
Mastering DICOM with DVTk

Glenn Potter,1 Rick Busbridge,1 Michael Toland,2 and Paul Nagy2

The Digital Imaging and Communications in Medicine
(DICOM) Validation Toolkit (DVTk) is an open-source
framework with potential value for anyone working with
the DICOM standard. DICOM’s flexibility requires hands-
on experience in understanding ways in which the stand-
ard’s interpretation may vary among vendors. DVTk was
developed as a clinical engineering tool to aid and
accelerate DICOM integration at clinical sites. DVTk is
used to provide an independent measurement of the
accuracy of a product’s DICOM interface, according to
both the DICOM standard and the product’s conformance
statement. DVTk has stand-alone tools and a framework
with which developers can create new tools. We provide
an overview of the architecture of the toolkit, sample
scenarios of its utility, and evidence of its relative ease of
use. Our goal is to encourage involvement in this open-
source project and attract developers to build off and
further enrich this platform for DICOM integration testing.

KEY WORDS: DICOM, systems integration,
PACS DICOM IHE conformance, Health Level 7, IHE

INTRODUCTION

D igital Imaging and Communications in Med-
icine (DICOM)1 plays a major role in the

health care information technology (IT) field as the
standard for medical images and communication
throughout the hospital. With the organization of
the DICOM Standards Committee in 1996 and the
support of major medical groups and imaging ven-
dors worldwide, DICOM has become a dominant
integration mechanism in the hospital enterprise.
The DICOM standard version 3.0 contains 16 parts
(more than 2,000 pages), and the standard itself is
constantly evolving as new software and imaging
technologies are developed. Mastering a technology
like DICOM can be a daunting task, but the suc-
cessful student will be on the right path with the
DICOM Validation Toolkit (DVTk) from DVTk.

org. Consider DVTk the lab kit that is handed out
with the DICOM standard on the first day of
DICOM 101 class.
As with any other technology, true learning and

understanding require hands-on experience.2 Al-
though the standard itself does not define or identify
testing or validation procedures to assess confor-
mance, a number of third-party tools have been
developed to fill that role. DVTk is a powerful tool
for mastering the intricate DICOM file format and
transfer syntax. The mantra of DVTk is to make
DICOM easy. If a picture archive and communica-
tion system (PACS) adminsitrator, for example, is
having a problem with imaging device integration,
DVTk can be the first line of defense in tracking the
problem. When vendors are pointing fingers at one
another, DVTk can help them past recriminations
and on to real solutions. For medical software de-
velopers, integrators, and testers, DVTk can help to
more quickly produce robust systems.
The DICOM Validation Tool (DVT) test frame-

work is a flexible architecture and uses service–
object pair (SOP) class definition files, making it
adaptable as the DICOM standard evolves. It
includes a graphical user interface (GUI) and a com-
mand line interface, DICOM media validation, ser-
vice class user (SCU) and service class provider

1From the AGFA HealthCare, Mortsel, Belgium.
2From the Radiology IT, University of Maryland School of

Medicine, Baltimore, MD, USA.

Correspondence to: Glenn Potter, AGFA HealthCare, 590
North Shore Drive, Hartland,WI, 53029, USA; tel: +262-369-0900;
e-mail: glenn.potter@agfa.com.

Copyright * 2007 by Society for Imaging Informatics in
Medicine

Online publication 7 August 2007
doi: 10.1007/s10278-007-9057-0

Journal of Digital Imaging, Vol 20, Suppl 1, 2007: pp 47Y62 47

(SCP) emulators, and a rich scripting language. For
more advanced testing, VBScript (Microsoft Visual
Basic Scripting edition; Microsoft; Redmond, WA)
or JScript (Microsoft) can be executed by DVT, and
a set of .NET assemblies is available for developing
stand-alone test tools with languages such as Visual
Basic.NET (Microsoft) and C# (Microsoft).
If a validation tool is to be taken seriously, it must

be vendor neutral. With the release of DVT 2.1 in
2005, DVTk now exists as an open-source commu-
nity project. Not only does this encourage more
vendors to contribute (because of the incentive of
reduced development and integration costs), but the
adoption and proliferation of standards make it
easier for individual developers to contribute to
open-source projects such as DVTk. Independent
software developers are sometimes discouraged
from proceeding because of the chance that their
work will provide a “one-off” solution only and not
be widely used. DVTk, with the backing of the
mature DICOM standard, is attracting talented
developers with a desire to create something useful
and lasting. This success assures that time devoted
to learning this toolkit will not be wasted.
This article focuses primarily on the DVT main

application. We provide background on the toolkit
and specific examples about the two intended roles
of DVT: service and development. Current efforts
within the DVTk project and future directions are
also highlighted.

