
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01160-6

SPEC IAL SECT ION PAPER

Learning minimal automata with recurrent neural networks

Bernhard K. Aichernig1 · Sandra König2,3 · Cristinel Mateis2 · Andrea Pferscher1,4 ·Martin Tappler1,5

Received: 17 February 2023 / Revised: 2 December 2023 / Accepted: 26 January 2024
© The Author(s) 2024

Abstract
In this article, we present a novel approach to learning finite automata with the help of recurrent neural networks. Our goal
is not only to train a neural network that predicts the observable behavior of an automaton but also to learn its structure,
including the set of states and transitions. In contrast to previous work, we constrain the training with a specific regularization
term. We iteratively adapt the architecture to learn the minimal automaton, in the case where the number of states is unknown.
We evaluate our approach with standard examples from the automata learning literature, but also include a case study of
learning the finite-state models of real Bluetooth Low Energy protocol implementations. The results show that we can find
an appropriate architecture to learn the correct minimal automata in all considered cases.

Keywords Automata learning · Machine learning · Recurrent neural networks · Bluetooth Low Energy · Model inference

1 Introduction

Models are at the heart of any engineering discipline. They
capture the necessary abstractions to master the complexity
in a systematic design and development process. In software
engineering, models are used for a variety of tasks, includ-
ing specification, design, code-generation, verification, and
testing. In formal methods, these models are given formal
mathematical semantics to reach the highest assurance lev-
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els. This is achieved through (automated) deduction, i.e., the
reasoning about specific properties of a general model.

With the advent of machine learning, there has been a
growing interest in the induction of models, i.e., the learning
of formalmodels from data.We have seen techniques to learn
deterministic and non-deterministic finite state machines,
Mealy machines, timed automata, and Markov decision pro-
cesses. In this research, called automata learning [1], model
learning [2], or model inference [3], specific algorithms have
been developed that either start from given data (passive
learning) [4] or actively query a system during learning
(active learning) [5]. Two prominent libraries that implement
such algorithms are AALpy [6] (implemented in Python) and
LearnLib (implemented in Java) [7].

An alternative to specific algorithms is to map the
automata learning problem to another domain. For exam-
ple, it was shown that the learning problem can be encoded
as SAT [8–11] or SMT [12, 13] problem, and then it is the
task of the respective solver to find a model out of the given
data.

In this work, we explore the question of whether machine
learning can be harnessed for automata learning. That is, we
research if and how the problem of automata learning can be
mapped to a machine learning architecture. Our results show
that a specific recurrent neural network (RNN) architecture is
able to learn a Mealy machine from given data. Specifically,
we approach the classicNP-complete problemof inducing an
automaton with at most k states that is consistent with a finite
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Fig. 1 Automata learning
framework that is based on
training a recurrent neural
network (RNN) using a given
set of traces. To learn a minimal
automaton, we adapt the
structure of the RNN iteratively

sample of a regular language [14]. Figure1 depicts the basic
procedure of the presented RNN-based learning technique.
Given a set of traces from a black-box system, we train an
RNN from which we extract an automaton that models the
behavior of the system.

The main contributions of this work can be summarized
as follows: (i) a novel architecture for automata learning by
enhancing classical RNNs, (ii) a specific constrained training
approach exploiting regularization, (iii) a systematic evalu-
ation with standard grammatical inference problems and a
real-world case study, and (iv) evidence that we can find an
appropriate architecture to learn the correct automata in all
considered cases.

This is an extended version of a conference paper pre-
sented at SEFM 2022, the 20th International Conference on
Software Engineering and Formal Methods [15]. The new
contributions comprise (i) a generalized algorithm for which
the number of states of the automaton needs not be known,
but can construct an automaton with minimal states, and (ii)
the corresponding new evaluation.

