
CAVASS: A Computer-Assisted Visualization
and Analysis Software System

George Grevera,1,2Jayaram Udupa,2 Dewey Odhner,2 Ying Zhuge,2 Andre Souza,2 Tad Iwanaga,2

and Shipra Mishra2

The Medical Image Processing Group at the University of
Pennsylvania has been developing (and distributing with
source code) medical image analysis and visualization
software systems for a long period of time. Our most
recent system, 3DVIEWNIX, was first released in 1993.
Since that time, a number of significant advancements
have taken place with regard to computer platforms and
operating systems, networking capability, the rise of
parallel processing standards, and the development of
open-source toolkits. The development of CAVASS by
our group is the next generation of 3DVIEWNIX.
CAVASS will be freely available and open source, and
it is integrated with toolkits such as Insight Toolkit and
Visualization Toolkit. CAVASS runs on Windows, Unix,
Linux, and Mac but shares a single code base. Rather
than requiring expensive multiprocessor systems, it
seamlessly provides for parallel processing via inexpen-
sive clusters of work stations for more time-consuming
algorithms. Most importantly, CAVASS is directed at the
visualization, processing, and analysis of 3-dimensional
and higher-dimensional medical imagery, so support for
digital imaging and communication in medicine data and
the efficient implementation of algorithms is given
paramount importance.

KEY WORDS: Visualization, 3-dimensional imaging,
software systems, image analysis

INTRODUCTION

S oftware development for 3-dimensional com-
puter-aided visualization and analysis (CAVA)

in our group started in the 1970s. In 1980, we
brought out the first ever such package for medical
3-dimensional CAVA.1 This software worked on a
Data General minicomputer, which drove a Comtal
image display frame buffer. In 1982, we brought
out a significantly expanded version of this
software package.2 In spite of its high machine

and display device dependency, this package was
distributed to over 150 sites with source code
worldwide long before the term “open source” was
coined. This package was also incorporated into the
General Electric (GE) computed tomography (CT)/T
8800 scanner.3 We subsequently developed a more
advanced package4 for the GE 9800 CT scanner.
GE distributed widely these on-the-scanner pack-
ages. Earlier, we implemented DISPLAY and
DISPLAY82 at the Mayo Clinic, whose inves-
tigators used these packages until they started
developing the Analyze system5 around 1984–1985.
Around 1987, we started the development of a

Unix-work-station-based software system named
3DVIEWNIX,6 which was based on standard C
programming language and a graphical user
interface library developed by us based on X
Windows. It also incorporated a multidimensional

1From the Department of Mathematics and Computer Science,
Saint Joseph’s University, 5600 City Avenue, Philadelphia, PA
19131, USA.

2From the Medical Image Processing Group (MIPG),
Department of Radiology, University of Pennsylvania, 423
Guardian Drive, 4th Floor Blockley Hall, Philadelphia, PA
19104-6021, USA.

Correspondence to: George Grevera, Department of Math-
ematics and Computer Science, Saint Joseph’s University, 5600
City Avenue, Philadelphia, PA 19131, USA; tel: +1-610-
6601535; fax: +1-610-6603082; e-mail: ggrevera@sju.edu

Copyright * 2007 by Society for Imaging Informatics in
Medicine

Online publication 6 September 2007
doi: 10.1007/s10278-007-9060-5

Journal of Digital Imaging, Vol 20, Suppl 1, 2007: pp 101Y118 101

generalization7 of the 2-dimensional digital im-
aging and communication in medicine (DICOM)
image representation standards. This issue of the
need to handle a multidimensional vectorial image
as a single entity and also to handle nonimage
structure information such as surfaces is only now
being looked into by the standards committees
related to DICOM. These issues were addressed
in 3DVIEWNIX in the early stage of its design
during 1987–1990. 3DVIEWNIX has incorpo-
rated numerous advanced 3-dimensional (and
higher-dimensional) CAVA operations including
various methods of interpolation, filtering, seg-
mentation, registration, algebraic and morphol-
ogical operations, visualization methods for
surfaces and volumes, interactive structure edit-
ing and manipulation, and scene intensity and
structure-based quantitative analysis. Its binary
version is available freely via the Internet and has
been used by hundreds of sites, and the source-
code-version has been distributed to more than
180 sites worldwide to date. We continue to
maintain, distribute, and develop 3DVIEWNIX
by incorporating into it all functions that we find
useful after rigorously testing them in one or
more of our ongoing applications. About 60
person years of work has gone into 3DVIEWNIX
so far. Its design has stood the test of time and of
over 15 applications pursued by us since its
release.
Since the time 3DVIEWNIX was first released

(1993), a number of significant developments
have occurred. Most significantly, PC platforms
(and the Windows OS) have gained in capability,
accompanied by precipitous price reductions.
They have supplanted traditional Unix-based
work stations as the scientific work stations of
choice. Second, network connectivity speed has
greatly increased. Third, viable parallel process-
ing standards have been developed and are now
freely available for all popular platforms and
operating systems. Fourth, platform-independent
windowing application programming interfaces
(APIs), some of which maintain the native look
and feel, have been defined and implemented.
Finally, toolkits such as Insight Toolkit (ITK)
and Visualization Toolkit (VTK) have been
developed and are freely available. Although not
complete applications in themselves, these tool-
kits provide a breadth of techniques and can be
employed as building blocks of applications.

Current Software Systems
and their Limitations

During the past 10 years, the software devel-
opment activity for CAVA has increased consid-
erably, making several open-source systems
available. In the rest of this section, we shall
review the currently available software systems and
examine their limitations that were considered in
the design and implementation of CAVASS. Our
survey here considered most of the well-known
software systems, including Analyze,5 Digital Data
Viewer (DDV) (http://www.compgeomco.com),
GNU Image Manipulation Program (GIMP)
(http://www.gimp.org), Image/J (rsb.info.nih.gov/
ij/), Interactive Data Language (IDL) (http://www.
rsinc.com), ITK,8 Java (http://www.javasoft.com),
Khoros (http://www.khoral.com), Mathematica
(http://www.wolfram.com), Matlab (http://www.
mathworks.com), Open Data Explorer (OpenDX)
(http://www.opendx.org), Photoshop (http://www.
adobe.com), Volview (http://www.kitware.com/
products/volview.html), VTK (http://www.vtk.org),
Vision-something-Libraries (VXL) (vxl.sourceforge.
net), and 3DSlicer (http//www.slicer.org). Analyze,
IDL, Khoros, Mathematica, Matlab, Photoshop, and
Volview are excellent commercial software pack-
ages. However, none of them are freely available or
available as open source. Academic prices for
these packages for a single user on a Microsoft
Windows platform are typically subsidized. Plat-
forms other than Windows are often more
expensive, as are commercial licenses. These fees
typically include 1 year of updates. After that
period of time, additional fees are required to
obtain updated software. Only a few of these
vendors offer source code (for an additional fee).
Additionally, IDL, Khoros, Mathematica, and
MATLAB are not complete medical imaging
applications but libraries of functions that are
callable from their own respective proprietary
computer programming languages. Note that, in
the case of these proprietary languages, even
experienced software developers who are typical-
ly already familiar with C++ must learn these
programming languages. Matlab provides some
support for libraries that are callable from C/C++
and FORTRAN. Analyze is a complete applica-
tion with the Developer Add-On available for the
programming of custom applications. Photoshop
is exclusively oriented towards 2-dimensional