DVTK HISTORY AND ARCHITECTURE

In 2000, Agfa HealthCare (Mortsel, Belgium) and
Philips Medical Systems (Eindhoven, The Nether-
lands) decided to coordinate activities around
DICOM validation testing by bringing together
efforts already started by both companies under a
joint DVT project. The intention was to produce a
DVT that could not only be used internally by both
companies to test their own products but also made
freely available to other original equipment manu-
facturers (OEMs) as a means of testing their
products to the same level of detail. The ultimate
aim was to reduce the time spent integrating
proprietary systems by first exposing these systems’
equipment to tests run using DVT.
DVT project has a steering committee with re-

sponsibility for guiding legal, technical, and com-
mercial aspects. The steering committee meets every

6 months to discuss past progress, current issues, and
future requirements. A project manager was elected
by the steering committee tomanage the DVT project
on a daily basis and report back to the committee.
Development tasks were divided up based on the
available skills of developers who report to the proj-
ect manager. In its first years, Agfa and Philips
provided the personnel to staff the DVT project.
In September 2005, DVT was made into an open-

source project (http://www.dvtk.org, DICOM Vali-
dation Toolkit; last accessed May 2007) under
SourceForge (http://sourceforge.net/projects/dvt,
SOURCEFORGE.NET ; last accessed May 2007)
as DVTk and is licensed under the GNU Lesser
General Public License (LGPL). The steering com-
mittee decided that the time had come to begin
promoting DVTk to a wider audience, with the aim
of attracting other companies who might join and
supply development resources. Around this time,
ICT Healthcare (Eindhoven, The Netherlands),
which had already been supplying development re-
sources to the project, joined as a full member with
representation on the steering committee. The goal
was to make DVTk the independent gold standard
for DICOM validation and thereby improve the
interoperability of all vendor products using the
DICOM interface.
The dvtk.org Web site is now the location for

the latest downloads, defect tracking details, and
forums on using DVTk. Interested individuals and
companies may join the project through the Web
site. A weekly project telephone conference coor-
dinates the activities of the development team.
DVTk-based applications include DVT, the main

application, which together with the core forms what
is now referred to as the DICOM Validation
Framework (Fig. 1). The core includes a DICOM
testing data model and object-oriented class struc-
ture. The DVTk and DVTkData libraries provide
access to this data model and class structure via the
managed code adapter. The core includes the
DICOMScript language that is supported by DVT.
This language can be separated into basic program-
ming, which includes the SEND and RECEIVE
commands for simulating DICOM SCPs and SCUs,
and advanced programming. The advanced
programming language includes commands such
as SYSTEM, for executing operating system native
applications, and a number of commands for
working with the Data Warehouse feature. The
Data Warehouse is a run-time memory structure in

48 POTTER ET AL.

http://www.dvtk.org
http://sourceforge.net/projects/dvt, SOURCEFORGE.NET
http://sourceforge.net/projects/dvt, SOURCEFORGE.NET

which the user can store Association Control
Service Element (ACSE) requests and responses,
DICOM commands, and DICOM objects for reuse
across test scripts and sessions.
For more advanced testing scenarios, DVTk

includes the Script Support library and the High-
Level Interface (HLI) library. The HLI library is a
newer abstraction built on top of the core that makes
it easy to write multithreaded tests. The application
program interface (API) exposed by this library
encapsulates many of the low-level core API classes
and methods that make writing VBScripts similar to
writing scripts in DVTk’s native DICOMScript
language. VBScripts can be executed entirely within
the DVT GUI application or command-line execut-
able or debugged in Visual Studio .NET. Other
DVTk-based applications built on the core and
currently available on dvtk.org include: DICOM
Network Analyzer, a network sniffer and DICOM
protocol analyzer; DICOM Editor, for displaying
and editing DICOM files; DICOM Compare Tool,
for comparing the attributes and values of two

DICOM files; DICOM Attribute Validator, for
validating DICOM files, including Structured Re-
port objects, against definition files; DICOM File
Stripper, for removing all but mandatory attributes
from a DICOM file; and DICOM File Anonymizer,
for removing patient and physician information
from a DICOM file.
To date, the following contributions have been

made to the DVTk project by outside parties, com-
panies, and/or institutions:

� Medical Communications (UK) provided the
underlying Transmission Control Protocol/
Internet Protocol (TCP/IP) Capture File to the
DICOM protocol data unit (PDU) conversion
utilities used by the DICOM Network Analyzer
application.

� The National Institute of Standards and Tech-
nology (NIST; Gaithersburg, MD) provided
the Health Level Seven (HL7)3 validation Web
services used in the latest DVTk HL7 valida-
tion components.

Fig 1. DICOM Validation Framework.

MASTERING DICOM WITH DVTk 49

GETTING STARTED WITH DVTk OUT
OF THE BOX

The latest version of DVT can be downloaded
from http://www.dvtk.org . It comes packaged as a
Microsoft Windows InstallShield application. The
installation subfolder includes a user’s guide and
Windows help files for the extensible .NET assemblies
(available only if MS Visual Studio .NET is installed).
A large number of examples on how to use the many
features of DVT are included in the subfolder.
Starting DVT presents the user with an empty

workspace. DVT is designed to work on a single
project at a time, although multiple views of the
project may be opened from which multiple tests
may be simultaneously executed. A DVT project is
a container for one or more test sessions. A session
is a container for the configuration of one or more
tests to be performed against a system under test
(SUT). Project and session configuration proper-
ties are stored in flat files. The DVT GUI exposes
most of the configuration properties, although some
of the more advanced settings, such as STRICT-
VALIDATION, are available only by directly
editing the session file. Some settings can also be
modified in script files. For example, the STRICT-
VALIDATION script command overrides the value
of the STRICT-VALIDATION session property.
Some settings, such as CALLED_AE_TITLE, also
have built-in default values that are assumed if the
property is not defined in a script or session file.
Session files come in three types: emulator, script,