This new generalization of our learning technique is non-
trivial. Figure1 illustrates the iterative procedure of our
extension. The main idea is as follows: First, we determine
an upper-bound of states that are necessary to capture the
data in a Mealy machine. For this, we build a tree out of the
given data traces and count the nodes. Then, we initialize an
RNN with the size proportional to this upper bound. During
training, we search for an automaton representation that cap-
tures the data. Once an automaton is found, we check with
a standard minimization algorithm if a smaller automaton
exists. If the minimized automaton has fewer states than pre-
viously found automata, we train an RNN with this smaller
target number of states. This is done until we find a minimal
automaton that is consistent with the training data. To sum
up, we start with a tree-shaped model without any general-
ization and end with a minimal automaton. Our evaluation
demonstrates that this is indeed possible.

The rest of the paper is structured as follows. Section2
introduces preliminary work. In Sect. 3, we present our
automata learning technique based on RNNs. Section4 dis-
cusses the results of the conducted case studies. We compare
to related work in Sect. 5, followed by concluding remarks
in Sect. 6.

2 Preliminaries

2.1 Recurrent neural networks

Recurrent neural networks (RNNs) are a popular choice for
modeling sequential data, such as time-series data [16]. The
classical version of an RNN with feedback from a hidden
layer to itself is known as vanilla RNN [17].

A vanilla recurrent neural networkwith input x andoutput
y is defined as

h<t> = f
(
Whx x

<t> + Whhh
<t−1> + bh

)

ŷ<t> = g
(
Wyh

<t> + by
)

where f and g are activation functions for the recurrent and
the output layer, respectively. Popular activation functions
for the recurrent layer are rectified linear unit (ReLU) and
hyperbolic tangent (tanh), whereas the softmax or hardmax
functions may be used for g when categorical output values
shall be predicted. The activation functions for the output
values are defined as

softmax(z)[i] = ez[i]∑N
n=1 e

z[i] ,

and

hardmax(z)[i] =
{
1, if z[i] = max(z)

0 otherwise
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for i ∈ 1 . . . N and z = (z[1], . . . , z[N ]) ∈ R
N , where

softmax(z) provides a probability distribution over the values
of vector z and hardmax(z) assigns the probability of one to
the index in z with the highest value. The parameters, aka
weights, � = (Whx ,Whh, bh,Wy, by) need to be learned.
The input to the network at time step t is x<t>, whereas ŷ<t>

is the corresponding network’s prediction. h<t> is referred to
as the hidden state of the network and is used by the network
to access information from past time steps or equivalently,
pass relevant information from the current time step to future
steps.

An RNN maps an input sequence x to an output sequence
ŷ of the same length. It is trained based on training data
{(x1, y1), . . . , (xm, ym)} containingm sequence pairs.While
processing input sequences xi = (x<1>

i , . . . , x<n>
i ), values

of the parameters� are learned tominimize the error between
the true outputs yi = (y<1>

i , . . . , y<n>
i ) and the network’s

predictions (ŷ<1>
i , . . . , ŷ<n>

i ).
The error is measured through a predefined loss function.

The most popular loss functions are the mean squared error
for real-valued y<t>, and the cross-entropy loss for categor-
ical y<t>.

Gradient-based methods are used to minimize the error by
iteratively changing each weight in proportion to the deriva-
tive of the actual error with respect to that weight until the
error falls below a predefined threshold for a fixed number
of iterations.

2.2 Finite state machines

We consider finite-state machines (FSMs) in the form of
Mealy machines:

Definition 1 AMealymachine is a 6-tuple 〈Q, q0, I , O, δ, λ〉
where

• Q is a finite set of states containing the initial state q0,
• I and O are finite sets of input and output symbols,
• δ : Q × I → Q is the state transition function, and
• λ : Q × I → O is the output function.

Starting from a fixed initial state, a Mealy machine M
responds to inputs i ∈ I , by changing its state according
to δ and producing outputs o ∈ O according to λ. Given a
sequence of inputs i ∈ I ∗, M produces an output sequence
o = λ∗(q0, i), where λ∗(q, ε) = ε for the empty sequence ε

and λ∗(q, i · i) = λ(q, i) · λ∗(δ(q, i), i), i is an input, i is an
input sequence, and · denotes concatenation. Given input and
output sequences i and o of the same length, we use t(i, o)
to create a sequence of input–output pairs in (I × O)∗. We
call such a sequence of pairs a trace.

