision support at the point
of care. The data-driven analysis can provide for
customized feedback based upon the individual
end-users occupational status and training, the
technologies being utilized, and the specific con-
text (e.g., disease) in which it is being utilized.
One of the most important areas in which this data
architecture can offer value in improving overall
report quality and clinical outcomes is the charac-
terization of uncertainty (i.e., diagnostic confi-
dence), which is a complex and multi-factorial
problem in the current reporting paradigm. By
converting uncertainty into a quantifiable metric
we can begin to elucidate the contributions and
interaction effects technology, stakeholders, and
imaging datasets play in radiologists’ ability to
render accurate and reproducible interpretations.
The same KDD technology used to analyze

report uncertainty can also be applied to analyzing
other components within the radiology report
including pathologic findings, descriptive data
(e.g., size, morphology, focality), follow-up rec-
ommendations, temporal change, and differential
diagnosis. The medical community as a whole
(and radiology community in particular) should
begin to understand the available opportunities
through large-scale data mining and proactively
assist in the development, testing, and implemen-
tation of knowledge discovery. The establishment
of a broad medical data infrastructure predicated
on objective data analysis creates new and exciting
educational, research, and clinical opportunities; in
which the medical informatics community can play
a major role. Rather than dismiss the opportunity
out of fear, we must remember these words of
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Marie Curie, “nothing in life is to be feared, it is
only to be understood”. This technology offers the
medical community improved understanding and
knowledge, along with the potential of minimizing
its own uncertainty.
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