102 GREVERA ET AL.

http://www.compgeomco.com
http://www.gimp.org
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://www.rsinc.com
http://www.rsinc.com
http://www.javasoft.com
http://www.khoral.com
http://www.wolfram.com
http://www.mathworks.com
http://www.mathworks.com
http://www.opendx.org
http://www.adobe.com
http://www.adobe.com
http://www.kitware.com/products/volview.html
http://www.kitware.com/products/volview.html
http://www.vtk.org
http://vxl.sourceforge.net
http://vxl.sourceforge.net
http://http//www.slicer.org

image processing and manipulation. Photoshop
may be extended by user-written plugins. A
DICOM plugin is available for Photoshop to
enable it to read single DICOM image files
(2-dimensional slices).
The DDV (free, open source, Windows only)

software available was not afforded further
consideration because it is primarily oriented
toward EEG data and not 2-dimensional or
higher-dimensional imagery. Another DDV
software package, available from http://www.
compgeomco.com/, is freely available as binary
executables for a variety of platforms, including
Windows, Linux, Unix, and Mac. Source code is
not available, and even if source code were freely
available, DDV uses Qt, which costs $2,330 per
person, per development platform. It is primarily
a complete application but is limited to the
display of slice data (read in from TIFF, raw,
and a proprietary format) and the creation and
display of isosurfaces from manually segmented
slice data. GIMP is freely available as open
source on Unix/Linux only. There is no support
for DICOM and it is exclusively oriented towards
2-dimensional image processing and manipula-
tion. Image/J is a Java (and therefore, platform-
independent) outgrowth of the NIH Image
application that is available only for the Mac.
It is primarily oriented towards 2-dimensional
images but can combine 2-dimensional images
into “stacks” of slices. Three-dimensional dis-
play is limited to surface plots only. Image/J
can import DICOM data. Source code is freely
available. ITK, funded by the National Library
of Medicine, is also freely available as open
source on a wide variety of platforms. It is a
programmer’s toolkit that is specifically geared
towards medical image segmentation and reg-
istration. It requires a software developer with
extensive C++ knowledge (even more so than
VTK). As for VTK, no user interface is pro-
vided, but, in contrast with VTK, it does con-
tain a rich variety of algorithms for image
processing that are specific to medical imaging.
CAVASS incorporates simple mechanisms to
interface to ITK.
Our consideration now turns to the Java

programming language (including the Java Ad-
vanced Imaging, Java2D, and Java3D APIs). Our
experience shows that medical CAVA demands
the utmost in speed and efficiency due to the

voluminous higher-dimensional and/or multimo-
dality data. Simple, prototype Java-based appli-
cations that we developed required inordinate
amounts of memory and executed far more
slowly than their C++ counterparts. We consid-
ered using the Java Native Interface (JNI), which
allows one to combine Java and C++ code but that
requires developers to be experts in two program-
ming languages with no benefit over the solution
that we propose below. In fact, a JNI version of
3DVIEWNIX may even be slower because of the
conversion between Java and C++ data structures.
In the future, Java compilers [such as Google Code
Jam (GCJ)], which compile Java to native machine
code, may make Java as efficient as C++, but GCJ
is still in its infancy as it does not yet support
Swing (the Java API for building user interface,
which is responsible for drawing buttons, menus,
windows, etc.). Similar to Matlab, IDL, VTK,
and ITK, it does not provide a suite of medical
imaging and visualization applications but is a
general-purpose, higher-level programming lan-
guage upon which these applications may be built.
If Java was adopted, we would have had to rewrite
all existing 3DVIEWNIX in a different program-
ming language.
OpenDX is an X11-based, open-source appli-

cation that is freely available for Unix platforms.
It is not oriented towards medical imaging
applications. It does not contain any segmenta-
tion or registration methods. It does, however,
perform surface and volume rendering. The
DICOM format is not supported. A stereo
viewing module, DXStereo, has also been con-
tributed, but, according to the documentation, this
module runs only on IBM RS6000 and SGI
R4000 platforms. Volview is an application that
is primarily oriented towards volume rendering.
One may also filter and annotate data. It supports
a wide variety of input data formats and is
available for a wide variety of platforms (except
Mac). Volview is one of the few packages (other
than 3DVIEWNIX and CAVASS) that interface
with computer-aided design/computer-assisted man-
ufacturing (CAD/CAM) packages. VTK is freely
available as open source on a wide variety of
platforms. It is not specifically oriented towards
medical image processing or medical visualization
but it can be used to develop such applications if one
is a software developer with solid C++ and Tcl/Tk
experience. As a toolkit, no user interface (let alone

CAVASS: A COMPUTER-ASSISTED VISUALIZATION AND ANALYSIS SOFTWARE SYSTEM 103

http://www.compgeomco.com/
http://www.compgeomco.com/

one tailored to image processing or medical
imaging) is provided. It does not include any
medical image processing or visualization appli-
cations either. It would require a great deal of
effort to use VTK as the basis of CAVASS
because none of the existing 3DVIEWNIX
applications would be directly transferable into
its framework and, therefore, would have to be
rewritten. Furthermore, because VTK does not
provide a multidimensional (and multimodality)
user interface dedicated to medical imaging and
visualization as 3DVIEWNIX currently does, this
would have to be developed as well. VXL is an
open-source C++ library that grew out of Tar-
getJr and Image Understanding Environment. It is
primarily oriented towards the analysis of 2-
dimensional surveillance satellite imagery with
the goal of inferring 3-dimensional geometry.
3DSlicer is an open-source, freely available
application for the analysis and display of 3-
dimensional medical imagery. It also includes
basic automatic registration and semiautomatic
segmentation capabilities. It is primarily designed
to be used for surgical planning.
Other recently introduced systems include the

Medical Imaging Interaction Toolkit,9 another
system by the same name,10 and Image-Guided
Surgery Toolkit.11 The Medical Imaging Interac-
tion Toolkit9 and the Medical Imaging Toolkit10

are similar and independent open-source systems
that reuse and extend the capabilities of VTK and
ITK. The Image-Guided Surgery Toolkit11 is an
open-source software library that provides the
basic components needed to develop image-guided
surgery applications, providing functionality for
tracking, reading, registering, and calibrating
images based on the programs available in ITK
and VTK. There is a dichotomy between commer-
cial and noncommercial software systems. Because
the availability of source in an open manner is of
primary consideration for the theme of this paper,
feature-filled and otherwise excellent commercial
packages such as Analyze and IDL do not enter
into our further discussion.
In the noncommercial group, considering the

features as already discussed, the most prominent
candidates that remain are 3DVIEWNIX, ITK,
VTK, and 3DSlicer. VTK and 3DSlicer are not
strong in image processing, manipulation, and
analysis. ITK on the other hand is very rich in
image processing functions but has no functions

for visualization, manipulation, and analysis. Fur-
thermore, it only caters to sophisticated software
developers. 3DVIEWNIX has its own limitations.
Although it has a variety of functions under
image processing, ITK is by far richer in this
category. On the other hand, many important
image processing functions that are in 3DVIEW-
NIX and that have been of proven utility, such as
shape-based interpolation,38,39 digital surface de-
tection (in n-dimensions),49 live-wire segmenta-
tion,12,13 MR image intensity standardization,14 and
various local scale-based processing strategies,15–19

are not in ITK. The visualization tools in
3DVIEWNIX are as rich and efficient as in any
(commercial/noncommercial) system. It has a
rich collection of structure manipulation tools,
including the ability to cut, move, reflect, and re-
edit in 3-dimensional space structures defined in
both hard and fuzzy manner. In addition to the
common intensity-based and geometry-based
analysis tools, it has advanced tools to analyze
the morphology, architecture, and kinematics of
object systems.
From our review and experience in developing

CAVA software and in using (and contributing to)
ITK, we conclude that there are four main groups
of limitations that exist in open-source software for
CAVA currently. (1) Lack of comprehensiveness:
There simply is no software (open-source or
otherwise) currently that covers all elements
(image processing, visualization, manipulation,
and analysis) of CAVA comprehensively. There
are no systems that provide the basic functional
support needed to realize inexpensive stereoscopic
visualization and user interaction with such dis-
plays in a portable manner. (2) Lack of ease of use:
Current systems should cater to such diverse users
as CAVA technology developers, CAVA applica-
tion developers, and users of CAVA in clinical
research. (Open-source software activities are not
suited for clinical end users of CAVA for day-to-day
patient care due mainly to the safety, legal, and
financial issues related to patient care.) (3) Lack of
speed: Both interactive and noninteractive operations
fall short of the speed needed to make many CAVA
applications practical, from future considerations and
at present, especially when dealing with large data
sets. (4) Interfaceability with other systems (such as
ITK). Our design goal for CAVASS is to overcome
all of these limitations in a system that is useable by a
wide variety of different users.