A Mealy machineM defines a regular language over I ×
O: L(M) = {t(i, o) | i ∈ I ∗, o = λ∗(q0, i)} ⊆ (I ×

q0

q1

q2

Ping/
ConnectionClosed

Connect/
ConnAck

Ping/
Pong

Connect/
ConnectionClosed

Ping/
Pong

Connect/
ConnectionClosed

Fig. 2 Mealy machine of a ping server

O)∗. The language contains the deterministic response to
any input sequence and excludes all other sequences. We
can now formalize the problem that we tackle in this paper:
Given a finite set of traces S ⊂ (I × O)∗, we learn a Mealy
machine M with at most n states such that S ⊆ L(M), by
training an RNN. This is a classic NP-complete problem in
grammatical inference [14]. Usually, it is stated for (DFAs),
but any DFA can be represented by a Mealy machine with
true and false as outputs, denoting whether a word (input
sequence) is accepted.

Example 1 (Model of Ping Server) Figure 2 shows a Mealy
machine of a simple ping server that responds to pings after a
connection has been established. The model has three states
that are connected with transitions labeled by pairs of inputs
and outputs. For example, from the initial state q0, the server
responds with ConnAck to the input Connect. Any further
Connect input leads to a closing of the connection with the
corresponding output observation ConnectionClosed.

Next, we introduce auxiliary techniques that are related to
automata learning. With the first, we compute a bound on the
number of FSM states that are sufficient for aMealymachine
to produce a set of given traces. The second technique, FSM
minimization, computes a Mealy machineM′ from a Mealy
machineM, such thatM′ has the minimal number of states
and its language is equivalent toM.

2.2.1 Bounding FSM size

Let S ⊂ (I × O)∗ be a finite set of traces and let 
 be
the reflexive prefix relation on traces. To compute an upper
bound on the number of FSM states sufficient to produce S,
we create a prefix-tree acceptor (PTA) from S and use its
number of nodes as a bound for the number of FSM states
that are sufficient to produce S. PTA creation is a common
preprocessing step in automata learning algorithm [18], like
RPNI [4].We create input–output prefix tree acceptors (IOP-
TAs), which are a variation of PTAs similar to the PTAs used
by IoAlergia [19]. An IOPTA T is a tree that compactly
represents a trace sample S with edges labeled by inputs and
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n0

n1 n2

n3 n4 n5

n6 n7 n8

{ConnAck} {Connection
Closed}

{Connection
Closed}

{ConnAck}

{ConnAck}{Pong}

{Pong} {Pong}

Connect Ping

Connect Ping Connect

Connect Ping Ping

Fig. 3 IOPTA representing traces sampled from the ping server

nodes, except the root, labeled by outputs. Hence, a path from
the root to a node of T is labeled by a trace (I × O)∗.

An IOPTA T created for a trace sample S contains a path
labeled by a trace t iff S contains a trace t ′ with t 
 t ′, i.e., T
contains a path for every trace prefix. Thus, T can be created
from S by merging traces with common prefixes. Such an
IOPTA T is a partial1 Mealy machine that defines exactly
the prefix-closure of S. We can deduce that the number of
nodes of T is a bound on the number of FSM states sufficient
to represent S. Since languages defined by a Mealy machine
are prefix-closed, IOPTAcomputation does not introduce any
generalization.

Example 2 (IOPTA of ping server) Suppose we sampled a set
of three traces that includes:

• Connect/ConnAck·Connect/ConnectionClosed ·Connect/
ConnAck

• Connect/ConnAck · Ping/Pong · Ping/Pong
• Ping/ConnectionClosed ·Connect/ConnAck ·Ping/Pong

The corresponding IOPTA is shown in Fig. 3, where outputs
are put in curly braces to distinguish them from inputs. The
IOPTA has nine nodes; thus, we know that nine states are
sufficient to model the ping server.