and media. Emulator sessions are used when DVT
should act as an SCU or SCP emulator to test the
DICOM transfer syntax. The emulators have sup-
port for Verification SCU/SCP, Storage SCU/SCP,
and Print SCP. Script sessions are used when DVT is
used to execute a DICOMScript, DICOMSuper-
Script, or VBScript. A DICOMSuperScript is
simply a script that calls one or more DICOM-
Scripts. Script sessions have support for network
SCP/SCU message exchange and DICOM media
file creation. Media sessions are used to validate the
DICOM file format as a DICOMDIR and/or DCM
media files. When validating a DICOMDIR file, any
referenced files are also validated.
An easy way to gain familiarity with DVT is go

through the examples in the subfolder using DVT as
both the test tool and the SUT. Opening up the
example project displays a tree view of all test
sessions defined in the project and provides details

on the session currently selected in the tree. Clicking
on the Window menu and selecting the New Project
View and Tile item displays two views of the project.
The next example will walk through the Modal-

ity Worklist (WLM) SCP/SCU test script sessions.
Selecting the WLM_SCP session in the top view
and the WLM_SCU session in the bottom view
presents a view from which two test sessions may
be executed simultaneously (Fig. 2).
At the top of the Session Information tab are

general settings, including the session type, session
ID (used in uniquely naming results files), and
location of files used/created by the test session.
The DVT Roles Settings section defines the Appli-
cation Entity (AE) title and some connection settings
that DVT assumes during the test session. The SUT
Settings section defines the AE title and some
connection settings, including the TCP/IP address,
of the system the session is testing. Because this
example uses DVT as both the testing system and the
SUT, the DVT role settings in the top view are
synchronized to the SUT settings in the bottom view,
and the SUT settings in the top view are synchro-
nized to the DVT role settings in the bottom view.
Locations of the SOP class definition files required

for the test session are selected under the Specify SOP
Classes tab. The selected definition files are loaded
into memory when the test session starts, and DVT
uses these to validate the DICOM messages and
objects it sends and receives. A definition file
describes a single DICOM SOP class in terms of the
combination of DICOM Message Service Element
(DIMSE) commands and Information Object Defini-
tions (IODs) that make up the SOP class. In this case,
both test sessions specify the Modality Worklist
Information Model–FIND SOP Class item. The stan-
dard definition files that come with DVT in the
definitions subfolder are taken directly from the
DICOM standard parts 3 and 4. Private definition
files can bemade that extend the validation capabilities
of DVT by copying one of these standard files and
modifying it with private user IDs (UIDs), modules,
and attributes. A typical customization might specify
that when a particular SUT is known to always send a
value for the Patient Name (0010,0010) attribute, the
corresponding definition file can be modified to define
the Patient Name attribute as a type 1 (mandatory,
nonzero-length) attribute.
Opening the WLM_SCP tree node in the top view

and selecting the DICOMScript, 1.ds, displays a
Script tab in the right side of the view. This script

50 POTTER ET AL.

http://www.dvtk.org

defines the test steps for the SCP. Simple DICOM-
Scripts such as this can be written using only the
SEND and RECEIVE commands. A large number of
additional commands are available for more ad-
vanced testing scenarios. The Script tab is read-only,
but Windows Notepad can be launched from a
context menu on the script name in the tree view. A
handy DVT DICOM script reference (dvtDICOM-
script.hlp) file is in the docs folder. This script first
executes a RECEIVE command for an association
request message that specifies a single presentation
context, consisting of the Modality Worklist Infor-
mation Model–FIND SOP Class and three possible
transfer syntaxes. The SCU script in the bottom view
SENDs an association request message. The only
required parameter for the ASSOCIATE-RQ mes-
sage is the presentation context. For the SCP’s
RECEIVE command, the ASSOCIATE-RQmessage
is referred to as the reference or expected object. This
will be compared to the received ASSOCIATE-RQ
message. DVT will perform validation in two steps:

1. The received object is first validated against any
loaded definition files. This step ensures that the

correct attributes are present in the object and
that they are encoded correctly.

2. This step is optional and applied only if a
reference object is present in the script. Checks
made here are that the expected number of
attribute values has been received and that each
attribute value matches the corresponding refer-
ence object attribute value.

Often, it is not known with what values an SUT
will respond, in which case no attributes can be
specified in the reference object, so that only step
one validation occurs (http://www.dvtk.org “DVT
User Guide”, version 2.1, August 2005). The
VALIDATION script command determines how
the DICOM objects are validated by DVT. By
default, validation is ENABLED, meaning full
validation will occur. The value of the STRICT-
VALIDATION session property determines how
the result of the validation is handled by DVT.
If STRICT-VALIDATION is enabled, the presence
of attributes in the received message must match
the definitions exactly. If they do not match,
then DVT reports a FAILED validation and aborts

Fig 2. DVT-Worklist Management SCP and SCU test sessions.