104 GREVERA ET AL.

METHODS

CAVASS is an open-source system written
entirely in C/C++ and is based on our years of
experience with 3DVIEWNIX. It encompasses
four groups of operations: image processing
(including region of interest, interpolation, filter-
ing, segmentation, registration, morphological
operations, and algebraic operations), visualization
(including slice, reslice, maximum intensity pro-
jection, surface rendering, and volume rendering),
manipulation (for surgical planning and simula-
tion), and analysis (various methods for extracting
quantitative information).
CAVASS shares a single code base for all

Windows, Unix, Linux, and Mac platforms by
employing the portable, open-source wxWidgets
library. wxWidgets is unique in that it provides a
single API across all platforms while maintaining the
native look and feel of each. This allows CAVASS to
have a single code base for all platforms rather than
separate code bases for each platform (which makes
development and updates much more difficult).
CAVASS also employs the open source local-area
multicomputer (LAM) implementation of the mes-
sage passing interface (MPI) parallel-processing
standard. LAM MPI is part of the Linux distribution
and is freely available for Unix, Mac, and Windows
as well. CAVASS also integrates with popular
toolkits such as ITK and VTK.
CAVASS retains much of the architecture of

3DVIEWNIX, which has proven to be very

effective, efficient, and easy to maintain and
expand (see Fig. 1). The program libraries are
compartmentalized into four groups: (1) data inter-
face, (2) graphical interface, (3) process interface,
and (4) and CAVA functions. In the interest of
brevity, only groups 1 and 4 will be described in
detail. CAVA functions are further divided into
four groups according to the four elements of
CAVA: (a) image processing, (b) visualization,
(c) manipulation, and (d) analysis. One may de-
velop their own applications based on these
libraries. In addition to these libraries, CAVASS
also provides a sophisticated GUI, which, together,
form a complete suite of medical imaging applica-
tions. The GUI is menu-driven with such main items
as Preprocess, Visualize, Manipulate, and Analyze,
as well as Port Data, which allows data to be ported
into and out of CAVASS. In addition to DICOM
support (as illustrated in Fig. 2), CAVASS also
supports an n-dimensional generalization of the
DICOM standard, as well as popular CAD/CAM
formats such as stereo lithography (STL) (for the
biomechanical analysis) and image format standards
such as TIFF, PNM, and VTK.

Data Interface

The data interface library in 3DVIEWNIX7,20 is
designed for a data representation protocol, which
is a generalization and an extension of the 2-
dimensional DICOM standards. The data interface
library contains functions for reading and writing

Fig 1. The architecture of CAVASS.

CAVASS: A COMPUTER-ASSISTED VISUALIZATION AND ANALYSIS SOFTWARE SYSTEM 105

the various types of data handled in 3DVIEWNIX.
DICOM21 is a communication and representation
standard for 2-dimensional images. In its current
form, it cannot represent 3-dimensional and higher-
dimensional image data as a single entity. Also, it has
not dealt with issues related to the representation of
nonimage data such as surfaces. In view of these
lapses, we spent a considerable amount of time in the
early phase of the design of 3DVIEWNIX on
devising a multidimensional extension and general-
ization of DICOM. The data interface manual of
3DVIEWNIX20 describes this generalization and all
data types handled in 3DVIEWNIX in great detail.
Because the generalization has been found to be
very satisfactory, we adopted this in the develop-
ment of CAVASS. There are three types of data
handled by CAVASS: SCENE data, STRUCTURE
data, and DISPLAY data. There are multiple
subtypes under each category. The SCENE data
type represents n-dimensional images—scalar, vec-
tor-valued, or binary with a regular (rectangular
grid) or arbitrary sampling scheme. The STRUC-
TURE data type represents multidimensional non-
image structure information usually derived from
SCENE data. These may be hard or fuzzy bound-
aries, represented by curves, digital surfaces of
various forms, triangulated surfaces, or shells. There

is a particular subtype of STRUCTURE data, which
is very powerful and has been found to be useful in
a variety of applications. This type allows us to
represent a structure system, which is a collection of
structures, in a manner that is very useful for its
visualization and analysis. The structure system
may contain any combination of rigid, deformable,
static, and dynamic objects. The structure system is
essentially a computer representation of an object
(organ) system in the body. In the case of dynamic
and deformable objects, multiple time samples of
the objects are represented in the structure system or
appropriate transformations (in the case of rigid,
dynamic objects) are stored. When a structure
system is rendered, the variable character of the
objects is also portrayed – static objects remain
static, dynamic objects are rendered with the
dynamics – the adequacy of the time component
of the portrayal depending on the speed of the
rendering algorithm and of the host computer.
Finally, the DISPLAY data type constitutes a visual
representation of any information in the form of a
picture ready to be displayed. This includes such
subtypes as screen shots, rendered images, and
movie sequences. Because the data types have been
found to be very satisfactory and useful, we
continue to utilize them in CAVASS.

Fig 2. An example of the CAVASS DICOM header browser (sample DICOM image from http://www.agfa.com/en/he/support/
doc_library/dicom/adc_dicom_images/index.jsp).

106 GREVERA ET AL.

http://www.agfa.com/en/he/support/doc_library/dicom/adc_dicom_images/index.jsp
http://www.agfa.com/en/he/support/doc_library/dicom/adc_dicom_images/index.jsp

In addition to supporting the DICOM file
formats (both import and export), 3DVIEWNIX
(and, hence, CAVASS) supports other common
image file formats such as raw unformatted data,
GIF, JPEG, TIFF, and PGM. Additionally,
3DVIEWNIX has been used to export structural
data to CAD/CAM packages such as Fluid (for
computational fluid dynamics) andAbaqus (for finite
element modeling) via its ability to create files in the
STL format. CAVASS also supports these formats.
In addition, it also supports Matlab, Analyze, and
Mathematica formats.
Rather than reinventing the wheel with regard to

DICOM networking/image query and retrieve
capability, CAVASS integrates with commonly
available DICOM networking software such as the
SimpleDICOM receiver (http://www.radiology.
upmc.edu/software.html), which is available from
the University of Pittsburg Department of Radiol-
ogy (for the Windows platform only) or the
Conquest DICOM server (http://www.xs4all.
nl/%7Eingenium/dicom.html), which is available
for both Windows and Linux with source code.
Other options include the eFilm work station
package (http://www.efilm.ca/), which includes a
DICOM server (version 1.5.3 was the last free
version), and DCMTK (dicom.offis.de/dcmtk.php.
en), which is freely available for Linux, Unix, and
Windows with source code.

CAVA Functions

Image Processing

The key image processing operations commonly
employed in CAVA are interpolation, filtering,
registration, segmentation, and miscellaneous other
operations. The image processing operations in-
cluded in CAVASS may be divided into the
following seven groups. We will use I=(I, f) to
denote an (n-dimensional) image where I is the
image domain, which is a rectangular array of
volume elements (voxels), and f is an intensity
function that assigns to each voxel v in I an in-
tensity value f (v). f (v) is usually scalar-valued, but
it may also be vectorial. In the following descrip-
tion, we assume that Ii=(Ii, fi) and Io=(Io, fo)
denote input and output images, respectively.

1. Volume of interest: These operations are such
that Io⊆Ii and fo is a restriction of fi to Io. Io

may be selected interactively or by automatic
means. The aim of these operations is to make
subsequent operations more efficient and effective.

2. Interpolation: In these operations, the voxels in
Io can be of any size relative to those in Ii and
both may be gray or binary images; fo is some
interpolant of fi.

3. Filtering: The meaning of the term “filtering” is
extremely variable as used in the literature. We
consider filtering to be any operation such that
Io=Ii, Io and Ii are both either gray or binary,
and the intensities in Io are modified from those
in Ii. Operations that come under this category
are image enhancement, noise/artifact suppres-
sion, and morphological and certain topological
operations.

4. Segmentation: In these operations, the output is
a binary or a gray image such that Io=Ii and
fo(v) for v∈Io indicates the degree of member-
ship of v in the object of interest. Alternatively,
the output may also be a hard or fuzzy surface,
which represents the boundary of the object.

5. Registration: These operations take two inputs,
either images Ii1 and Ii2 or surfaces Si1 and Si2
and produce in the respective cases an image
Io=T(Ii2), which matches with Ii1 or a surface
So=T(Si2) that matches with Si1, where T is a
geometric transformation. T may be a rigid (six-
parameter), affine (9–12-parameter), or defor-
mation (hundreds to thousands of parameters)
transformation.

6. Image algebra: These operations take generally
two input images, either of which may be gray
or binary and produce an output gray or binary
image. A variety of operations, such as addition,
subtraction, multiplication, division, inverting,
and certain types of algebraic expressions
involving the input images, are permitted.

7. Miscellaneous: These operations allow convert-
ing one structure (surface) representation to
another, structure-to-image representation,
merging different structures into a single struc-
ture system, editing DISPLAY data for creating
demos, annotation operations, etc.