2.2.2 FSMminimization

Minimization of FSMs basically partitions the states Q of a
MealymachineM into blocks B that are equivalent w.r.t. λ∗;
see Hopcroft et al. [20] for minimization of DFAs. That is,
two states are grouped into a block if they produce the same
outputs, and thus cannot be distinguished. Given such a par-
tition B, a minimal Mealy machine M′ can be constructed
with states B, i.e., states given by blocks of indistinguishable
states. Transitions between b ∈ B and b′ ∈ B are created
if there is a corresponding transition between r ∈ b and

1 The transition and output functions are partial functions.

{q0} {q1, q2}

Ping/
ConnectionClosed

Connect/
ConnAck

Ping/Pong

Connect/
ConnectionClosed

Fig. 4 Minimal Mealy machine of a ping server

s ∈ b′ in M. Note that M′ is unique up to a renaming.
Active automata learning algorithms, like L∗, have minimal-
ity as an inherent property, whereas we apply minimization
as an additional step. Efficient algorithms, such as Hopcroft’s
FSMminimization algorithm [21] have an n log n worst-case
runtime complexity. Hence, the runtime overhead of themin-
imization step is negligible.

Example 3 (Minimization of Ping Model) The model shown
in Fig. 2 is non-minimal. The states q1 and q2 are equivalent,
as there is no sequence that distinguishes them. Hence, a
minimization would create partition {{q0}, {q1, q2}}. Based
on that, we can create the minimal Mealy machine shown in
Fig. 4.

2.3 Automata learning

Automata learning creates behavioral FSMs of black-box
systems. Figure5 illustrates the general framework for learn-
ing a reactive system model in the form of a Mealy machine.
The goal of automata learning is to create a model M such
that L(M) = L(MSUL), whereMSUL is an unknownMealy
machine representing the System Under Learning (SUL).

We distinguish between active and passive learning algo-
rithms. Passive learning creates a behavioral model from a
given set of traces. To learn a Mealy machine MP , passive
learning infers from a finite set of traces S ⊂ (I × O)∗ a
model MP such that S ⊆ L(MP ), often restricting MP to
have at most k states. Given that S ⊆ L(MSUL), most algo-
rithms guarantee L(MP ) = L(MSUL) for large enough S
and finite MSUL [18]. One challenge in the application of
passive learning is to provide a finite set of traces such that
L(MP ) = L(MSUL).

Active automata learning queries the SUL to create a
behavioral model.Many active learning algorithms are based
on the L∗ algorithm [5] which is defined for different mod-
eling formalisms like Mealy machines [22]. L∗ queries the
SUL to generate a finite set of traces S ⊂ (I × O)∗ from
which a hypothesis Mealy machine MA is constructed that
fulfills S ⊆ L(MA). L∗ guarantees that theMA is minimal.
The hypothesis MA is then checked for equivalence to the
language L(MSUL). SinceMSUL is unknown, checking the
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Fig. 5 The automata learning
framework generates a Mealy
machine from a sample of
traces. The sample is generated
from the executions of inputs on
the reactive system

Reactive
System

System
Under Learning Learning

Algorithm

Trace
Sample

Automata Learning
Framework

q0 q1

q2 q3

a/false

b/false

a/true

b/false

a/false

b/true

a/false

b/false

Learned Model

input

output
generates

behavioral equivalence betweenMSUL andMA is generally
undecidable.Hence, conformance testing is used to substitute
the equivalence oracle in active learning. Model-based test-
ing techniques generate a finite set of traces ST ⊂ (I × O)∗
from executions on MA and check if ST ⊂ L(MSUL).
If t(i, o) /∈ L(MSUL), a counterexample to the behavioral
equivalence betweenMSUL andMA is found. Based on this
trace, the set of traces S ⊂ (I × O)∗ is extended by per-
forming further queries. Again a hypothesis MA is created
and checked for equivalence. This procedure repeats until
no counterexample to the equivalence between L(MSUL)

and L(MA) can be found. The algorithm then returns the
learned automatonMA. Note that L∗ createsMA such that
S ⊂ L(MA). With access to a perfect behavioral equiv-
alence check, which provides any differences between the
languages defined by MSUL and MA, we could guarantee
that the generated finite set of traces S enables learning a
model MA such that L(MA) = L(MSUL).

