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Information in electronic medical records is often in an
unstructured free-text format. This format presents
challenges for expedient data retrieval and may fail to
convey important findings. Natural language processing
(NLP) is an emerging technique for rapid and efficient
clinical data retrieval. While proven in disease detection,
the utility of NLP in discerning disease progression from
free-text reports is untested. We aimed to (1) assess
whether unstructured radiology reports contained suffi-
cient information for tumor status classification; (2)
develop an NLP-based data extraction tool to determine
tumor status from unstructured reports; and (3) com-
pare NLP and human tumor status classification out-
comes. Consecutive follow-up brain tumor magnetic
resonance imaging reports (2000–2007) from a tertia-
ry center were manually annotated using consensus
guidelines on tumor status. Reports were randomized to
NLP training (70%) or testing (30%) groups. The NLP
tool utilized a support vector machines model with
statistical and rule-based outcomes. Most reports had
sufficient information for tumor status classification,
although 0.8% did not describe status despite reference
to prior examinations. Tumor size was unreported in
68.7% of documents, while 50.3% lacked data on
change magnitude when there was detectable progres-
sion or regression. Using retrospective human classifi-
cation as the gold standard, NLP achieved 80.6%
sensitivity and 91.6% specificity for tumor status
determination (mean positive predictive value, 82.4%;
negative predictive value, 92.0%). In conclusion, most
reports contained sufficient information for tumor status
determination, though variable features were used to
describe status. NLP demonstrated good accuracy for
tumor status classification and may have novel applica-
tion for automated disease status classification from
electronic databases.

KEY WORDS: Natural language processing, unstructured,
structured, radiology reports, tumor status

INTRODUCTION

T he growing use of electronic medical records
has resulted in vast stores of clinical infor-

mation around the world that represent valuable
resources for research and improving healthcare
outcomes. However, the unstructured free-text
format in which such electronic data are often
stored poses significant challenges to expedient
data retrieval. The inherent variability in content of
unstructured reports may result in loss of informa-
tion such as tumor progression. Further, even if
pertinent information is present in the report, the
complexities of human language render such
reports less amenable to simple automated data
retrieval.
Natural language processing (NLP) is an area

dealing with computational methods for processing
human language. It has been used as a main
method of information extraction (IE), which aims
to convert information residing in natural language
into a structured format. Advances in both NLP
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and IE have allowed rapid data retrieval from
electronic databases with accuracy comparable to
human experts.1,2 In the clinical domain, while
NLP has proven utility3 in detecting the presence
of disease from unstructured reports,4–15 it has not
been evaluated as a tool for determining progres-
sion of disease.
The broad objective of this study was to

determine if information regarding tumor progres-
sion could be accurately retrieved from unstruc-
tured follow-up magnetic resonance imaging
(MRI) brain reports using NLP. Specifically, we
first aimed to assess if the reports contained
sufficient information for classification of tumor
status. We next aimed to develop an NLP-based
data extraction tool to detect changes in tumor
status. Finally, we assessed if the NLP algorithm
could retrieve information regarding tumor status
from the unstructured reports with similar accuracy
as an expert human interpreter.

MATERIALS AND METHODS

Ethics Approval

The study protocol was approved by Mayo
Institutional Review Board.

Sample Selection

Consecutive MRI reports in the Mayo Clinic,
Rochester, MN radiology report database from 1
Jan 2000 up to 1 Jan 2008 were screened for the
following inclusion criteria:

1. Format: The report must be an unstructured
free-text MRI brain examination report.

2. Indication: The MRI examination must be done
for brain tumor evaluation. For our study, a “brain
tumor”was defined as any of the following: brain
tumor, brain cancer, glioma, meningioma, glio-
blastoma, astrocytoma, ependymoma, oligoden-
droglioma, brain lymphoma, brain metastases,
and pituitary tumor.

3. Condition: The report must make reference to a
suitable prior imaging study such as an earlier
computed tomography or MRI brain examination.

MRI reports at our institution do not routinely have
separate “observations/findings” and “impression/
conclusion” sections. Instead, the reporting style is

Table 1. Study Consensus Guidelines for Manual Classification
of Reports

Status indicator (regression, stable, progression)
This indicated the final overall tumor status compared to prior
studies. Tumor size was the primary determinant of status,
unless another feature was highlighted as indicating a status
change despite stable tumor size. In the absence of specific
reference to size, surrogate indicators (e.g. general statements
on status, enhancement, signal intensity changes, mass effect,
and presence of new lesions) were used to determine status.