Visualization

Our work on the surface rendering method of
visualization dates back to the early days of CT
and MR imaging.1,22–24 We have devised digital

CAVASS: A COMPUTER-ASSISTED VISUALIZATION AND ANALYSIS SOFTWARE SYSTEM 107

http://www.radiology.upmc.edu/software.html
http://www.radiology.upmc.edu/software.html
http://www.xs4all.nl/%7Eingenium/dicom.html
http://www.xs4all.nl/%7Eingenium/dicom.html
http://www.efilm.ca/
http://dicom.offis.de/dcmtk.php.en
http://dicom.offis.de/dcmtk.php.en

surface rendering algorithms25 that run on PCs 16–
31 times faster than methods based on rendering
triangulated surfaces by using hardware rendering
engines26 and take about an order of magnitude
less storage space. The simplicity and efficiency of
these algorithms afforded by the simplicity of the
geometry of digital surfaces can also be extended
to triangulated surfaces and thereby achieve an 8–
10-fold speedup in software on PCs over hardware
rendering engines if the triangles are embedded in
a digital grid, as in the output produced by the
Marching Cubes family27 of algorithms. This also
affords compact storage of such surfaces. Due to
this computational/storage efficiency, the need for
triangle decimation methods currently pursued to
reduce the number of triangles in the surface for
overcoming computational bottlenecks is obviated.
For volume rendering, we developed a paradigm

called shell rendering.28 The basic idea of this
approach is to represent tissue interfaces as shells
and do volume rendering by projecting voxels in
the shell in a back-to-front or front-to-back order
onto the projection plane and performing, in the
process, the basic operations of volume rendering,
such as reflection, emission, and transmission. In
one extreme, the shell may be very thin, just one
voxel thick, in which case shell rendering reduces

to the digital surface rendering method referred to
above. In another extreme, the shell may include
the whole foreground of a 3-dimensional image. In
practice, the thickness of the shell is in between the
two extremes. Recently, a method of volume
rendering that has become popular is shear-warp
rendering.29 Like shell rendering, the shear-warp
method can be used in both surface and volume
mode. The speed of its surface mode is about the
same as that of shell rendering in surface mode, but
its volume mode is faster (about two times) than
shell rendering,30 although the shear-warp method
requires about six to eight times more storage
space than shell rendering. We have developed a
new method, called shear-warp shell rendering,
which combines the advantages of both methods30

to achieve the speed of shear-warp and storage
efficiency close to that of shell rendering. Figures 3
and 4 demonstrate overlaid slice display and t-shell
surface rendering in CAVASS on the Windows
operating system.

Manipulation

One of the earliest papers to suggest the use of
structure information derived from images for sur-
gery planning was that of Udupa.31 3DVIEWNIX

Fig 3. Example of overlaid slice display in CAVASS on the Windows operating system.

108 GREVERA ET AL.

contains extensive tools for manipulating (cut-
ting, separating, mirror reflecting, moving, or
repositioning) structures interactively, all imple-
mented without depending on specialized hard-
ware, and to carry out these manipulative
operations on structures defined in a hard, as well
as a fuzzy, manner.25,32

Analysis

An early paper on the estimation of volume
enclosed by and the area of a surface is another by
Udupa.33 Recently we have demonstrated that the
volume enclosed by triangulated surfaces can also
be estimated in the same simple way by table
lookup as done for digital surfaces.34 We have
published methods to compute linear, curvilinear,
and angular measurements on the surface or by
utilizing landmark points on surfaces observable in
their renditions.3 Methods are also implemented in
3DVIEWNIX for various intensity-based mea-
sures.6 We have developed methods for higher-
level analysis of object systems by describing the
morphology of individual objects through mor-
phological parameters, the interrelationship among
objects through parameters describing the archi-
tecture of the object system, and the way this
interrelationship changes when the objects move
through kinematic parameters.35–37

Parallelizing Key Operations in CAVASS

Before we set out to develop parallel imple-
mentations of key algorithms, we first devised an
experiment to determine the need for such algo-
rithms operating on data sets of common, practical
sizes. We know that if we are given an image of
high resolution, size, dimensionality, and pixel
depth, then many computationally intensive algo-
rithms are choked. We argue that we are already at
a stage where it is just impractical to carry out
some computationally intensive CAVA operations
on top-of-the-line work stations and PCs with
sequential algorithms. To justify this argument, we
list in Table 1 the processing time for both
3DVIEWNIX and ITK for some key CAVA
operations for (scalar) images of two sizes. The
platform on which this was performed was a 2-
GHz Pentium PC with 1 GB of RAM and 4 GB of
swap-space running version 2.4 of Linux. In all
cases, the images had 16 bits/pixel. The interpola-
tion operation here created (from a size 512×512×
193 input image) an output image whose sizes
were, respectively, 512×512×296 and 1,023×
1,023×591 for the two cases. (The larger image
size simply choked – indicated by “error” – both
systems.) Blanks indicate that the operation was
not tested. NA stands for “not available.” Although
this is not at all the main point we wish to make

Fig 4. Example of triangulated shell (t-shell) rendering in CAVASS on the Windows operating system.

CAVASS: A COMPUTER-ASSISTED VISUALIZATION AND ANALYSIS SOFTWARE SYSTEM 109

from Table 1, note that the 3DVIEWNIX oper-
ations are more efficient than those of ITK. The
lower efficiency of ITK is mainly due to its
generality (often 2-dimensional and 3-dimensional
images treated as n-dimensional), its class inheri-
tance overhead, code developed at multiple cen-
ters, etc. In CAVASS, we keep the same level of
emphasis on efficiency as in 3DVIEWNIX.).
From the perspective of the ease of paralleliz-

ability, CAVA operations may be divided into
three groups, which we will call type 1, type 2, and
type 3. Our general approach to parallelized
implementation of key CAVA operations is to
perform what we call chunking. A chunk is the
data contained in a contiguous set of slices. A
chunk may represent SCENE or STRUCTURE
data. In the former case, it represents a set of
contiguous slices of the given image. In the latter
case, it represents structure data contained in a
contiguous set of slices.

Parallelizing Type 1 CAVA Operations

There are many operations in CAVA, which
work, or, which can be made to work, in a more-
or-less “slice-by-slice”, and hence in a “chunk-
by-chunk”, manner. In these operations, a slice
(or chunk) worth of data needs to be accessed
only once to complete the operation (or to
complete one iteration of the operation) and
produce the final output. Such operations are
labeled type 1. Examples of such operations are

image gray level slice interpolation methods
(linear, spline-based methods),38 shape-based
(binary as well as gray-level) interpolation,38–42

image-based registration (via mutual information/
correlation),43,44 diffusive filtering,45–47 inhomo-
geneity correction,48 all nonuser-steered slice-by-
slice segmentation methods (such as clustering
techniques), nonconnected isosurface detection,
and structure manipulation.25,32 The method of
processing for type 1 operations may be summa-
rized as follows:
Begin

Step 1 Divide the given image Ii into chunks.
Step 2 Assign the next set of chunks to be

processed to the processors; one chunk
per processor.

Step 3 In each processor, carry out the type 1
operation on the chunk assigned to it and
send its result to the master processor.

Step 4 If there are chunks remaining to be
processed, go to step 2.

Step 5 Else assemble results from all processors and
output the resulting image Io or structure.

End
The effect of parallelization here comes from

step 3. In the above algorithm, the number of times
the loop from step 2 to step 4 is executed depends
on the size of Ii, the number of processors
available, and the RAM on each processor. In this
manner, load balancing is achieved automatically
and there is no limit on the size of Ii that can be

Table 1. Processing Time (in Seconds) for Some Key Operations in CAVASS and ITK

Operation

512×512×296 1,023×1,023×591

CAVASS ITK CAVASS ITK

Interpolation (trilinear) 10 319 96 2,530
Filter (3D median) 54 310 517 3,480
Image algebra (difference) 16 52 211 896
Threshold 5 22 51 396
Reslice 14 323 410 2,668
Isosurface creation (digital58) 10 NA 129 NA
Isosurface creation (triangles) (http://www.gimp.org; rsb.info.nih.gov/ij/) 12 NA Error NA
Distance transform (3D) 66 1,766 Error Error
Registration (correlation) 679 330,336 Error Error
Registration (mutual information) (http://www.javasoft.com) 3,410 Error Error Error
Fuzzy connectedness segmentation (http://www.compgeomco.com) 357 840 Error Error
Volume rendering (http://www.khoral.com) 1 NA 4 NA
Surface rendering (http://www.wolfram.com) 1 NA 1 NA
Structure manipulation (http://www.wolfram.com) 1 NA 1 NA

110 GREVERA ET AL.

http://www.gimp.org
http://rsb.info.nih.gov/ij/
http://www.javasoft.com
http://www.compgeomco.com
http://www.khoral.com
http://www.wolfram.com
http://www.wolfram.com

handled irrespective of the number of processors
available.