3 Automata learning with RNNs

In this section, we first present the problem that we tackle
and propose an RNN architecture as a solution. After that,
we cover (i) the constrained training of the proposed RNN
architecture with our specific regularization term, and (ii) the
usage of the trained RNN to extract an appropriate automa-
ton. Finally, we propose an iterative learning algorithm that
uses the proposed RNN architecture and automaton extrac-
tion to learn a minimal automaton without knowing the
minimal number of states.

3.1 Overview and architecture

It is well known that recurrent neural networks (RNNs) can
be used to efficiently model time-series data, such as data
generated from the interaction with a Mealy machine. Con-
cretely, this can be done by using the machine inputs x<t>

as inputs to the RNN and minimizing the difference between
the machine’s true outputs y<t> and the RNN’s predictions
ŷ<t>. In other words, the RNN would predict the language
L(M) of a Mealy machine M.

This optimization process can be performed via gradient
descent. Even if such a trained RNN can model all inter-
actions with perfect accuracy, one disadvantage compared
to the native automaton representation as, e.g., a Mealy
machine, is that it is much less interpretable. While each
state in aMealy machine can be identified by a discrete num-
ber, the hidden state of the RNN, which is the information
passed from one time step to the next one, is a continuous
real-valued vector. This vector may be needlessly large and
contain mostly redundant information. Thus it would be use-
ful if we could simplify such a trained RNN into a Mealy
machineMR that produces the language of aMealymachine
M that we want to learn, i.e., with L(M) = L(MR).

We approach the following problem. Given a sample S ⊂
L(M) of traces t(i j , o j ) and the number of states k of M,
we train an RNN to correctly predict o j from i j . To facilitate
interpretation, wewant to extract aMealymachineMR from
the trained RNN with at most k states, modeling the same
language. For MR , S ⊂ L(MR) shall hold such that for
large enough S we have L(M) = L(MR).

For this purpose, we propose an RNN architecture and
learning procedure that ensure that the RNN hidden states
can be cleanly translated into k discrete automata states.
Compared to standard vanilla RNNs, the hidden states are
transformed into an estimate of a categorical distribution over
the k possible automaton states. This restricts the encoding
of information in the hidden states since now all components
need to be in the range [0, 1] and sum up to 1. Figure6 shows
our complete RNN cell architecture for a single hidden layer,
implementing the following equations.

h<t> = a f
(
Whx x

<t> + Whss
<t−1> + bh

)
, (1)

a f ∈{ReLU, tanh}
ŷ<t> = softmax

(
Wyh

<t> + by
)

(2)

ŝ<t> = softmax
(
Wsh

<t> + bs
)

(3)

s<t> =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

softmax
(
Wsh

<t> + bs
)

. . . if mode = “train”

hardmax
(
Wsh

<t> + bs
)

. . . else (i.e., mode = “infer”)

(4)
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Fig. 6 RNN-cell architecture

In comparison with vanilla RNN cells, the complete hidden
state h<t> is only an intermediate vector of values. Based on
h<t>, an output ŷ<t> is predicted using a softmax activation.
A Mealy machine state ŝ<t> is predicted as well and passed
to the next time step. It is computed via (i) softmax during
RNN training, and (ii) via hardmax during inference. During
training, see Algorithm 2, we also compute the cross-entropy
of ŝ<t> with hardmax(ŝ<t>) as a label, which serves as a
regularization term. Inference refers to extracting an automa-
ton from the trained RNN, which takes as input the current
system state and an input symbol and gives as output the next
system state and an output symbol. Hence, we use softmax
to estimate a categorical distribution over possible states for
training, whereas we use hardmax to concretely infer one
state during inference.