Only changes from the most recent comparison study were
considered. If a mix of ‘stable’ and another status (‘progress’
or ‘regress’) was present, then the net status change
(‘progress’ or ‘regress’) was taken as the final status. If a mix
of ‘progress’ and ‘regress’ statuses were present, the final
status was classified as the worse (i.e. ‘progress’) status.

Magnitude indicator (mild, moderate, marked)
This indicated the qualitative extent of change, if any. The
magnitude of change was classified as:

Mild if ‘mild’, ‘slight’, ‘minimal’, ‘somewhat’, ‘small amount’,
‘subtle’, ‘appears to be some’, ‘tiny’, ‘partial’, ‘slow growth’
or equivalent was used.

Moderate if ‘moderate’, ‘modest’, ‘some’ or equivalent was
used. This was also the default classification if there was no
specific mention of magnitude.

Marked if ‘marked’, ‘significant’, ‘resolved’, ‘resolution’,
‘clearly’, ‘considerable’, ‘substantially’, ‘pronounced’, ‘large
amount’ or equivalent was used.

If several lesions with different change magnitudes were
present, the greatest magnitude was chosen as the final
magnitude.

Significance indicator (uncertain, possible, probable)
This indicated the subjective clinical significance of change, if
any. The clinical significance was classified as:

Uncertain if ‘uncertain’, ‘slight’, ‘subtle’, ‘unclear’, ‘not entirely
typical of’, ‘indeterminate’, ‘non-specific findings’ ‘cannot be
excluded’ or equivalent was used. In the absence of specific
significance indicators, a mild magnitude of change was
tagged to an ‘uncertain’ significance.

Possible if ‘possible’, ‘suggestive of’, ‘somewhat’, ‘benign
rather than malignant’, ‘more consistent with post-therapy
changes rather than neoplasm’, ‘could reflect’, ‘may
represent’, ‘continued observation to assess’, ‘follow-up
imaging to evaluate’ or equivalent was used. This was also
the default classification if there was no specific mention of
significance and the magnitude of change was neither mild
nor marked.

Probable if ‘probably represents’, ‘worrisome for’, ‘concern
that this represents’, ‘suspicious’, ‘concerning for’,
‘consistent with’, ‘compatible with’, ‘findings suggest’,
‘presumably indicating’, ‘findings indicate’, ‘findings likely
reflect’ or equivalent was used. In the absence of other
specific significance indicators, a marked magnitude of
change was tagged to a ‘probable’ significance.

If several lesions with similar status but differing significance
were present, the greatest significance was chosen as the
final significance.
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deliberately succinct, often consisting of key findings
incorporated into an expanded impression.

Evaluating Information in Reports by Manual
Classification

The selected reports were reviewed and annotated
by a radiologist (LTC) according to consensus
classification guidelines (Table 1) developed by the
two authors (LTC and BJE) regarding disease status,
magnitude of change, and the significance of change
according to the classification scheme indicated in
Figure 1. No additional clinical information, apart
from data within the radiology report, was provided.
Report annotation was performed using an open-
source biomedical ontology editor (Protégé ver 3.2.1,
Stanford Center for Biomedical Informatics Re-
search, Stanford University School of Medicine,
CA, USA) and a general-purpose text annotation
plug-in tool (Knowtator ver 1.7.4, Center for
Computational Pharmacology, University of Colo-
radoHealth Sciences Center, CO, USA). Ten percent
of reports were randomly selected for blinded repeat
annotation by the same radiologist 4 months after
the initial annotation to evaluate intra-annotator
agreement.

Developing an NLP-Based Data Extraction
Tool

The reports were stratified by tumor status and
divided into training (70%) and testing (30%) sets.
Stop words (e.g., “if,” “the,” “by”) had little
lexical meaning and were removed. Content words
were retained and underwent a stemming process
using the Porter stemming algorithm16 to reduce
inflected variants to their stems (e.g., conversion of
the word “reduction” to “reduce”).
The NLP-based data extraction tool built for the

task of discovering tumor status, magnitude of
change, and significance of change combined
statistical and rule-based methods (Fig. 2). The
discovery of tumor status was cast as a classifica-
tion task extending the support vector machines
(SVMs) method,17 while that for magnitude and
significance was approached as a pattern-matching
task. A simplified illustration of how an example
report would be processed and analyzed by the NLP-
based data extraction tool is given in Figure 3.

Discovering Tumor Status

A radiology report (document) could discuss
multiple tumors and include additional information

Fig 1. Classification scheme for radiology reports.
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not directly related to tumor status. Therefore, the
initial step in tumor status discovery was to
identify narrative sections (hereafter referred to as
topic discourse units) that contained information
describing a single tumor.