MASTERING DICOM WITH DVTk 51

http://www.dvtk.org

further DICOMScript interpretation. If STRICT-
VALIDATION is disabled and attributes do not
match, then DVT reports a WARN message. By
default, STRICT-VALIDATION is disabled.
Following a successful association validation and

negotiation, the SCU script SENDs a C-FIND-RQ
message of type ModalityWorklist–FIND. The SCP
script RECEIVEs the C-FIND-RQ, validates it, and
proceeds to SEND three hard-coded C-FIND-RSP
messages. The SCU script was written to mirror the
SCP script, so the three reference C-FIND-RSP
messages it defines match exactly with those sent by
the SCP. These scripts also demonstrate two DVT
scripting features: Value Mapping and Value Rep-
resentation (VR) Keywords. Value mapping allows
the user to substitute a label for a value defined in a
script, generated by DVT, or received from the SUT,
and then refer to that value with the label further
down in the script. The LABEL: keyword is used to
map an attribute value defined in the script or
received from the SUT. The NEW: keyword tells
DVT to generate a new value and assign it to the
given label. An example of this is in the SCP script,
where the Study Instance UID attribute (0020,000D)
is assigned a new value generated by DVT and
named with the label StudyInstanceUid1. The
generated UID value can be referred to subsequently
in the script as StudyInstanceUid1 (although this
was not done in this example). VR keywords, such
as the AUTOSET keyword used in both the SCU
and SCP scripts, tell DVT to generate a value and
assign it to the corresponding attribute. In the
example case, AUTOSET is used in the Scheduled
Procedure Step Start Date attribute to ensure that
values match between the two scripts. Both Value
Mapping and VR Keywords are sensitive to the type
of attribute to which they are applied.
This test is begun by right clicking on the SCP

script and selecting execute. When DVT is
executing a test session, all tabs except the
Activity Logging tab are hidden, the session tree
in the corresponding view is disabled, and the test
stop button in the toolbar is enabled. The SCP’s
Activity Log will indicate that it is waiting for a
connection on port 104. Executing the SCU script
in the lower window will result in a number of
messages in the Activity Logs, followed by the
termination of the test sessions. Comparing and
correlating the SCP and SCU activity log entries
provides a good visual reference for the DICOM
message flow between two AEs.

By default, the AUTO-TYPE-2-ATTRIBUTES
session property is set to true in the session file,
which means that DVT will automatically add any
zero-length type 2 (type 2 attributes must be
included; however, they may be encoded with a
zero-length value or no value) attributes from the
definition file to the dataset before sending to the
SUT. This behavior is recorded in the SCU’s activity
column by the “Automatic Type 2 Attributes pop-
ulation...” statement. This feature means that only
type 1 (required, nonzero-length) attributes must be
explicitly stated in the scripts.
After completion of the scripts, each view dis-

plays the Validation Results tab, where the results
of the test sessions are displayed. DVT stores the
results of each test in a _res.xml file in the test
session’s configured results directory. The file
name takes the form GDetail∣Summary9_nnn_
GscriptName9_res.xml, where nnn is the session
ID from the session properties. Varying the session
ID from one test execution to the next allows
storage of multiple sets of results in the results
directory. Two session Boolean properties define
whether summary or detailed results are generated:
SUMMARY-VALIDATION-RESULTS and
DETAILED-VALIDATION-RESULTS. If the test
session’s STORAGE_MODE property is set to as-
media or as-dataset, any media files received by
DVT during the test are also stored in the results
directory, again using the session ID to help
uniquely name the files. The generated results files
are listed in the session tree under the script name.
Selecting one of the results files displays it in the
Validation Results tab. The Validation Results tab
is a Hypertext Markup Language viewer allowing
navigation between the summary results, detailed
results, and any generated media files using
hypertext links. DVT does not include a DICOM
file viewer. To automatically view a generated .dcm
file by clicking on a link in the Validation Results
tab, a DICOM image viewer must be installed and
associated with the .dcm file type.
The SCP’s Validation Results tab will show a test

result of PASSED, and a .dcm media file is created
that contains the Modality Worklist–FIND dataset
received in the C-FIND-RQ message sent from the
SCU. The SCU’s Validation Results tab also shows
a result of FAILED, with nine errors reported. The
Summary Results File lists the errors; in this case,
three type 1 attributes are missing from each C-
FIND-RSP message sent from the SCP. Clicking on

52 POTTER ET AL.

a Link to Detailed Result link displays the errors in
the context of the complete C-FIND-RSP message.
The detailed results file contains the complete contents
of each message sent and received in chronological
order. Any comment lines in the DICOMScript that
begin with ## are copied directly to the detailed results
file. This is a good way to insert additional test
information directly into the results. For additional
troubleshooting output in the Activity Logging tab
and detailed results file, the LOG-RELATION, LOG-
DEBUG, LOG-DULP-STATE, and PDU-DUMP test
session properties can be enabled. In the example
described here, it is left as an exercise for the user to
add the missing type 1 attributes to the SCP script so
that the SCU test session result becomes PASSED.
DICOMSuperScripts (script files with a .dss ex-

tension) enable the reuse of DICOMScripts in
various test scenarios. The storage example script
sessions included with DVT demonstrate the bene-
fits of DICOMSuperScripts.