Parallelizing Type 2 CAVA Operations

There are other CAVA operations, which work
(chunk-by-chunk) in the above sense, but some
further operation is needed to combine the outputs
produced by the chunks to yield the final output.
Such operations are labeled type 2. These are more
difficult to parallelize and implement than type 1
operations. Examples of such operations are
various surface- and volume-rendering methods,
particularly those that use some sort of a front-
to-back or back-to-front splatting/projection strat-
egy, such as shell and shear-warp rendering
methods.25,28–30

Parallelizing Type 3 CAVA Operations

We label those CAVA operations that require
each slice/chunk to be accessed more than once to
complete the operation as type 3. These can be
more difficult than type 1 and type 2 operations to
parallelize the implementation. These operations
can be characterized by graph traversal methods.
The number of times a slice (chunk) is accessed
depends on the shape of the objects represented in
the image and on the orientation of the slices with
respect to the objects. Examples of such operations
are connected isosurface detection,49–51 connected
object segmentation in a hard or fuzzy man-
ner,52–62 and optimal path (graph cut) and fast
marching (level set) methods of segmentation.63,64

In connected isosurface detection,49,50,65 for ex-
ample, the average number of accesses of an axial
slice in a 3-dimensional image of the human body
is typically in the range 1.5–1.8.
A general parallelization scheme for type 3

operations is outlined below. The algorithm uses
a queue Qj (optionally) a list Lj associated with
each chunk I

j
i of the input image Ii. In the

algorithm, π is a predicate whose exact form
depends on the particular type 3 operation with
which we are dealing.
Begin

Step 1 Divide the given image Ii into chunks
I
j
i ; j ¼ 1; :::;N .

Step 2 Initialization. A set of voxels is identified
for initializing the underlying type 3

operation. These voxels are placed in the
queues associated with the chunks to
which they belong.

Step 3 While any of the queues Qj, j=1,..., N, is
not empty, do steps 4–7.

Step 4 Find a free processor Pj and load it with I
j
i

and Qj and Lj.
Step 5 While Qj is not empty, Pj executes steps

6–7.
Step 6 Remove a voxel v from Qj, evaluate π(v),

and place v in Lj, perform appropriate
output operations.

Step 7 If π(v) is true, place the appropriate
neighbors of v in the queues they belong
to if they are not already in their desig-
nated lists.

Step 8 Combine all outputs from all processors to
output Io or the output structure.

End
In the above algorithm, parallelism is achieved

via steps 4–7. It is the task of the master processor
to keep a watch on the processors whose queues
become empty and who therefore may become
idle. A processor may be activated because there
are chunks whose queues are not empty. The entire
process stops at a point when all queues become
empty. In steps 6–7, the exact nature of the
operations depends on the specific type 3 operation
being implemented. Step 7 also calls for interpro-
cessor communication, which can be handled in
several ways to keep it efficient. The method we
have implemented is to allow one slice overlap
between neighboring chunks and in the associated
Qj and Lj.

Algorithms for Parallelization

Our aim in CAVASS is to parallelize the
implementation for the following 10 groups of
key CAVA operations: gray-level slice interpola-
tion, shape-based interpolation, image-based reg-
istration (via mutual information, correlation),
diffusive filtering (scale-based and non-scale-
based), inhomogeneity correction (scale-based),
structure manipulation (hard and fuzzy25,32), sur-
face and volume rendering (via shell and shear-
warp techniques), connected isosurface detection
(both digital and triangulated), and fuzzy connect-
edness segmentation. Another area where parallel-
ism can be employed is in stereo rendering for

CAVASS: A COMPUTER-ASSISTED VISUALIZATION AND ANALYSIS SOFTWARE SYSTEM 111

display. We modified the CAVASS surface/vol-
ume rendering implementation to render from not
one but two different points of view (one for each
eye) for each given position of the projection
plane. Typically, the angle between the two nearby
viewpoints is about 4°. In CAVASS, we leave this
number as a parameter whose value can be
modified according to an individual’s vision
characteristics. The graphics interface library and
the GUI was modified to handle these stereo display
hardware devices. Library functions were also
developed to support all necessary interactions with
the stereo display, including pointing to locations on
the structures in their surface/volume renditions (we
have previously published such algorithms25,28),
interactively performing curved cuts, repositioning
of segments, and making linear, angular, and
curvilinear measurements interactively.

Parallel Implementation

Parallel algorithms are implemented in CAV-
ASS using the MPI/OpenMPI standard, which is
commonly and freely available for Linux, Unix,
Mac, and Windows. MPI or OpenMPI should not
be confused with MP or Open Specifications for
Multi Processing (OpenMP) (http://www.llnl.gov/
computing/tutorials/openMP/#Introduction,
OpenMP; http://www.openmp.org/drupal/).
OpenMP is a parallel processing standard for
“multi-threaded, shared memory parallelism.”
(http://www.llnl.gov/computing/tutorials/openMP/
#Introduction, OpenMP) OpenMP requires special
compilers that recognize compiler directives em-
bedded in the source code to control parallelism.
Furthermore, “OpenMP is not meant for distribut-
ed memory parallel systems.” (http://www.llnl.
gov/computing/tutorials/openMP/#Introduction,
OpenMP) Typically, OpenMP systems are expen-
sive, tightly coupled, shared memory multiproces-
sor systems (MPS), such as the SGI Origin
systems or the new SGI Altix 4700, which
“supports up to 512 processors under one instance
of Linux and as much as 128TB of globally shared
memory” (http://www.sgi.com/products/servers/
altix/4000/). Our approach uses inexpensive, com-
monly available “commodity” work stations/PCs.
In particular, our cluster of work stations (COW)
consists of six single-process systems (Dell single
process 3.6-GHz Pentium systems with 3 GB RAM,
hyperthreading enabled, Linux operating system

version 2.6.9-1.667smp) interconnected by an
inexpensive 1-gigabit (Gb) switch (Dell Power-
Connect 2608, an 8-port 1-Gb Ethernet switch).
Another area where parallelism can be employed

is in stereo rendering for displays such as those
shown in Figure 5 (i-glassesonline.stores.yahoo.net/
iglassespc-3d.html). The CAVASS stereo surface/
volume rendering implementation renders from not
one but two different points of view (one for each
eye) for each given position of the projection plane.
Typically, the angle between the two nearby view-
points is about 4°. In CAVASS, this number is a
parameter whose value can be modified according
to an individual’s vision characteristics. The
graphics interface library and the GUI handle stereo
display hardware devices such as the one in
Figure 5. Library functions support all necessary
interactions with the stereo display, including
pointing to locations on the structures in their
surface/volume renditions (we have previously
published such algorithms49,50), interactively
performing curved cuts, repositioning of segments,
and making linear, angular, and curvilinear meas-
urements interactively.

An Interface to ITK

We provide access to ITK within the GUI of
CAVASS. In this manner, from the user’s perspec-
tive, all ITK algorithms appear to be incorporated
into CAVASS. A working example of the integra-
tion of a portable CAVASS prototype GUI with
ITK was developed. Platform-independent software
loads two SCENE files and displays these files. The
user is allowed to change various parameters of
Thirion’s Demons deformable registration algo-
rithm66 as implemented in ITK. Once these
parameters have been specified (or the default
values are found to be acceptable), CAVASS
executes the ITK registration algorithm. Results of
the registration process are then provided to the
user by CAVASS as an output SCENE file.

Portable User Interface

To implement a portable GUI, we considered Qt
(http://www.prolltech.com), wxWidgets (formerly
called wxWindows) (wxWidgets.org),67–69 and
Fast Light Tool Kit (FLTK) (http://www.fltk.org).
Qt was eliminated from further consideration as it
is proprietary/closed and requires fees [$2,330 for

112 GREVERA ET AL.

http://www.llnl.gov/computing/tutorials/openMP/#Introduction, OpenMP
http://www.llnl.gov/computing/tutorials/openMP/#Introduction, OpenMP
http://www.llnl.gov/computing/tutorials/openMP/#Introduction, OpenMP
http://www.openmp.org/drupal/
http://www.llnl.gov/computing/tutorials/openMP/#Introduction, OpenMP
http://www.llnl.gov/computing/tutorials/openMP/#Introduction, OpenMP
http://www.llnl.gov/computing/tutorials/openMP/#Introduction, OpenMP
http://www.llnl.gov/computing/tutorials/openMP/#Introduction, OpenMP
http://www.llnl.gov/computing/tutorials/openMP/#Introduction, OpenMP
http://www.sgi.com/products/servers/altix/4000/
http://www.sgi.com/products/servers/altix/4000/
http://i-glassesonline.stores.yahoo.net/iglassespc.html
http://i-glassesonline.stores.yahoo.net/iglassespc.html
http://www.prolltech.com
http://wxWidgets.org
http://www.fltk.org

one developer on a single platform (ie, Unix,
Windows, or Mac OS); $4,660 for one developer
on three platforms]. FLTK and wxWidgets both
provide a common C++ API that one may use to
develop portable GUIs. Both are freely available
on a variety of platforms, are open-source, support
OpenGL, and drag and drop and cut and paste in a
platform-independent manner. Choosing between
FLTK and wxWidgets is not simple, but we feel
that wxWidgets is superior because it endeavors to
maintain the native look and feel of the platform on
which it is running. Furthermore, only wxWidgets
supports printing in a platform-independent man-
ner. For these reasons, we chose wxWidgets for
implementing the GUI in CAVASS.