Our algorithm for extracting a Mealy machine from a
trained RNN, see Algorithm 3, is based on the idea that
if the RNN achieves perfect accuracy when predicting the
machine’s true outputs, the hidden state h<t> encodes infor-
mation corresponding to the state of aMealy machine at time
step t . Otherwise, the RNN would not be able to predict the
expected outputs correctly, since those are a function of both
the input and the current state. By adapting the RNN archi-
tecture, we enforce hidden states to correspond to discrete
Mealy machine states.

3.1.1 Multiple hidden layers

The matrices Whx , Whs , Wy , and Ws and the corresponding
bias vectors introduced before define the weights of an RNN
with a single layer. It may be beneficial to add additional
hidden layers to better predict certain complex behaviors.
For the hidden layers, we use fully connected layers, where
each layer i is defined by a pair Whhi and bhi containing
the weights of that layer. Each layer performs an additional
transformation of the hidden state h<t>.

Concretely, the one-hot-encoded input x<t> and state
s<t−1> are first mapped to h<t>, that is, Eq. 1 is left
unchanged. Let h<t>

0 = h<t>, then every additional layer
performs the transformation h<t>

i = a f (Whhi h
<t>
i−1 + bhi ).

When we have multiple layers, we perform the state and out-
put prediction on the result h<t>

k from the last hidden layer k,
that is, we substitute h<t> by h<t>

k in Eqs. 2, 3 and 4. Hence,
input processing is carried out only by the first layer, and
state and output predictions, along with their corresponding
regularization, are performed exclusively in the last layer. All
transformations in between are not affected by regularization.

3.2 Training and automaton extraction

In the following,wefirst discuss how to train anRNNwith the
structure shown in Fig. 6 such that it will encode an automa-
ton. Secondly, we show how to extract the automaton from a
trained RNN. We start by illustrating the basic operation of
such an RNN, i.e., the prediction of outputs and state transi-
tions from an input sequence. This is called the forward pass
and is used during training and automaton extraction.
Forward pass. Algorithm 1 implements the forward pass
taking an input sequencex and amodevariable as parameters.
The mode variable distinguishes between training (train)
and automaton extraction (infer). The algorithm returns
a pair (ŷ, ŝ) comprising the predicted output sequence and
the sequence of hidden states visited by the forward pass.
We want to learn the language of a Mealy machine, i.e., map
i ∈ I ∗ to o ∈ O∗ for sets I , O of input and output symbols.
Therefore, we encode every i ∈ I using a one-hot-encoding
to yield input sequences x from i ∈ I ∗. In this encoding,
every i is associated with a unique |I |-dimensional vector,
where exactly one element is equal to one and all others are
zero.We write x for a one-hot-encoded input i . Analogously,
we encode outputs and the hidden state shall approach a one-
hot-encoding in a k-dimensional vector space. For one-hot-
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encoded outputs, we generally use the letter y and we use D
to denote one-hot-encoded training datasets derived from a
sample S ⊂ L(M).

Algorithm 1 Model forward pass M(x,mode)
Require: Input sequence x, Forward pass mode ∈ {“train”,

“infer”}
Ensure: Pair (ŷ, ŝ) of predicted outputs and automaton states, resp.
1: ŷ, ŝ ← [ ], [ ]
2: s ← one_hot_encoding(q0)
3: for t ← 1 to #steps(x) do
4: h = a f (Whx x<t> + Whss + bh)
5: � a f ∈ {ReLU , tanh}
6: ŷ<t> ← so f tmax(Wyh + by)
7: ŝ<t> ← so f tmax(Wsh + bs)
8: if mode = “train” then
9: s ← ŝ<t>

10: else � mode = “in f er”
11: s ← hardmax(Wsh + bs)
12: end if
13: end for
14: return (ŷ, ŝ)