Discourse Processing and Subdocument Creation
The most important clue for the identification of
topic discourse units was the description of status
change. Based on the manual annotation outputs,
vocabulary lists for tumor status (e.g., phrases
indicating progression) and the tumor status
subject (e.g., “mass,” “abnormal signal”) were
compiled. Each document was then split into
several subdocuments based on the occurrence of
pairs of subject and status words from the two
vocabulary lists. These pairs were restricted to within
a maximum span of two adjacent sentences. Portions
of the report with sentences not containing such pairs
were evenly divided in terms of sentences and
attached to the nearest subdocument. If a document
described several tumors, each tumor description
formed a separate topic discourse unit.

Feature Extraction Two types of features are
extracted from each discourse unit. The first was
the bag of words feature which allowed

simplification of each document into a collection
of words, disregarding grammar and word order.
Each subdocument was represented as a bag of
word stems in a vector space. The words in the bag
were derived from sentences that had at least one
tumor status or tumor status subject manually
annotated. Thus, the vector was a series of binary
values, with 1 for the presence of the word stem in
the subdocument and 0 for absence.
The second feature, negation, was extracted

using the NegEx algorithm.18 Negation was
common in the reports, and it was critical to
distinguish between positive and negative men-
tions. For example, in the phrase “there was no
significant growth,” the “significant growth” is
negated by the word “no.” The NegEx algorithm
focused on discovering anchor words and spanned
a window on both sides of the anchor to detect
negation markers. If a negation-stopping word
occurred before the window was exhausted, then
the scanning stopped there. The tumor status
words were the anchors that fed into the NegEx
algorithm with a window of six adjacent words. A
tumor status was assigned a final value of negated
if there was a negation word within the window
and no intervening negation-stopping word was
present.

Fig 2. Development of NLP-based data extraction tool.
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SVM Training SVMs17 are a machine learning
technique (supervised learning method) for
classification of data. Given training vectors
(xi, yi), i=1,…,n where xi 2 Rd and yi 2 f�1; 1g
as the class label, SVMs locate a hyperplane
w � x� b ¼ 0 that maximizes the separation
between the two classes. We used SVMs to build
a classifier to discover tumor status. The feature
vectors were constructed as described and a four-
way SVM classifier with categories for regression,
stable, progression, and irrelevant was trained.
The LIBSVM19 toolkit was used to extend SVM to
support multi-category classification and enable
probabilistic predictions.

Final Tumor Status Assignment Tumor statuses of
subdocuments were assumed to be independent. The
final document-level status probabilities were derived
from both the subdocument-level probabilities
(generated from the SVM toolkit) and the status
assignment rules (Table 1). The probabilities were
calculated as follows:

P irrelevantð Þ ¼
Y

i2fallsubdocsg
P i ¼ irrelevantð Þ

ð1Þ

Pðirrelevant [ stableÞ ¼ Q
i2fallsubdocsg

Pði ¼ irrelevant [ stableÞ
¼ Q

i2fallsubdocsg
Pði ¼ irrelevantÞ þ Pði ¼ stableÞð Þ ð2Þ

Fig 3. Simplified illustration of processing and analysis of an example report by the NLP-based data extraction tool.
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P irrelevant [ stable [ regressionð Þ ¼
Y

i2fallsubdocsg
P i ¼ irrelevantð Þ þ P i ¼ stableð Þ þ P i ¼ regressionð Þð Þ:

ð3Þ

Therefore,

P stableð Þ ¼ P irrelevant [ stableð Þ
� P irrelevantð Þ ð4Þ

P regressionð Þ
¼ P irrelevant [ stable [ regressionð Þ

� P irrelevant [ stableð Þ ð5Þ

P progressionð Þ ¼ 1� P irrelevant [ stable [ regressionð Þ:
ð6Þ

The final prediction at the document level was the
stable, regression, and progression label with the
highest probability.

Discovering magnitude and significance

Unlike tumor status descriptions, magnitude and
significance had deterministic indicator patterns.
This meant that apart from negation, there was
little variation in the classification values that
could be attributed to interaction between indicator
patterns and other words in the same sentence. For
example, the indicator pattern “compatible with”
always indicated a probable value for significance,
while “tumor cannot be excluded” always indicated
an uncertain significance. Thus, these two classifiers
were developed based on pattern matching, rather
than the bag of words technique adopted for status
classification. Each subdocument in a report was
matched against a set of magnitude or significance
indicators, while taking word order into account, and
assigned a subdocument label according to the
matching indicator. Subdocuments that lacked a
magnitude indicator were assigned a default value
of moderate. Subdocuments that did not have a
significance indicator were assigned the same label
as their immediate next subdocument with a signif-

icance indicator. If no significance indicator was
present, an irrelevant significance was assigned.
For each possible configuration of subdocument

tumor statuses in a report, the corresponding
document-level magnitude/significance label was
derived according to the classification guideline
rules (Table 1), and the probability for this
configuration was calculated. The document-level
probabilities were derived by summing the same
label assignments. For example, the probability of
one report being assigned a final tumor status label
of mild was computed as follows:

P mildð Þ ¼
X

i2fall mild configsg

Y

j2fall subdocsg
P jð Þ: ð7Þ

Themagnitude and significance probabilities were
computed similarly. The final prediction was the one
with the highest probability excluding irrelevant.

Comparing Human and NLP Classification
Outcomes

The sensitivity, specificity, positive predictive
value, and negative predictive value of the NLP
classification outputs were calculated using the
human expert classification as the gold standard.
The statistical software used was JMP® 7.0 (SAS
Institute Inc., Cary, NC, USA), which generated
the main descriptive statistics, including kappa and
Bowker values. Weighted kappa values were
obtained using GraphPad QuickCalcs (GraphPad
Software Inc., La Jolla, CA, USA). F-measures were
calculated using Protégé (ver 3.2.1, Stanford Center
for Biomedical Informatics Research, Stanford
University School of Medicine, CA, USA).

RESULTS

A total of 778 MRI brain reports for 238
patients met the inclusion criteria, with character-
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istics summarized in Table 2. The reports were
prepared by 33 staff radiologists and had an
average report length of 109 words (median 95;
range 18–447). The number of reports per patient
ranged from 1 to 22 (mean 3.3). Incidental
findings were observed in almost half of the
reports. These incidental findings were non-tu-
mor-related observations such as sinusitis, vascular
abnormalities, ischemic changes, normal variants,
and incidental benign tumors unrelated to the
neoplasm of interest.

Information in Unstructured Reports (Manual
Classification)

Out of 778 reports, six (0.8%) were unclassifi-
able despite having suitable comparison scans
mentioned in the report (Table 2). Though these
reports contained tumor descriptions, it was not
possible to discern from the report text whether the
findings constituted progression, regression, or no
change, even after review by two radiologists

(LTC and BJE). One unclassifiable document
reported residual postoperative changes which
hindered determination of tumor status. The
unclassifiable reports had a greater mean report
length compared to the classifiable reports, but this
was not statistically significant. There was also no
significant difference in the prevalence of inciden-
tal findings or spelling errors between the classi-
fiable and unclassifiable reports.
In the 772 reports that were classifiable, tumor

status was stable in 432 (56.0%), progressed in
235 (30.4%), and regressed in 105 (13.6%;
Table 3). Reports could utilize either size, a
surrogate indicator, or a combination of both types
of indicators (size and surrogates) to describe
tumor status. Surrogate indicators used were
enhancement, signal change, new lesions, recur-
rent/residual tumor, or general statements on
status. Overall, 557 (72.2%) reports utilized a
surrogate indicator, while 242 (31.3%) used tumor
size to describe status. This included 27 (3.5%)
reports where both size and surrogate indicators

Table 2. Characteristics of Reports in the Manual Classification and NLP Development Groups

Report characteristic

Reports Manual classification NLP tool development

Overall
(N=778)

Classifiable
(N=772)

Unclassifiable
(N=6) p value

Training group
(N=541)

Testing group
(N=231) p value

Mean length (word count) 109 109 122 0.579 110 107 0.509
Incidental findings 49.4% 49.5% 33.3% 0.686 50.6% 46.8% 0.322
Spelling errors 11.6% 11.5% 16.7% 0.523 11.3% 12.1% 0.736
Fusion wordsa 14.8% 14.8% 16.7% 1.000 15.7% 12.6% 0.258

aFusion words are combined words such as “inthe” or “lefthemisphere” that result from omission of a space between adjacent words

Table 3. Summary of Indicators Used for Determination of Tumor Status

Status indicator Regression (N=105) Stable (N=432) Progression (N=235) Overall (N=772)