RESULTS

Many algorithms have already been imple-
mented and tested in CAVASS. For example,

interpolation of anisotropic data to isotropic data
is a common medical imaging task. We did
extensive comparisons on a variety of CAVA
operations (type 1 and type 3) in both sequential
and parallel modes in various configurations of
the COW on a variety of data sets (Table 2). We
also compared the speed of these operations as
implemented in ITK in sequential mode and
parallel mode (when available). The parallel
implementations in ITK are in the MPS environ-
ment. Because MPS are very expensive, we
acquired a dual-processor MPS for testing purpo-
ses only. Therefore, to make the comparison fair,
in such instances, the COW was configured with
only two single-processor CPU work stations. Our
results are summarized in Table 3.
We note that considerable speed differences

exist between CAVASS and ITK for the image
processing operations. We attribute the higher
speed of CAVASS to several factors. First, many
of the implementations in ITK are very general on

Table 2. Description of Data Sets of Varying Sizes used in the Comparisons

Data Set Name Voxel Size (mm) Image Size Data Size (MB)

Regular 0.98×0.98×3.00 256×256×46 6
Large 0.68×0.68×1.50 512×512×459 241
Super 0.24×0.24×0.50 1,023×1,023×417 873

Fig 5. Head-mounted display employed by CAVASS for stereo viewing.

CAVASS: A COMPUTER-ASSISTED VISUALIZATION AND ANALYSIS SOFTWARE SYSTEM 113

various counts, such as image dimensionality,
number of bits per pixel, and scalar versus
vectorial. In CAVASS, we went for generality to
the extent it is needed and in most common use.
Second, implementations in CAVASS (many of
which come from 3DVIEWNIX) are more tightly
monitored, being an effort within a single group.
Third, in ITK, because of its openness, and contri-
butions of implementations coming from around the
world, testing and optimization become really
challenging.
The times reported in Table 3 represent the total

operational time for each listed CAVA operation.
Some of these operations include a mix of type 1 and
type 3 algorithms in addition to other housekeeping
operations such as input/output. We may note that,
for pure type 1 operations (interpolation, scale
computation), we achieve a speedup factor of 0.65–
1.8 for parallelization. Here, the speedup factor is
defined as ts/(tpnp), where ts and tp are the time
taken for the sequential and parallel implementation
of the same operation, and np is the number of
processors used in parallel implementation. This
factor is, quite understandably, lower, 0.56, for pure
type 3 operations (eg, fuzzy connectedness).
Among the operations listed in Table 3, registration
is the most time consuming. In these operations,
normalized mutual information was used to register
the two images. The second image was created from

the first by applying a known (rigid or affine)
transformation. The speedup factor achieved in this
instance is excellent. With a COW of about 10 PCs,
therefore, we can expect to complete a 12-parameter
affine registration of extremely large data sets in
about 30 min. Parallelized deformable registration is
currently being implemented in CAVASS.
The two major volume visualization methods of

surface rendering and volume rendering have also
been implemented and tested in CAVASS. We
compared the implementations of sequential t-shell
surface rendering (an example appears in Fig. 4)
implemented entirely in software in CAVASS with
hardware-assisted surface rendering using the
Marching Cubes method as implemented in VTK
(using the vtkImageMarchingCubes class). We
also compared sequential and parallel volume
rendering implemented entirely in software in
CAVASS with two methods of volume rendering
(ray casting and 2-dimensional texture mapping)
implemented in VTK (using the vtkVolumeRay-
CastMapper and vtkOpenGLVolumeTextureMap-
per2D classes, respectively). The timing results in
seconds per frame were obtained by applying the
various visualization techniques to three data sets
of varying sizes (regular, large, and super) as
shown in Table 2. Results for sequential surface
rendering and parallel and sequential volume
rendering appear in Tables 4 and 5, respectively.

Table 3. Time in Seconds for the Various Operations for the Regular (6 MB), Large (241 MB), and Super (873 MB) Image Data Sets

Operation System

Regular (DS1) Large (DS2) Super (DS3)

Seq Parallel Seq Parallel Seq Parallel

Interpolation
ITK 2.9 1.7 87.7 62.8 [2] Failed Failed
CAVASS 0.6 1 [2] 54.9 14.9 [2] 139.1 49.2

Anisotropic diffusive filtering
ITK 57 2,026.6 Failed
CAVASS 52.7 1,664.2

Gaussian filtering
ITK 1.5 65.2 Failed
CAVASS 0.4 18.3 83

Distance transform
ITK 10.5 473.7 Failed
CAVASS 18.7 916.5 3,882.4

Thresholding
ITK 0.3 11.4 340.6
CAVASS 0.1 2.7 20.2

Fuzzy connected segmentation
ITK 108.4 Failed Failed
CAVASS 49.5 17.8 843.7 298.6 [5] Failed 1,312.6 [5]

Registration (rigid)
ITK 57.2 Failed Failed
CAVASS 56.1 8.6 [5] 1,860.6 301.6 [5] 3,863.4 1,089.1 [5]

Registration (affine—12 parameters)
ITK 208.3 Failed Failed
CAVASS 155.3 25.1 3,602.4 1,018.6 [5] 13,111 3,662.2 [5]

The number of processors used is indicated in square brackets in case of parallel operations. No entries indicate that the particular
operation was either not tested or not available.

114 GREVERA ET AL.

Table 4 shows that sequential CAVASS shell
rendering, entirely in software and without anti-
aliasing, was more than 8.5 times faster than
hardware-based rendering as implemented in
VTK for the largest data set (super) in our test.
With antialiasing, CAVASS shell rendering was
more than five times faster. For volume rendering,
Table 5 shows that the CAVASS implementation,
entirely in software, was faster than both ray
casting and 2-dimensional texture mapping as
implemented in VTK for both the regular and
large data sets. For the super data set, sequential
CAVASS volume rendering was slower than
volume rendering in VTK, but the parallel imple-
mentation of volume rendering in CAVASS was
almost twice as fast as ray casting in VTK.
Although VTK ray casting was able to render the
largest data set, 2-dimensional texture mapping as
implemented in VTK was unable to render the
largest data set after more than 240 s. This is likely
due to the limited amount of memory on the
graphics card. When we compare VTK ray casting
to VTK 2-dimensional texture mapping, we note
the trend that VTK ray casting is consistently
faster than VTK 2-dimensional texture mapping.
Because CAVASS parallel volume rendering is
consistently faster than both VTK ray casting and
VTK 2-dimensional texture, we conclude that,
even with additional video memory, CAVASS
parallel volume rendering would be faster than
VTK 2-dimensional texture rendering of the
largest data set.
All sequential tests were performed on a Dell

single-processor, 3.6-GHz Pentium system with
3 GB RAM and hyperthreading enabled under the
Linux operating system version 2.6.9-1.667smp.
The multithreaded tests were performed on a Dell
dual processor, 3.4-GHz Xeon system with 4 GB
of RAM and hyperthreading enabled under the
Linux operating system version 2.6.9-1.667smp.
The parallel visualization tests were performed on
a cluster of six single-processor systems (Dell

single processor, 3.6-GHz Pentium systems with
3 GB RAM and hyperthreading enabled under the
Linux operating system version 2.6.9-1.667smp)
interconnected by an inexpensive 1-Gb switch
(Dell PowerConnect 2608, an eight-port, 1-Gb
Ethernet switch). All systems had Nvidia Quadro
NVS280 PCIe 64-MB video cards.