Algorithm 1 initializes the output and state sequences ŷ
and ŝ to the empty sequences and the hidden state s of the
RNN to the one-hot encoding of the fixed initial state q0.
For every input symbol x<t>, Lines 4–12 perform the equa-
tions defining the RNN, i.e., applying affine transformation
using weights and an activation function. At each step t , we
compute and store the predicted output ŷ<t> (Line 6) and
the predicted state ŝ<t> (Line 7) in ŷ and ŝ, respectively. In
the “train” mode, we pass ŝ<t> as hidden state to the next
time step (Line 9). In the “infer” mode used for automaton
extraction, we apply a hardmax on the hidden state (Line 11)
so that exactly one state is predicted.
Training.The architecture is trained byminimizing a predic-
tion loss between y<t> and ŷ<t> along with a regularization
loss: the cross-entropy of the state distribution s<t> w.r.t. to
the state with the highest probability in s<t>. On the one
hand, our regularization design encourages the RNN to re-
use a state at subsequent steps once it has been selected at
the current step since this contributes to decreasing the reg-
ularization loss. On the other hand, it encourages using as
few states as possible overall since any additional used state
contributes to increasing the regularization loss. Minimizing
our regularization of choice forces the RNN to increase the
certainty about the predicted state. This ensures that the hid-
den states tend to be approximately one-hot-encoded vectors
where the index of the maximal component corresponds to
the state of a Mealy machine accepting the same language.
Note that directly using a discrete state representation is not
beneficial when training with gradient descent. Algorithm 2
implements the training in PyTorch-like [23] style. Its param-
eters are the training dataset D, a sample of the language to
be learned, the learning epochs, and a regularization fac-
tor, which controls the influence of state regularization. The

training is performed using the gradient descent-based Adam
optimizer [24]. The algorithm performs up to #epochs loops
over the training data. An epoch processes each trace in the
training data referred to as an episode (Lines 4–21). For the
actual training, we perform a forward pass in “train”mode
and compute the overall loss from the prediction and state
regularization losses (Lines 5–9). Lines 10 and 11 update the
RNN parameters, i.e., the weights.

Training stops when the prediction accuracy of the RNN
operated as an automaton reaches 100%or #epochs episodes
have been performed. To calculate accuracy, we perform a
forward pass in the “infer” mode in Line 15 and compute
the average accuracy in Line 16. Upon finishing the train-
ing, Algorithm 2 returns a Boolean variable indicating if the
prediction accuracy converged to 100%and the trainedRNN.

Algorithm 2 RNN Training train(M, D)

Require: Initialized RNN model M , Training dataset D =
{(x1, y1), . . . , (xm , ym)}, #epochs, Regularization factor C

Ensure: Pair of Boolean variable converged indicating accuracy and
trained RNN model M

1: optimizer ← Adam(M)

2: converged ← ⊥
3: for i ← 1 to #epochs do
4: for (x, y) ∈ D do
5: ŷtr, ŝtr ← M(x, “train”)
6: lossy ← cross_entropy(y, ŷtr)
7: losss ← cross_entropy(hardmax(ŝtr), ŝtr)
8: losss ← C × losss
9: loss ← lossy + losss
10: loss.backward()

11: optimizer .step()
12: end for
13: accinf ← 0
14: for (x, y) ∈ D do
15: ŷinf , ŝinf ← M(x, “in f er”)
16: accinf ← accinf + accuracy(y, ŷinf )/|D|
17: end for
18: if accinf = 100% then
19: converged ← �
20: break
21: end if
22: end for
23: return (converged, M)

The purpose of the trained RNN model is not to predict
outputs of new inputs, unseen during training, but to helpwith
inferring an automaton that produces the training data. This
automaton shall be used to predict the outputs corresponding
to (new) inputs. Thus,we use all available data for training the
RNN and aim at achieving perfect accuracy on the training
data. Perfect accuracy on the training set gives us the con-
fidence that the internal state representation of the learned
RNN model corresponds to the true (partial) automaton that
produced that data. In cases where the training data does not
cover all states and transitions of the full true automaton,
we might learn a partial automaton missing some states and
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Algorithm 3 Automaton extraction from RNN
extract(M, D)