Tumor size 55 (52.4%) 75 (17.4%)* 112 (47.7%)** 242 (31.3%)
Surrogate indicatora 50 (47.6%) 360 (83.3%)* 147 (62.6%)*,** 557 (72.2%)
Enhancement 37 (35.2%) 142 (32.9%) 95 (40.4%) 274 (35.5%)
T1 signal changeb 4 (3.8%) 21 (4.9%) 13 (5.5%) 38 (4.9%)
T2 signal change 16 (15.2%) 85 (19.7%) 54 (23.0%) 155 (20.1%)
Mass effect 9 (8.6%) 8 (1.9%)* 12 (5.1%)** 29 (3.8%)
New lesion(s)c 4 (3.8%) 28 (6.5%) 53 (22.6%)*,** 85 (11.0%)
Recurrent neoplasmc 1 (1.0%) 127 (29.4%)* 4 (1.7%)** 132 (17.1%)
Residual neoplasmc 2 (1.9%) 132 (30.6%)* 1 (0.4%)** 135 (17.5%)
General statementd 5 (17.4%) 273 (63.2%)* 9 (3.8%)** 287 (37.1%)

*pG0.05 vs regression; **pG0.05 vs stable
aFeatures other than tumor size which depict tumor status
bExcludes signal change due to contrast medium enhancement
cStatements that indicate either the presence or absence of the features specified
dOverall statement about tumor status without reference to specific tumor features such as size, enhancement, signal change, etc.
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were used. The types of status indicators used
varied between different tumor status categories. In
particular, the absence of recurrent/residual neo-
plasms and general statements about status were
usually used to describe stability, while changes in
status (regression or progression) tended to be
reported as through descriptions of size and mass
effect. As expected, the mention of new lesions
was also associated with progression.
The magnitude of regression was classifiable in

60.0% (41.0% mild, 5.7% moderate, 13.3% marked)
but unspecified in 40.0% (Fig. 4). Magnitude of
progression was classifiable in 45.1% (34.9% mild,
3.8% moderate, 6.4% marked) but unspecified in
54.9%. Reports with status change contained variable
degrees of significance (30.0% uncertain, 12.1%
possible, 39.4% probable, and 18.5% unspecified).
Reports without specific mention of magnitude or
significance were subsequently assigned default
values according to classification guidelines (Table 1).
Ten percent (77 reports) randomly selected for

blinded repeat annotation by the same radiologist
(LTC) gave high weighted kappa values for all
categories (Table 4), indicating a high degree of
intra-annotator agreement. There was no signifi-
cant asymmetry for discordant classification out-
comes (P90.80 for all categories).

Comparison of NLP and Human
Classification Outcomes

Compared to human classification for the test
group (231 reports), NLP performed best for
classification of tumor status, with an overall mean
sensitivity and specificity of 80.6% and 91.6%,
respectively (Fig. 5 and Table 5). Within the status
subcategories, the highest NLP sensitivity was
seen for classification of stability, while the high-
est specificity was obtained for classification of
regression. The receiver operating characteristic

Fig 4. Outcomes of human annotation for classifiable reports.

Table 4. Agreement Results

Classification category Kappa Weighted kappa Bowker’s test of symmetry

Intra-annotator agreement for human classification
Status 0.98 0.96 P=0.80
Magnitudea 0.86 0.88 P=0.80
Significanceb 0.82 0.87 P=0.97

Agreement between NLP and human classification
Status 0.75 0.75 P=0.58
Magnitudea 0.68 0.71 P=0.85
Significanceb 0.56 0.63 P=0.41

aKappa values conditional on a correct status classification
bKappa values conditional on a correct status and magnitude
classification
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Fig 5. Comparison of NLP and human classification outcomes for reports in test set.

Table 5. Results of NLP Classification for All Categories

Category Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Status
Regress 64.5 (46.9–78.9) 96.5 (93.0–98.3) 74.1 (55.3–86.8) 94.6 (90.6–97.0)
Stable 89.9 (83.5–94.0) 85.3 (77.1–90.9) 88.6 (82.0–92.9) 87.0 (79.0–92.2)
Progress 87.3 (77.6–93.2) 93.1 (88.1–96.1) 84.9 (75.0–91.4) 94.3 (89.5–97.0)
Mean 80.6 91.6 82.4 92.0

Magnitudea

Mild 85.7 (68.5–94.3) 90.7 (80.1–96.0) 82.8 (65.5–92.4) 92.5 (82.1–97.0)
Moderate 80.9 (67.5–89.6) 82.9 (67.3–91.9) 86.4 (73.3–93.6) 76.3 (60.8–87.0)
Marked 71.4 (35.9–91.8) 94.7 (87.1–97.9) 55.6 (44.4–73.3) 97.3 (90.5–99.2)
Mean 79.3 89.4 74.9 88.7