DVTk FOR SERVICE TROUBLESHOOTING

As demonstrated in the previous section, DVTk
can be a useful tool when troubleshooting modality
worklist problems. Another common use case would
occur when adding new modalities to a PACS
network. It can be frustrating to ensure that AE titles,
ports, and IP addresses match between the modality
and PACS configuration. This section will illustrate
ways in which DVT can be used to troubleshoot a
PACS-modality interface problem and describe
another, more service-orientated tool available from
DVTk.org.
Because DVT can act as both an SCP and SCU,

it is an excellent starting point for troubleshooting
PACS-modality problems. One of the most com-
mon and most frustrating failures is when a
modality does not send images to the PACS. Most
modalities provide little or no error information
when image storage problems occur with the
PACS. The PACS system is often equally unhelp-
ful. Without an error message of some kind, PACS
administrators have no guidance on where to begin
in addressing the problem. DVT can simulate the
modality or the PACS to pinpoint the source of the
problem while obtaining hard evidence that can be
used to engage the involvement of additional
service layers, such as the hospital networking
group or modality vendor. The Emulator_1 test

session in the example project that comes with
DVT installation can be used to emulate the
problem modality. The problem modality’s AE
title and PACS connection properties must be
copied to the Emulator_1 session’s properties.
Although not absolutely necessary, the modality
being emulated should be taken off the network to
prevent any AE title conflicts during troubleshoot-
ing. The first test to perform is a simple Verifica-
tion to ensure that there is DICOM network
communication between the modality AE and the
PACS. The test is started by opening the Emula-
tor_1 session’s tree node, right clicking on the
Storage SCU Emulator node, and selecting the
Execute menu item. All tabs except the Activity
Logging tab are hidden, and a dialog box is
displayed. Clicking on the Echo button tells DVT
to send a C-ECHO message to the SUT. The
activity logging tab will display the operations
performed. For the purposes of this article, the tests
are run against the open-source DICOM PACS
DCM4CHEE (h t t p : / /www.dcm4che .o rg ,
dcm4chee-2.x DICOM Clinical Data Manager
system; last accessed May 2007).
If the verification test succeeds, then one can

assume the patency of DICOM network connectiv-
ity between the modality and PACS. The next test is
to attempt image storage to the PACS. This test
requires a set of DICOM test images, preferably
from the modality that is experiencing the problem.
The images should contain no names, IDs, or UIDs
that will conflict with real-world data. It is impor-
tant, however, that the data used to perform the test
matches the real-world data in structure as closely as
possible, including any private data elements the
modality creates. A copy of the modality’s DICOM
conformance statement comes in handy here. This
will help simulate the behavior of the modality as
closely as possible. Under the Specify Transfer
Syntax (TS) button on the Session Information tab,
all transfer syntaxes supported by the modality as a
storage SCU can be selected. For example, to test a
computed tomography (CT) modality, one would
select the CT Image Storage SOP Class
(1.2.840.10008.5.1.4.1.1.2). For this test, the storage
SOP class and transfer syntax that match the
DICOM test images that will be stored to the PACS
should be selected. Note that this step is not actually
necessary; when emulating a storage SCU, DVT
will automatically add to the association negotiation
the transfer syntaxes and SOP Classes from the

MASTERING DICOM WITH DVTk 53

http://www.dcm4che.org, dcm4chee-2.x
http://www.dcm4che.org, dcm4chee-2.x

DICOM media files being stored. Selecting the
correct transfer syntaxes and SOP Classes is
necessary when emulating a storage SCP, however.
Executing the Storage SCU Emulator opens the
Storage SCU Emulator dialog box. In the dialog
box, the Add button is used to add the test images to
the list that will be sent to the SCP. Selecting the
Validate before export option tells DVT to validate
the media files against the corresponding definition
file prior to sending them. The number of associa-
tions the modality uses when sending multiple
images is also specified here (most modalities would
send multiple images on a single association).
Finally, clicking the Send button will tell DVT to
execute the storage test and close the dialog. DVT’s
detailed results will show the verification of each
media file followed by each storage transaction. The
Storage SCU emulator does not automatically do
storage commitment as the SCP emulator does. To
simulate the modality performing a storage commit-
ment request, one could create a DICOMScript
session similar to the Commit_SCU example ses-
sion, modifying the SOP instance UIDs to match the
images stored. This test should be performed
immediately after the storage test.
To demonstrate some of the more advanced

DICOMScript features and the Data Warehouse in
DVT, one can imagine a scenario where a CT
modality has recently undergone a software up-
grade. Since the upgrade, technicians have been
reporting that although they can successfully post-
process images on the modality before sending them
to the PACS, processing of images retrieved from
the PACS back to the modality fails. No errors have
been reported by the PACS or modality on storage
or retrieval. One possible reason is that the PACS is
doing something to the stored images that is
preventing the modality from processing them. To
evaluate, one can perform what is called a PACS
transparency test. The idea is to make what the
PACS is doing (if anything) to the images transpar-
ent by comparing the before and after images. This
test will require a DICOM CT image file from the
modality on the DVT workstation and a DVT

project with two sessions. A script session playing
the role of SCU is used to put the image in the DVT
Data Warehouse, store it to the PACS, and initiate a
C-MOVE from the PACS back to DVT. An
Emulator SCP session is used to receive the image
moved back from the PACS and for performing the
validation of the received image against the original
image in the Data Warehouse.
The first commands the script performs are to