CONCLUSIONS

We described CAVASS, a new open-source,
open-platform software system and the next
incarnation of the previously established and
widely distributed 3DVIEWNIX software system.
We demonstrated the extremely efficient imple-
mentation of algorithms in sequential and parallel
modes on COWs in CAVASS. CAVASS is the
only freely available, open-source image process-
ing, analysis, and visualization software system for
multidimensional medical imagery that incorpo-
rates other open-source toolkits and provides for
the efficient and parallel implementations of
important algorithms. With regard to such com-
mon image processing tasks as interpolation,
anistropic diffusive filtering, Gaussian filtering,
thresholding, fuzzy connected segmentation, rigid
registration, and affine registration, CAVASS
sequential implementations were shown to be as
much as 4.8, 1.2, 3.8, 4.2, 2.2, 1.0, and 1.3 times
faster, respectively, than ITK sequential imple-
mentations. The only exception was the distance
transform where the ITK implementation was as
much as 1.9 times faster than the CAVASS
implementation. With regard to parallel interpola-
tion, CAVASS was as much as 4.2 times faster
than ITK parallel interpolation. CAVASS also
provides parallel implementations for fuzzy

Table 5. Volume Rendering Timing Comparison for Sequential
and Parallel Implementations of CAVASS Volume Rendering,
VTK Ray Casting, and VTK 2-Dimensional Texture Mapped

Volume Rendering

Data Set Name

CAVASS VTK

Sequential Parallel Ray Casting 2D Texture

Regular 0.56 0.06 1.09 1.20
Large 3.53 1.36 5.03 18.32
Super 9.77 3.66 6.94 9240.00

Table 4. Surface Rendering Timing Comparison for CAVASS
(Sequential Implementation with and without Antialiasing)

and Surface Rendering as Implemented in VTK

Data Set Name CAVASS seq/no aa CAVASS seq/aa VTK

Regular 0.03 0.06 0.29
Large 0.11 0.19 0.41
Super 0.16 0.26 1.38

CAVASS: A COMPUTER-ASSISTED VISUALIZATION AND ANALYSIS SOFTWARE SYSTEM 115

connected segmentation and rigid and affine
registration, whereas ITK does not. These parallel
implementations in CAVASS were shown to be 6.1,
6.7, and 8.3 times faster than the corresponding
sequential ITK implementations. CAVASS was also
able to deal with much larger data sets that made ITK
fail.
With regard to visualization, surface rendering

in CAVASS entirely in software was demonstrated
to be more than 8.5 times faster than hardware-
assisted surface rendering. For volume rendering,
we demonstrated that sequential volume rendering
in CAVASS entirely in software is faster for the
regular and medium data sets in our test, and for
the largest data set (super), parallel volume
rendering in CAVASS was almost twice as fast
as the fastest hardware-based method.
Finally, CAVASS may be used as a toolkit

library or as a complete set of applications with an
easy-to-use GUI that interfaces with other popular
data formats and toolkits.
CAVASS is available from http://www.mipg.

upenn.edu/~cavass.

ACKNOWLEDGEMENT

The authors gratefully acknowledge support for this work
from DHHS grant EB004395. Portions of this work were
previously published in Udupa et al.70 and Grevera et al.71,72

and appear here with permission.

REFERENCES

1. Udupa JK: DISPLAY—A System of Programs for Two-
and Three-dimensional Display of Medical Objects from CT
Data. Technical Report MIPG41, Medical Image Processing
Group, Department of Computer Science, SUNY/Buffalo,
Buffalo, 1980
2. Udupa JK: DISPLAY82—A System of Programs for the

Display of 3D Information in CT Data. Technical Report
MIPG67, Medical Image Processing Group, Department of
Radiology, University of Pennsylvania, Philadelphia, 1983
3. Chen LS, Herman GT, Meyer CR, Reynolds RA, Udupa

JK: 3D83—An easy-to-use software package for three-dimen-
sional display from computed tomograms. In: Proceedings of
IEEE Computer Society International Symposium on Medical
Images and Icons, Arlington, 1984, pp 309–316
4. Udupa JK, Herman GT, Margasahayam PS, Chen LS,

Meyer CR: 3D9S: A turnkey system for the display and
analysis of 3D medical objects. SPIE Proc 671:154–168, 1986

5. Robb RA, Hanson DP, Karwoski RA, Larson AG,
Workman EL, Stacy MC: ANALYZE: A comprehensive,
operator-interactive software package for multidimensional
medical image display and analysis. Comput Med Imaging
Graph 13:433–454, 1989

6. Udupa JK, Odhner D, Samarasekera S, Goncalves R, lyer
K, Venugopal K, Furuie S: 3DVIEWNIX: an open, transport-
able, multidimensional, multimodality, multiparametric imaging
software system. SPIE Proc 2164:58–73, 1994

7. Udupa JK, Hung HM, Odhner D, Goncalves R: Multidi-
mensional data format specification: A generalization of the
American College of Radiology National Electric Manufac-
turers Association Standards. J Digit Imaging 5(l):26–45, 1992

8. Ibanez L, Schroeder W, Ng L, Cates J: The ITK Software
Guide. New York: Kitware, 2003

9. Wolf I, Vetter M, Wegner I, Böttger T, Nolden M,
Schöbinger M, Hastenteufel M, Kunert T, Meinzer H-P: The
Medical Imaging Interaction Toolkit (MITK). Med Image Anal
9(6):594–604, 2005

10. Zhao M, Tian J, Zhu X, Xue J, Cheng Z, Zhao H:
Design and implementation of a C++ toolkit for integrated
medical image processing and analyzing. Proc SPIE 5367:39–
47, 2004

11. Gary K, Ibanez L, Aylward S, Gobbi D, Blake MB,
Cleary K: IGSTK: An open source software toolkit for image-
guided surgery. Computer 39(4):46–53, 2006

12. Falcao A, Udupa JK, Samarasekera S, Sharma S, Hirsch
BE, Lotufo R: User-steered image segmentation paradigms:
Live wire and live lane. Graph Models Image Process 60
(4):233–260, 1998

13. Falcao A, Udupa JK, Miyazawa FK: An ultra-fast user-
steered image segmentation paradigm: Live-wire-on-the-fly.
IEEE Trans Med Imag 19(1):55–62, 2000

14. Nyul LG, Udupa JK, Zhang X: New variants of a
method of MRI scale standardization. IEEE Trans Med Imag 19
(2):143–150, 2000

15. Saha PK, Udupa JK: Scale-based image filtering
preserving boundary sharpness and fine structure. IEEE Trans
Med Imag 20(11):1140–1155, 2001

16. Nyul LG, Udupa JK, Saha PK: Incorporating a measure
of local scale in voxel-based 3-D image registration. IEEE
Trans Med Imag 22(2):228–237, 2003

17. Souza A, Udupa JK, Saha PK: Volume rendering in the
presence of partial volume effects. IEEE Trans Med Imag 24
(2):223–235, 2005

18. Madabhushi A, Udupa JK, Souza A: Generalized scale:
Theory, algorithms, and application to image inhomogeneity
correction. Comput Vis Image Underst 101:100–121, 2006

19. Madabhushi A, Udupa JK: New methods of MR image
intensity standardization via generalized scale. Med Phys 33
(9):3426–3434, 2006

20. Udupa JK, Hung HM, Odhner D, Goncalves R: The
3DVIEWNIX Software System, Data Format Specification: A
Multidimensional Extension to the ACR-NEMA Standards.
Version 1.0. Technical Report MIPG177, Medical Image
Processing Group, Department of Radiology, University of
Pennsylvania, Philadelphia, 1991

21. National Electrical Manufactures Association (NEMA):
Digital Imaging and Communication in Medicine (DICOM)
Part 1: Introduction and Overview. Washington, DC: NEMA,
1993

116 GREVERA ET AL.

http://www.mipg.upenn.edu/~cavass
http://www.mipg.upenn.edu/~cavass

22. Altschuler MD, Censor Y, Eggermont PBB, Herman
GT, Kuo YH, Lewitt RM, McKay MR, Tuy H, Udupa JK,
Yau MM: Demonstration of a software package for the
reconstruction of the dynamically changing structure of the
human heart from cone-beam x-ray projections. J Med Syst 4
(2):289–304, 1980

23. Udupa JK: Display of 3-D information in discrete 3-D
scenes produced by computerized tomography. Proc IEEE
71:420–431, 1983

24. Herman GT, Udupa JK: Display of 3-D information in 3-
D digital images: Computational foundations and medical
applications. IEEE Comput Graph Appl 3:39–46, 1983

25. Udupa JK, Odhner D: Fast visualization, manipulation,
and analysis of binary volumetric objects. IEEE Comput Graph
Appl 11(6):53–62, 1991

26. Grevera GJ, Udupa JK, Odhner D: An order of
magnitude faster surface rendering in software on a PC than
using dedicated rendering hardware. IEEE Trans Vis Comput
Graph 6(4):335–345, 2000

27. Lorensen WE, Cline HE: Marching cubes: A high
resolution 3D surface construction algorithm. Comput Graph
21(4):163–169, 1987

28. Udupa JK, Odhner D: Shell rendering. IEEE Comput
Graph Appl 13(6):58–67, 1993

29. Lacroute P, Levoy M: Fast volume rendering using a
shear-warp factorization of the viewing transformation. In:
Proceedings of SIGGRAPH. New York: ACM Press, 1994,
pp 451–458