Significanceb

Uncertain 53.8 (29.1–76.8) 85.2 (73.4–92.3) 46.7 (24.8–69.9) 88.5 (77.0–94.6)
Possible 70.4 (51.5–84.1) 75.0 (59.8–85.8) 65.5 (47.3–80.1) 78.9 (63.7–88.9)
Probable 81.5 (63.3–91.8) 97.5 (87.1–99.6) 95.7 (79.0–99.2) 88.6 (76.0–95.0)
Mean 68.6 85.9 69.3 85.3

aResults conditional on correct status classification
bResults conditional on correct status and magnitude classification
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(ROC) curves for NLP tumor status determination
gave area under curve (AUC) values of at least
0.94 (Fig. 6). NLP performance metrics were
lower for determination of magnitude and lowest
for classification of significance. This trend was
mirrored in the kappa values for agreement
between NLP and human classification (Table 4).
A similar pattern was observed for F-measures20

of NLP compared to human classification. Macro
F-measure scores of 0.81, 0.77, and 0.69 were
obtained for status, magnitude, and significance
respectively, while micro F-measure scores were
0.86, 0.82, and 0.72, respectively.

Subgroup analysis of NLP performance (Table 6)
showed that for classification of tumor status,
reports that were correctly classified were signifi-
cantly shorter and more likely to contain general
statements regarding tumor status. For magnitude
of change, correctly classified reports had a
significantly lower prevalence of surrogate status
indicators (enhancement and statements about
residual/recurrent neoplasms). For classification of
significance, specific mention of tumor size was
significantly associated with correct classification
outcomes, while the use of surrogate status
indicators (enhancement) had the opposite effect.

Fig 6. Receiver operating characteristic curves for tumor status determination by NLP.

Table 6. Subgroup Analysis of Report Features Compared to NLP Classification Category Outcomes

Report feature

NLP classification outcomes

Status Magnitude Significance

+ (N=198) − (N=33) p value + (N=67) − (N=48) p value + (N=48) − (N=67) p value

Average report length 104 125 0.029* 127 130 0.794 125 131 0.599
Incidental findings 44.4% 60.6% 0.085 46.3% 52.1% 0.538 45.8% 50.8% 0.603
Spelling errors 11.1% 18.2% 0.249 10.5% 14.6% 0.504 6.3% 16.4% 0.148
Fusion wordsa 12.6% 12.1% 1.000 11.9% 12.5% 0.928 14.6% 10.5% 0.504
Tumor size 30.3% 30.3% 1.000 53.7% 35.4% 0.052 58.3% 37.3% 0.0257*
Surrogate indicatorb 71.7% 72.7% 0.905 49.3% 70.8% 0.021* 45.8% 67.2% 0.0222*
Enhancement 32.8% 48.5% 0.081 28.4% 52.1% 0.0098* 25.0% 47.8% 0.0133*
T1 signal changec 4.6% 6.1% 0.660 4.5% 4.2% 1.000 6.3% 3.0% 0.648
T2 signal change 21.7% 27.3% 0.479 22.4% 22.9% 0.947 22.9% 22.4% 0.947
Mass effect 3.5% 6.1% 0.620 6.0% 4.2% 1.000 6.3% 4.5% 0.693
New lesion(s)d 13.1% 3.0% 0.141 20.9% 12.5% 0.242 20.8% 14.9% 0.410
Recurrent neoplasmd 15.7% 12.1% 0.794 0.0% 8.3% 0.0281* 0.0% 6.0% 0.139
Residual neoplasmd 17.7% 15.2% 1.000 0.0% 10.4% 0.0112* 0.0% 7.5% 0.074
General statemente 41.9% 9.1% 0.0002* 1.5% 8.3% 0.159 2.1% 6.0% 0.399

‘+’ and ‘−’ indicate correct and wrong classification outcomes respectively. Statistically significant differences are marked by ‘*’
aCombined words that result from omission of a space between adjacent words
bFeatures other than tumor size which depicted tumor status
cExcludes enhancement after the administration contrast medium
dStatements that indicate either the presence or absence of the features specified
eOverall statement indicating tumor status without reference to a specific tumor feature such as size or enhancement
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DISCUSSION

Our study demonstrates that the vast majority of
unstructured radiology reports contain sufficient
information to allow classification of tumor status
by a human reader, although the linguistic indica-
tors of tumor status varied significantly between
reports. A novel NLP-based data extraction tool
was developed and demonstrated utility in the
classification of reports in terms of tumor status,
change magnitude, and change significance. NLP
classification outcomes had accuracy comparable
to human expert classification, with the best
performance seen for the classification of tumor
status.