reset the Data Warehouse and read the test image
into the Data Warehouse (Fig. 3). The first READ
command loads the DICOM image into the Data
Warehouse and uses the value of attribute 0×
00080018, the SOP Instance UID, as a reference
value. This will allow the SCP Emulator that sub-
sequently receives the image back from the PACS
to automatically compare it to the image in the
Data Warehouse based on the fact that the SOP
Instance UID values are the same. The second
READ command loads the same image again into
the Data Warehouse but this time references it with
CTIMAGE1. This reference will be used to export
the image directly from the Data Warehouse to the
PACS. As an alternative to READing the image
into the Data Warehouse, one could use the
CREATE and SET commands to build an image
object directly in the Data Warehouse. DVT has the
ability to generate pixel data patterns for VRs of
type other byte (OB), other float (OF), and other
word (OW). For the purposes of this example, it is
best to use an image from the problem CT mo-
dality. The next operation the script performs is to
establish a C-STORECT Image association with the
PACS. After establishing the association, the script
creates a C-STORE-RQ command object in the Data
Warehouse and exports the CT Image referenced by
CTIMAGE1 using the C-STORE-RQ command
referenced by CSTOREREQID, over the established
association (Fig. 4). After closing the storage
association, the script creates a new association on
which to perform the C-MOVE, sends the request
to move the image from the PACS to the DVT AE,
and then closes the association (Fig. 5). Note that
the Patient ID (0×00100020) and SOP Instance

Fig 3. PACS transparency test using DICOMScript-reading image into the Data Warehouse.

54 POTTER ET AL.

UID (0×00080018) were manually copied from the
CT Image test file. Also, before executing this test,
the SCP Emulator must already be started and
waiting for the C-STORE from the PACS in re-
sponse to the C-MOVE request. If the test executes
successfully, the statement “Reference Dataset with
identifier ‘1.3.46.670589.10.900123.19970114.
35042000040’ found in Warehouse” should appear
in the Activity Log indicating that DVT found the
same CT image previously loaded into the Data
Warehouse and will use it to perform a comparison
of the dataset attributes and values.
This test requires that the PatientRootQueryRe-

trieve-MOVE.def definition file is loaded in the
script session and the CTImageStorage.def definition
file is loaded in the Emulator SCP session. If, as
suspected, the PACS is modifying the CT Image
object before returning it to the modality, the
Emulator SCP results data will identify where these
modifications occurred. In this case, the hypothetical
tester notices that DVT is indicating that a set of
private attributes in the Data Warehouse copy of the
image are missing from the image returned from the
PACS. Upon further investigation, it turns out that
the software upgrade performed on the modality
included the addition of a set of new private attributes
required by the modality to perform new post-

processing algorithms on the images. The PACS
does not support these new private attributes for some
reason and is stripping them from the image objects.
Instead of using a combination of a DICOM-

Script test session and Emulator test session, this
test could have been implemented with a single
VBScript session using the HLI library. In this case,
separate threads would be created for the SCU and
the SCP parts. This approach is left up to the user as
an exercise.
Although DVT can analyze all aspects of DICOM

interfacing, it tends to be overloaded for field service
issues. DVTk.org has a number of service-orientated
tools also based on the DVTk framework. One of
these is the DICOMSniffer & Analyzer Tool. The
tool is a GUI-based network sniffer and DICOM
protocol analyzer. This tool uses the WinPcap open-
source network library for packet capturing and
filtering and includes a user guide. This tool can sniff
a live DICOM network stream given two endpoints,
such as a modality and PACS. The troubleshooting
power of this tool should not be underestimated. It
can perform message validation between two devi-
ces similar to DVT but does not require replacing an
SUT device with the testing tool. Figure 6 shows the
tool capturing a modality worklist query/response
communication between two IP addresses.

Fig 5. PACS transparency test using DICOMScript-moving the image back to DVT.

Fig 4. PACS transparency test using DICOMScript-exporting image from the Data Warehouse.

MASTERING DICOM WITH DVTk 55

After the capture process, the user is presented
with a per-association analysis of the DICOM
control and datasets that were captured. The
Association Overview tab shows the requested
and accepted services and each field of the
association PDUs. In the Service Elements Over-
view tab (Fig. 7), one can see all of the DIMSE
messages that were transmitted during the associ-
ation, save a copy, and view the PDUs. The
summary and detailed validation results are similar
to those produced by DVT, including message
validation against SOP Class definition files. The
tool also has the option of saving the captured data

to a capture file for latter analysis or for sending on
to additional service personnel. The DICOM
Sniffer & Analyzer is a tool every PACS admin-
istrator should have on his or her workstation.
Two more tools built on the DVTk framework

that should be in the imaging professional’s toolbox
in working with DICOM on a regular basis are
DICOM Compare and DICOM Editor. DICOM
Compare can compare the attributes and values of
two DICOM files. It can also filter out of the
compare process any attributes and sequences to
make it easier to identify offending elements. A
known “good” DICOM object can be compared to

Fig 6. DICOM Sniffer & Analyzer tool in capturing mode.

Fig 7. DICOM Sniffer & Analyzer tool in analyzing mode.

56 POTTER ET AL.

one causing a problem that was captured from the
network with DICOM Sniffer.
With the DICOM Editor, one can add/delete/

modify any attribute or sequence and sequence item
and save the modified DICOM file to any location.
This tool goes hand-in-hand with the DVT, DICOM
Sniffer, and DICOM Compare tools. After those
tools have identified the DICOM elements that may
be causing a DICOM object storage problem, the
editor can be used to manually fix the DICOM
object and then resend it to the system where the
failure is occurring. If the store succeeds, chances
are the source of the problem has been identified.

