
Software and Systems Modeling (2024) 23:285–287
https://doi.org/10.1007/s10270-024-01168-y

GUEST EDITORIAL

Guest editorial for the special section on SEFM 2020 and 2021

Frank S. de Boer1 · Antonio Cerone2

Received: 11 March 2024 / Accepted: 12 March 2024 / Published online: 30 April 2024
© The Author(s) 2024

1 Introduction

The main objective of the International Conference on Soft-
ware Engineering and Formal Methods (SEFM) is to bring
together practitioners and researchers from academia, indus-
try, and government, to advance the state of the art in formal
methods, to help in their large-scale application in the soft-
ware industry, and to encourage their integration with other
practical software engineering methods.

In general the papers presented at the SEFM conferences
are selected on the basis of a rigorous single-blind peer review
process by a program committee of international renowned
experts in the field. This special section consists of a selec-
tion of papers presented at SEFM 2020 and 2021, the 18th
and 19th editions of SEFM, which have been held virtu-
ally during the COVID pandemic. The 18th edition was
virtually hosted by the national research institute for math-
ematics and computer science (CWI) in the Netherlands
during 14–17 September 2020. The 19th edition was jointly
organised in virtual mode by Carnegie Mellon University
(US), Nazarbayev University (Kazakhstan) and University
of York (UK) during 6–10 December 2021.

Each article was subject to the full SoSyM review cycle
and authors received anonymous feedback in two or more
rounds of reviewing from two to three reviewers who are
experts in the field. As a result, each article has been thor-
oughly revised and substantially extended compared to its
conference version.

We thank the anonymous reviewers for their valuable
comments which in general were the basis for considerable
further improvements. We also thank Martin Schindler for
his persistent assistance without which this special section
would not have been possible.

B Frank S. de Boer
F.S.de.Boer@cwi.nl

Antonio Cerone
antonio.cerone@nu.edu.kz

1 Centrum Wiskunde & Informatica, Amsterdam, NL

2 Nazarbayev University, Astana, KZ

2 Selected papers

We briefly outline the papers selected for this special section.

A framework for embedded software portability and veri-
fication: from formal models to low-level code by Renata
Martins Gomes, Bernhard Aichernig, and Marcel Baunach.

With the growing demand for dependability and the
increasing hardware diversity in systems like the Internet
of Things (IoT), new software development approaches are
essential. This includes rigorous methods for verifying and
automatically porting Real-TimeOperating Systems (RTOS)
to various devices.

This paper discusses a hardware-specific part of a kernel
model formalized in Event-B, ensuring correctness accord-
ing to the specification. Since hardware details are only added
in subsequent modeling stages, most of the model and proofs
can be reused for multiple targets. In a proof of concept, the
generic model is refined for two different architectures, also
ensuring safety and liveness properties and allowing for auto-
matic low-level code generation from the model.

A lightweight approach to nontermination inference using
Constrained Horn Clauses by Bishoksan Kafle, Graeme
Gange, Peter Schachte, Harald Søndergaard, and Peter J.
Stuckey.

Nontermination is an unwanted program property for
some software systems, and a safety property for other sys-
tems. In either case, automated discovery of preconditions
for nontermination is of interest. This paper introduces a fast
lightweight nontermination analyser NtHorn which is able to
deduce non-trivial sufficient conditions for nontermination.
ConstrainedHornClauses (CHCs) established techniques for
CHCprogram transformation and abstract interpretation then
can be exploited for the purpose of nontermination analysis.
NtHorn is comparable in power to the state-of-the-art nonter-
mination analysis tools, asmeasured on standard competition
benchmark suites (consisting of integer manipulating pro-
grams), while typically solving problems faster by one order
of magnitude.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01168-y&domain=pdf


286 F. S. de Boer, A. Cerone

Quantitative modelling and analysis of BDI agents by Blair
Archibald, Muffy Calder, Michele Sevegnani, and Mengwei
Xu.

Belief-Desire-Intention (BDI) agents are a popular agent
architecture. This paper extends the Conceptual Agent Nota-
tion (Can)-a BDI programming language with advanced
features such as failure recovery and declarative goals-to
include probabilistic action outcomes, e.g. to reflect failed
actuators, and probabilistic policies, e.g. for probabilis-
tic plan and intention selection. The extension is encoded
in Milner’s bigraphs. This encoding allows for investiga-
tion and comparison of the probability of success (inten-
tion completion) under different probabilistic outcomes and
plan/event/intention selection strategies. An application to a
smart manufacturing use case shows that plan selection has
limited effect compared with intention selection, and that the
impact of action failures can be marginal-even when fail-
ure probabilities are large-due to the agent making smarter
choices.

Lazy model checking for recursive state machines by
Clemens Dubslaff, Patrick Wienhöft, and Ansgar Fehnker.