Completeness of Information in Unstructured
Radiology Reports

Our findings support the many recognized
limitations21 of unstructured free-text radiology
reports generated today. Although our study was
limited to a specific clinical domain, the determi-
nation of brain tumor status, change magnitude,
and change significance proved to be challenging
even to a radiologist interpreter. Reports had
typographical errors, different lengths, variable
vocabularies, referred to multiple tumors, and in-
cluded significant amounts of non-tumor information
and incidental findings. We noted that variability in
expression and interpretation was greater for the
more subjective categories of magnitude and signif-
icance. For example, a lesion that is “slightly better
appreciated” on a study could either refer to a real
change (i.e., mild progression) or an apparent
difference that was attributed to technical differences
between studies (i.e., stability). The challenges of
communicating doubt and certainty in radiological
reports have been described perviously22 and were
borne out by the lower kappa values for the
magnitude and significance categories. However,
notwithstanding these challenges, there was a rea-
sonably high level of reproducibility for human
classification, which suggests that this categorization
process could be successfully automated.
The case for structured reports and improved

terminology in radiology has been made since the
1920s.23–28 A structured report goes beyond
standard headings (i.e., indication, findings, con-
clusion) to include consistent report content and a
standard report language such as RadLex.29 It is

our view that using structured reports for tumor
follow-up studies would result in more consistent
and complete radiology reports. For example,
though tumor size is advocated as a key measure
of status,30,31 the majority of reports in our study
did not mention size. While the value of specific
measurements is unclear for some tumors,32

standardizing on which measurements are routine-
ly included could help reduce confusion and
improve communication. Compulsory data fields
(including tumor size) customized according to the
clinical question would help prevent the inadver-
tent exclusion of such important clinical informa-
tion, reduce the ambiguity of terms used, and
decrease variability in their interpretation. Further-
more, structured reports with standardized lexicons
would be machine-readable, enabling decision
support, semantic search, quality control, and rapid
data mining to be more easily incorporated into the
daily practice of radiology.

Utility of NLP for Tumor Status
Determination from Unstructured Reports

Until the widespread use of structured radiology
reports, NLP remains a promising option for rapid
data retrieval from radiology report databases. A
robust NLP classification tool could facilitate
research by rapidly identifying specific patient or
disease subgroups based on radiological findings.
For example, all patients with changes in tumor
status could be easily identified and studied for
factors that contributed to the status change. In
addition, “stable tumors” could be reviewed for
changes too subtle for human detection. Such
information can be used to improve automated
decision support tools such as computer-assisted
detection and diagnosis systems. NLP tools could
also “screen” reports prior to finalization, prompt-
ing radiologists about important findings that may
have been inadvertently left out. However, in view
of the complexity and variability of language used
in unstructured radiology reports, coupled with the
existing error rate of our NLP tool, we feel that use
should preferably be restricted to research purpo-
ses at the present time. The small but inherent
misclassification rate could skew the character-
istics of any subpopulation of patients retrieved by
the NLP tool according to tumor status. Therefore,
these limitations and causes of the errors should be
further evaluated before use in a clinical scenario.
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Our study showed that NLP was able to classify
unstructured free-text neuroradiology reports
according to tumor status with good accuracy.
The NLP performance metrics were highest for
tumor status, intermediate for magnitude, and
lowest for significance. This was likely due to the
increasing difficulty of determining magnitude and
significance, which was also apparent during
human classification. Though our NLP tool
achieved high sensitivity for classification of stable
tumors, we feel that further improvements are
required before actual use in a research environment.
It is our view that a usable screening tool should have
both sensitivity and specificity exceeding 95%.
Based on the ROC curve for classification of stable
tumors, the current algorithm can only partially meet
such criteria with either the combination of 95.4%
sensitivity and 72.6% specificity or 79.1% sensitivity
and 95.1% specificity.
Error analysis showed that a shorter report

length and the presence of a general statement
regarding tumor status were significantly associated
with a correct NLP status classification. This may be
due to a reduction of irrelevant information in short
reports that could negatively influence the final
classification outcome. A general statement on status
was also more likely to be detected by the NLP
algorithm. For magnitude and significance classifi-
cation, the NLP tool performed poorer for reports
that used surrogate markers of status other than size.
This could be explained by the more variable
vocabulary used to describe changes in surrogate
features when compared to themore objective features
used when reporting changes in size. It is noteworthy
that spelling errors, fusion words, and incidental
findings were not significantly associated with erro-
neous NLP classifications. This lends support to the
utility of NLP for evaluating free-text medical reports,
especially since it may not always be feasible to
correct for such errors prior to NLP analysis.
Sensitivity of NLP classification was lowest for

tumor regression, marked magnitude, and uncer-
tain significance categories. Several factors may
have contributed to this. Firstly, fewer reports were
available for these categories, resulting in smaller
training sets for the NLP algorithm. Secondly, it is
possible that greater variability existed in how
significance (including uncertainty) was expressed,
as suggested by the lowest intra-annotator agreement
levels obtained for classification of significance.