DVT AS A DEVELOPMENT TEST TOOL

Another use of DVT is automated unit or system
testing in a software development environment.

Most modern source code management systems
include automated build-and-test subsystems.
Scripts can be created to test the DICOM interfaces
of a vendor’s product, and the command line version
of DVT can then be launched to execute those scripts
against the product as part of the normal automated
build-and-test processes. The DVT results and
output files can then be saved along with the rest
of the build/test artifacts. The command line version
of DVT can be called on a DICOMScript as fol-
lows: dvtcmd Modality_System_Test.ses Modality_
System_Test.ds. The summary and detailed results
Extensible Markup Language files output by DVT
make it easy for an automated test system to
determine the results of the test, generate a report,
and take any other appropriate action, such as
e-mailing the development team.
A tool as programmable and rich in output as

DVT is valuable to the entire iterative develop-

Fig 8. Multithreaded stress test using VB.NET-main subroutine and imports.

MASTERING DICOM WITH DVTk 57

ment process. Software validation teams can link
test session files, scripts, and result files to
software defect issues, so that a developer can
then use them to reproduce the defect. A validator
can subsequently use those same scripts to test the
fixed software. Maintaining a repository of DVT
scripts is also an excellent way to run regression
tests.
If the DICOM software being tested is in the

.NET language family, tighter testing integration
with DVTk can be achieved via NUnit,4 the
open-source unit testing framework for .NET.
This integration uses a DVTkInvoker class to
invoke the command line version of DVT with a
session file, script file, and results file as argu-
ments. One can use DVT Clients and Servers
within NUnit to handle the various DICOM SOP
Classes, starting and stopping DVT as necessary
and obtaining validation results information. One

future goal is to be able to start up and test an
entire workflow scenario from NUnit using DVT.
DVTk makes it quick and easy to perform

repeatable, detailed testing of DICOM interfaces.
In the following example, we posit a stress test to
run against a storage SCP service. Because this is a
stress test, the test application must hit the SCP
simultaneously from multiple SCUs, so that multi-
ple threads will be needed. Writing multithreaded
Visual Basic (VB) test applications is a breeze with
the new HLI library. In fact, it looks quite similar to
a DICOMScript, with high-level abstractions for
creating and releasing associations and for sending
and receiving messages. This example using the
HLI requires DVTk alpha version 2.1.007.006 or
greater , which can be downloaded from dvtk.org
after registering as a Plus User. Plus Users have
access to early releases and draft documents, such
as the draft version of the HLI API help file.

Fig 9. Multithreaded stress test using VB.NET-MainDicomThread class.

58 POTTER ET AL.

Fig 10. Multithreaded stress test using VB.NET-CtStorageScu class.

MASTERING DICOM WITH DVTk 59

In Visual Studio .NET, a VB console project is
created and references to the Dvtk.dll, DvtkData.dll,
and DvtkHighLevelInterface.dll libraries are added.
This simple stress test application takes three argu-
ments: the number of modalities to create (each
modality runs on a separate thread), the number of
images each modality will store to the SCP under
test, and the location of the DVTk definition files.
Figure 8 shows the imports required and the Sub
Main(ByVal CmdArgs() As String) routine in
module Module1. The first operation this applica-
tion entry point method performs is to call Dvtk.
Setup.Initialize(). This must be performed before
any calls to the DVTk libraries, matched by the last
call in the application, which should be Dvtk.Setup.
Terminate(). Then it creates and initializes the
MainDicomThread object, attaches it to the activity
logging form, starts the main DICOM thread, and
finally waits for the threads to complete. After the
threads are complete, it logs selected performance
data gathered during the stress test.
Figure 9 shows the MainDicomThread class that

inherits from the DvtkHighLevelInterface.Dicom.
Threads.DicomThread class. A single instance of
this class is started from the entry point method.
This class’s thread execute method starts all of the
modalities and returns. As it creates each modality
(instances of CtStorageScu), it generates unique
identifying information for each SCU, such as AE

title. Some of the options are analogous to test
session properties. This test application could have
loaded a script session configuration file and initial-
ized some of the options from it, but in this case, all
of the necessary session options are set directly in the
code. After an SCU is created, it is immediately
started by calling its thread Start() method.
Figure 10 shows a CtStorageScu class that also

inherits from DvtkHighLevelInterface.DICOM.
Threads.DICOMThread. The purpose of the exe-
cute method is to C-STORE a specified number
of images to the SCP under test. It first creates
unique patient, study, and series level identifiers
for the images that will be stored. It then creates
the C-STORE CT Image association; then loops
to store the images, cloning a CT image dataset
that was read from a DICOM CT image file in the
constructor; creates unique image identifiers for
each image; sends the C-STORE-RQ message;
receives the response message; and checks the
response status value. Finally, it logs its total
storage time for later analysis and closes the
association. This application could have been
created and executed from the DVT GUI, but
developing it in Visual Studio allows the appli-
cation to be debugged and compiled to an
executable file. This application is executed from
the command line as: Storage_SCP_Stress_Test.
exe 20 1000 “C:\Program Files\DVT\Definitions”.