Recursive state machines (RSMs) are state-based models
for procedural programs with wide-ranging applications in
programverification and interprocedural analysis. This paper
introduces a new model-checking algorithm for RSMs and
requirements in computation tree logic (CTL) that exploits
the compositional structure of RSMs by ternary model
checking in combination with a lazy evaluation scheme.
Implementations of the new model-checking algorithms are
evaluated on randomized scalability benchmarks and on an
interprocedural data-flow analysis of Java programs, show-
ing both practical applicability and significant speedups in
comparison to state-of-the-art model-checking tools for pro-
cedural programs.

P-stable abstractions of hybrid systems by Anna Becchi,
Alessandro Cimatti, and Enea Zaffanella.

This paper introduces an algorithm for synthesizing P-
stable abstractionswhich characterize the transitions between
the stability regions of dynamical systems in response to
external inputs. It discusses the representational power of P-
stable abstractions, which provide a high-level account of the
behavior of the systemwith respect to stability, and evaluates
the effectiveness of the algorithm in synthesizing P-stable
abstractions for significant systems.

Fairness, assumptions, and guarantees for extended
bounded response LTL+P synthesis by Alessandro Cimatti,

Luca Geatti, Nicola Gigante, AngeloMontanari, and Stefano
Tonetta.

Realizability and reactive synthesis from temporal logics
are fundamental problems in formal verification. The com-
plexity of these problems for Linear Temporal Logic with
Past (LTL+P) led to the identification of fragmentswith lower
complexities and simpler algorithms. Recently, the logic of
Extended Bounded Response LTL+P (LTLEBR+P for short)
has been introduced. It allows one to express safety languages
definable in LTL+P and it is provided with an efficient, fully
symbolic algorithm for reactive synthesis.

This paper introduces and investigates the expressive-
ness of an extension of LTLEBR+P with fairness conditions,
assumptions, and guarantees that allows the expression of
properties beyond the safety fragment, retaining the effi-
ciency of LTLEBR+P in practice. The paper further includes
a fully symbolic algorithm for the realizability problem for
this extension. To ensure soundness and completeness of
the algorithm, the paper introduces a general framework for
safety reductions in the context of realizability of (fragments
of ) LTL+P. The experimental evaluation shows promising
results.

Counterexample classification by Cole Vick, Eunsuk Kang,
and Stavros Tripakis.

In model checking, when a model fails to satisfy the
desired specification, a typical model checker provides a
counterexample that illustrates how the violation occurs. This
paper introduces counterexample classification. The goal of
this classification is to cover the space of all counterexam-
ples into a finite set of counterexample classes, each of which
describes a distinct type of violating behavior for the given
specification. These classes are then presented as a summary
of possible violating behaviors in the system, freeing the
user from manually having to inspect or analyze numerous
counterexamples to extract the same information. A proto-
type implementation of the proposed technique is described
on top of an existing formal modeling and verification tool,
the Alloy Analyzer, and is further evaluated with respect to
the effectiveness of the technique on case studies involving
thewell-knownNeedham-Schroeder andTCPprotocolswith
promising results.

Analyzing the impact of human errors on interactive service
robotic scenarios via formal verification by Livia Lestingi,
AndreaManglaviti, DavideMarinaro, LucaMarinello, Meh-
rnoosh Askarpour, Marcello Bersani, and Matteo Rossi.

Developing robotic applications with human-robot inter-
action for the service sector raises a plethora of challenges.
This paper presents a model-driven framework for develop-
ing interactive service robotic scenarios, allowing designers

123



Guest editorial for the special section on SEFM 2020 and 2021 287

to model the interactive scenario, estimate its outcome,
deploy the application, and smoothly reconfigure it. The core
of the framework is a formal model of the agents at play—
the humans and the robots—and the robotic mission under
analysis, which is subject to Statistical Model Checking to
estimate the mission’s outcome. The formal model incorpo-
rates a formalization of different human erroneous behaviors’
phenotypes,whose likelihood can be tunedwhile configuring
the scenario. Through scenarios inspired by the healthcare
setting, the evaluation highlights how different configura-
tions of erroneous behavior impact the verification results
and guide the designer towards the mission design that best
suits their needs.

Active model learning of stochastic reactive systems by
Martin Tappler, Edi Muskardin, Bernhard Aichernig, and
Ingo Pill.

Black-box systems are inherently hard to verify. Many
verification techniques, like model checking, require formal
models as a basis. Active automata learning allows to auto-
matically infer formal models from system interactions. This
paper presents a new approach to efficiently learn models of
stochastic reactive systems. It extends L*-based learning for
Markov decision processes to stochasticMealymachines.An
evaluation shows that the proposed optimizations and adapta-
tions to stochastic Mealy machines can reduce learning costs
by an order of magnitude while improving the accuracy of
learned models.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Guest editorial for the special section on SEFM 2020 and 2021
	1 Introduction
	2 Selected papers