Thirdly, uncertainty had the lowest priority amongst
the significance categories in the classification
scheme, meaning that a concurrent detection of
uncertain and another significance value (including
the default “possible” value) would always be
resolved to the other value. Finally, when no explicit
marker of significance was available, the discovery
of uncertain significance was tagged to a mild
magnitude. Therefore, any error in the discovery of
mild magnitude would lead to downstream errors in
the discovery of uncertain significance.
Several areas for potential improvement of the

NLP algorithm were identified during the study.
For delineation of subdocuments in each report,

our method relied on the existence of status–
subject pairs identified using vocabulary lists with
boundaries demarcated based on proximity. Be-
cause subject–status pairs were prevalent, each
report tended to be split into many short fragments.
Some of these subdocuments described change
magnitude or change significance rather than
tumor status. This resulted in the creation of
irrelevant subdocuments that negatively influenced
the subsequent probability contributions from
relevant subdocuments. The lower performances
of magnitude and significance classifiers could be
partly attributed to this problem. Better identification
of relevant subdocuments would help prevent the
impact of irrelevant subdocuments on the final
probability derivation and classification. Enhanced
parsing, temporal reasoning,33 and co-referencing
are other areas where improvements in subdocument
delineation could be achieved. These tools would
enable NLP algorithms to better handle reports with
multiple tumors, comparisons with more than one
prior study, and lengthy reports with co-references
that span multiple sentences.
Temporal reasoning remains a key challenge for

automated medical data mining from medical
reports.33 The value of medical information is
dependent on its temporal context. For example,
tumor size in a report takes on greater significance
when compared to a previously recorded size. This
rate of change in size allows additional inferences
regarding tumor aggressiveness or treatment effi-
cacy to be made. However, automated temporal
reasoning of unstructured radiology reports
presents many challenges. For example, even the
apparently simple definition of “time of study” can
be difficult. The options include scan acquisition
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time, scan completion time, exam interpretation
time, and report finalization time. Furthermore,
there is no uniformly accepted format of represent-
ing day, month, and year in medical reports. Even
if the format is standardized, time zone differences
add an additional challenge, especially in the age
of teleradiology where reports may be generated in
a different time zone from where the examination
was performed. Beyond definitions and represen-
tations, radiology reports may also make referen-
ces to multiple prior studies without mentioning
specific dates. This poses further challenges for
automated temporal relationship discovery as a
tumor may have both progressed and regressed
when compared to different prior scans. The
difficulty of automated temporal reasoning in
radiology reports is also increased by temporal
relations which rely on implicit event ordering
with indicators such as “as compared to the scan
taken last week” or “since admission” where no
clear reference time point is given.
There are limitations for our study. Though

SVMs have been successfully applied to text
classification problems,34 limitations exist for
unbalanced datasets where class sizes differ sig-
nificantly. Such unbalanced datasets are common
in the medical domain where the important
positive instance of a disease/outcome may be
rare. In such cases, SVMs may favor the majority
(negative) class and will still correctly classify
most of the dataset even if the hyperplane is
pushed towards the minority (positive) class. This
is not preferred as false negative classifications of
positive instances are less tolerable than false
positive classifications. In our study, we addressed
this limitation by conducting searches within a
range of values to obtain empirically optimal
parameters for the SVM hyperplane. Other methods
have been suggested to reduce such errors.35–37 Our
findings are also limited to the subpopulation of
patients with brain tumors with follow-up MRI
studies. As imaging features and terminology vary
between different tumor types and imaging modal-
ities, our algorithm may not be applicable to
different patient populations. The classification
scheme used was formulated specifically for the
study and had subjective components. While efforts
were made to be in line with existing tumor status
classification schemes,30,31 the lack of uniformity
across reports made complete alignment impossible.

CONCLUSION

Unstructured free-text radiology reports of tumor
follow-up MRI brain examinations mostly contained
sufficient information for determination of tumor
status, though the features used to describe status
varied significantly between reports. Almost 1% of
reports studied could not be manually classified
despite specific reference to prior exams in the
report, over two thirds did not specify tumor size,
and almost half did not report magnitude of change
when either progression or regression was detected.
We successfully developed an NLP-based data
extraction tool using existing software that was
able to determine tumor status from unstructured
MRI brain reports with accuracy comparable to a
human expert. Our findings show promise for novel
application of NLP algorithms in ascertaining
disease status from unstructured radiology reports.
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