30. Falcao AX, Rocha LM, Udupa JK: Comparative analysis
of shell rendering and shear-warp rendering. SPIE Proc
4681:472–482, 2002

31. Udupa JK: Interactive segmentation and boundary
surface formation for 3-D digital images. Comput Graph Image
Process 18:213–235, 1982

32. Odhner D, Udupa JK: Shell manipulation: Interactive
alteration of multiple-material fuzzy structures. SPIE Proc
2431:35–42, 1995

33. Udupa JK: Determination of 3-D shape parameters from
boundary information. Comput Graph Image Process 17:52–59,
1981

34. Nystrom I, Udupa JK, Grevera GJ, Hirsch BE: Area of
and volume enclosed by digital and triangulated surfaces. SPIE
Proc 4681:669–680, 2002

35. Stindel E, Udupa J, Hirsch B, Odhner D, Couture C: 3D
MR image analysis of the morphology of the rear foot:
Application to classification of bones. Comput Med Imaging
Graph 23:75–83, 1999

36. Stindel E, Udupa J, Hirsch B, Odhner D: A character-
ization of the geometric architecture of the peritalar joint
complex via MRI: An aid to classification of feet. IEEE Trans
Med Imag 18:753–763, 1999

37. Udupa J, Hirsch B, Samarasekera S, Hillstrom H, Bauer
G, Kneeland B: Analysis of in vivo 3D internal kinematics of
the joints of the foot. IEEE Trans Biomed Eng 45:1387–1396,
1998

38. Grevera GJ, Udupa JK: Shape-based interpolation of
multidimensional grey-level images. IEEE Trans Med Imag 15
(6):881–892, 1996

39. Raya SP, Udupa JK: Shape-based interpolation of
multidimensional objects. IEEE Trans Med Imag 9(l):32–42,
1990

40. Higgins WE, Morice C, Ritman EL: Shape-based
interpolation of thin structures in three-dimensional images.
IEEE Trans Med Imag 12(3):439–450, 1993

41. Herman GT, Zheng J, Bucholtz CA: Shape-based
interpolation. IEEE Comput Graph Appl 12(3):69–79, 1992

42. Treece GM: Volume Measurement and Surface Visual-
isation in Sequential Freehand 3D Ultrasound. Ph.D. Thesis,
Cambridge University, 2000
43. Wells WM III, Viola P, Atsumi H, Makajima S, Kikinis

R: Multi-modal volume registration by maximization of mutual
information. Med Image Anal 1(1):35–51, 1996
44. Lauchaud JO, Montanvert A: Continuous analogs of

digital boundaries: A topological approach to iso-surfaces.
Graph Models 62(3):129–164, 2000
45. Gerig G, Kubler O, Kikinis R, Jolesz FA: Nonlinear

anisotropic filtering of MRI data. IEEE Trans Med Imag 11
(2):221–232, 1992
46. Saha PK, Udupa JK: Scale-based image filtering

preserving boundary sharpness and fine structure. IEEE Trans
Med Imag 20(11):1140–1155, 2001
47. Perona P, Malik J: Scale-space and edge detection using

anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12
(7):629–639, 1990
48. Zhuge Y, Udupa JK, Liu J, Saha PK, Iwanaga T: Scale-

based method for correcting background intensity variation in
acquired images. Proc SPIE 4684:1103–1111, 2002
49. Udupa JK: Multidimensional digital boundaries. CVGIP

Graph Models Image Process 50(4):311–323, 1994
50. Udupa JK, Srihari SN, Herman GT: Boundary detection

in multidimensions. IEEE Trans Pattern Anal Mach Intell 4:41–
50, 1982
51. Boykov Y, Veksler O, Zabih R: Fast approximate energy

minimization via graph cuts. IEEE Trans Pattern Anal Mach
Intell 23:1222–1239, 2001
52. Udupa J, Samarasekera S: Fuzzy connectedness and

object definition: Theory, algorithms, and applications in
image segmentation. Graph Models Image Process 58:246–
261, 1996
53. Saha P, Udupa J, Odhner D: Scale-based fuzzy

connected image segmentation: Theory, algorithms and valida-
tion. Comput Vis Image Underst 77:145–174, 2000
54. Saha P, Udupa J: Relative fuzzy connectedness among

multiple objects: Theory, algorithms, and applications in image
segmentation. Comput Vis Image Underst 82:42–56, 2001
55. Saha P, Udupa J: Fuzzy connected object delineation:

Axiomatic path strength definition and the case of multiple
seeds. Comput Vis Image Underst 83:275–295, 2001
56. Udupa J, Saha P, Lotufo R: Relative fuzzy connected-

ness and object definition: Theory, algorithms, and applications
in image segmentation. IEEE Trans Pattern Anal Mach Intell
24:1485–1500, 2002
57. Jones T: Image-Based Ventricular Blood Flow Analysis.

Doctoral Dissertation, University of Pennsylvania, 1998
58. Cutrona J, Bonnet N: Two methods for semi-automatic

image segmentation based on fuzzy connectedness and water-
sheds. France-Iberic Microscopy Congress, Barcelona, 2001, pp
23–24
59. He R, Narayana P: Detection and delineation of multiple

sclerosis lesions in gadolinium-enhanced 3D Tl-weighted MRI
data. In: Proceedings of IEEE Symposium on Computer Based
Medical Systems, 2000

CAVASS: A COMPUTER-ASSISTED VISUALIZATION AND ANALYSIS SOFTWARE SYSTEM 117

60. Aldeliesten T, Niessen W, Vincken K, Maintz J, Jansen
F, van Nieuwenhuizen O, Viergever M: Objective and
reproducible segmentation and quantification of tuberous
sclerosis lesions in FLAIR brain MR images. Proc SPIE
4322:1509–1518, 2001
61. Jin Y, Laine A, Imielinska C: An adaptive speed term

based on homogeneity for level-set segmentation. Proc SPIE
4684(1):383–390, 2002
62. Henn S, Lemole MG, Ferreira MAT, Gonzalez FL,

Schornak M, Preul MC, Spetzler RF: Interactive stereoscopic
virtual reality: a new tool for neurosurgical education. J
Neurosurg 96(1):144–149, 2002
63. Sethian J: Level Set Methods. Cambridge: Cambridge

University Press, 1996
64. Raya SP, Udupa JK, Barrett WA: A PC-based 3D

imaging system: algorithms, software, and hardware consider-
ations. Comput Med Imaging Graph 14(5):353–370, 1990
65. Frieder G, Gordon D, Reynolds RA: Back-to-front

display of voxel-based objects. IEEE Comput Graph Appl
5:52–60, 1985

66. Mockus A, Fielding RT, Herbsleb JD: Two case studies
of open source software development: Apache and Mozilla.
ACM Trans Softw Eng Methodol 11(3):309–346, 2002

67. Cochran S: wxWindows 2.2 offers cross-platform alter-
native to Java. Dr Dobb’s J, August 2000

68. Zeitlin V: The wxWindows cross-platform framework.
Dr Dobb’s J, May 2001

69. Rampersad T: wxWindows for cross-platform coding.
Linux J 2003(111):6, 2003

70. Udupa JK, Grevera GJ, Odhner D, Zhuge Y, Souza A,
Mishra S, Iwanaga T: CAVASS: a computer-assisted visuali-
zation and analysis software system—image processing aspects.
SPIE Proc 6509, 2007

71. Grevera GJ, Udupa JK, Odhner D, Zhuge Y, Souza A,
Mishra S, Iwanaga T: CAVASS: a computer assisted visuali-
zation and analysis software system—visualization aspects.
SPIE Proc 6509, 2007

72. Grevera GJ, Udupa JK, Odhner D, Zhuge Y, Souza A,
Mishra S, Iwanaga T: Introducing CAVASS: a computer-assisted
visualization and analysis software system. SPIE Proc 6516, 2007

118 GREVERA ET AL.

	CAVASS: A Computer-Assisted Visualization and Analysis Software System
	Abstract
	INTRODUCTION
	Current Software Systems and their Limitations

	METHODS
	Data Interface
	CAVA Functions
	Image Processing
	Visualization
	Manipulation
	Analysis

	Parallelizing Key Operations in CAVASS
	Parallelizing Type 1 CAVA Operations
	Parallelizing Type 2 CAVA Operations
	Parallelizing Type 3 CAVA Operations
	Algorithms for Parallelization
	Parallel Implementation

	An Interface to ITK
	Portable User Interface

	RESULTS
	CONCLUSIONS
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