Fig 11. Multithreaded stress test-activity logging.

60 POTTER ET AL.

Figure 11 is an excerpt from the Hl1Form that
receives all of the logging from the DicomThread
objects. Notice the multithreading capabilities of
the HLI in this output. While modality 10 is
validating an A-ASSOCIATE-AC message it
received, modality 3 is handling a CSTORERSP
message. This test created 20 CT modalities that
are each simultaneously sending a 1,000-image
series to the PACS.

RECENT EXTENSIONS AND FUTURE WORK

DVTk has been extended recently to support
HL7 validation in addition to DICOM validation.
This is currently used by the DVTk Integrating the
Healthcare Enterprise (IHE)5 Actors framework
where it is possible to configure DVT to emulate
the role of certain actors in the IHE integration
profiles. The idea is that the IHE Actors necessary
to allow the SUT to be tested are emulated by
DVTk. DVTk will then validate the DICOM and
HL7 transactions taking place between actors and,
in addition, compare the values of certain attributes
such as Patient ID, Patient Name, etc., between
messages to ensure consistent use.
In the future, the aim is to enhance the

capabilities of the DVTk IHE Actors framework
by supporting additional functionality in the exist-
ing actors and supporting other actors needed in
the various IHE Integration Profiles. Support for
other protocols is also envisioned.
The DVTk development team is also involved

in the new IHE Connectathon Toolkit (code-
named “Gazelle”), which is being developed as a
successor to the MESA Toolset. It is hoped that
the DVTk DICOM validation engine can be
wrapped as a Web service for use in Gazelle.
Various new tools will be developed using the

DVTk frameworks. A GUI for the DVT-IHE
framework; various new emulators, such as a
radiology information system emulator and mo-
dality emulator; and stand-alone validation appli-
cations are likely candidates. The current number
of development resources limits what can be done—
anyone wishing to contribute can do so via the
Web site.
The aim for future IHE extensions is to integrate

any other validation services into the DVTk

framework as Web services. This may include
Cross-Enterprise Document Sharing validation, for
example. It is hoped that the Gazelle cooperation
will result in web services that can be reused for
this purpose.

CONCLUSION

Originally developed by Agfa and Philips to test
their products, DVTk has grown into a profession-
ally managed, open-source, vendor neutral,
DICOM Validation Framework. Flexible for the
changing standard, programmable, and extensible,
DVTk is a powerful tool for anyone working with
the DICOM standard. The toolkit includes GUI
and command line versions of the main validation
application, DVT, and a collection of .NET
libraries for creating new validation and test tools.
The large collection of example validation sessions
that come with the toolkit are a great place to start
for understanding how the DICOM standard works
in practice.
Hospital IT staff can use DVTk for simple tasks,

such as pinging the network for the existence of
modality AE titles, or for more detailed trouble-
shooting, such as checking for the presence of
specific DICOM attributes and values in messages
and media files. Other DVTk-based tools are
available for tasks such as editing or comparing
DICOM files or for capturing and analyzing
messages on a live DICOM stream. The XML-
structured test results and media files created by
the validation framework provide great evidence
for IT staff when discussing a problem with
vendors. Developers and testers can create scripts
for testing their products DICOM conformance, or
build on the framework by creating new stand-
alone test tools. NUnit integration and the com-
mand line version of DVT make it possible to
incorporate DVTk and the generated test results
into automated build-and-test systems.
Current and future efforts include support for

IHE actor validation, including HL7 validation, and
new device emulators, such as a Radiology Infor-
mation System (RIS) emulator. As the digital
hospital enterprise continues to grow, DVTk is well
positioned to take on these new validation roles.
We encourage the reader to continue working

with DVTk as a means to master the changing

MASTERING DICOM WITH DVTk 61

DICOM environment. With the move to an open-
source community approach, DVTk is well on its
way to becoming the independent gold standard for
DICOM interface testing.

ACKNOWLEDGMENT

I would like to thank Dr. Nancy Knight from the University
of Maryland for her expert assistance in preparing this
manuscript.

REFERENCES

1. National Electrical Manufacturers Association (NEMA).
DICOM standard is available at http://medical.nema.org (last
accessed May 2007)

2. Bidgood Jr, WD, Horii SC, Prior FW, Van Syckle DE:
Understanding and using DICOM, the data interchange stan-
dard for biomedical imaging. JAMIA 4:199–212, 1997

3. HL7, Health Level Seven, http://www.hl7.org/ (last
accessed May 2007)

4. NUnit, “NUnit is a unit-testing framework for all .Net
languages”, nunit.com, (last accessed May 2007)

5. IHE, Integrating the Healthcare Enterprise, http://www.
ihe.net/ (last accessed May 2007)

62 POTTER ET AL.

http://medical.nema.org
http://www.hl7.org/
http://www.ihe.net/
http://www.ihe.net/

	Mastering DICOM with DVTk
	Abstract
	INTRODUCTION
	DVTk HISTORY AND ARCHITECTURE
	GETTING STARTED WITH DVTk OUT OF THE BOX
	DVTk FOR SERVICE TROUBLESHOOTING
	DVT AS A DEVELOPMENT TEST TOOL
	RECENT EXTENSIONS AND FUTURE WORK
	CONCLUSION
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