Require: Trained RNN model M , Training data D =
{(x1, y1), . . . , (xm , ym)}

Ensure: Automaton transitions T
1: T ← {}
2: for episode ← (x, y) ∈ D do
3: ŷ, ŝ ← M(x, “in f er”)
4: s_ f rom ← 0
5: for t ← 1 to #steps(episode) do
6: s_to ← argmax(ŝ<t>)

7: in, out ← argmax(x<t>), argmax(y<t>)

8: if out = argmax(ŷ<t>) then
9: T ← T ∪ {(s_ f rom, s_to, in/out)}
10: else
11: break
12: end if
13: s_ f rom ← s_to
14: end for
15: end for
16: return T

transitions. Using all available data for training reduces the
possibility to learn just a partial automaton.
Automaton extraction from a trained RNN. Given a
trained RNNmodel, we extract the corresponding automaton
with Algorithm 3. We represent the automaton of a Mealy
machine by its set of transitions in the following form:

T = {(s, s′, i/o) | s, s′ ∈ Q ∧ i ∈ I ∧ o ∈ O∧
δ(s, i) = s′ ∧ λ(s, i) = o}.

Algorithm 3 starts by initializing T to the empty set. Then,
it iterates through all episodes, i.e., all traces, from the train-
ing set D. At each iteration (Lines 3–13) it first runs the
RNN model M on the one-hot-encoded input sequence x of
the current episode (Line 3) to obtain the corresponding pre-
dicted output symbols and transition state sequence ŷ and ŝ,
respectively. For this purpose, we perform the forward pass
implemented by Algorithm 1 in the “infer” mode. This
mode uses the hardmax operation to compute the encoded
state in each step to ensure stability of the extraction pro-
cess. A well-trained RNN with our architecture will traverse
states that are close to being one-hot-encoded. The states
are generally not perfectly one-hot-encoded due to numer-
ical imprecisions and the nature of RNN training. Using
hardmax to compute state suppresses the accumulation of
such small imprecision. This is especially relevant when pro-
cessing long training episodes during automaton extraction.
Using the softmax operation,wemight get ambiguous extrac-
tion results, which manifest as non-deterministic transitions.

Lines 6–13 iterate through all steps of the current episode.
All episodes start from the initial state q0 which, by construc-
tion, is assigned the label 0. Thus,we initialize thefirst state to
0 (Line 4). If the predicted output symbolmatches the label at
the current step (Line 8), then T is extended by a triple encod-

ing a transition, which is built from the source/target states
and the input/output symbols of the current step. By apply-
ing argmax on the one-hot encoded input x<t> and output
y<t> we get integer-valued discrete representations of them
(Line 7). The actual corresponding input symbol, and respec-
tive output symbol, are obtained from the input, respective
output, and symbol alphabet through an appropriate indexed
mapping. For simplicity, we do not show this mapping here.
If the predicted output does not match the expected value,
the current and remaining steps of the current episode are
ignored and the algorithmmoves to the next episode (Line 2).
An episode consists of a sequence of adjacent steps (or tran-
sitions) in the automaton, i.e., the next step starts from the
state where the current step ended (Line 13). After process-
ing all training data traces, Algorithm 3 returns the extracted
automatonwith transitions T .Note that the extracted automa-
ton might not include all states that can be one-hot encoded
with a vector with the length of s<t>. Hence, the number of
states of the extracted automaton might be smaller than the
length of s<t>.

3.3 Minimal automaton learning

In the following, we explain how the previously proposed
algorithms can be used to learn a minimal automaton. In this
case, we assume that we do not know in advance the exact
number of states of a minimal automaton. Using an iterative
approach, we adjust downward the upper bound on the max-
imal number of states allowed to create an automaton that
correctly models the behavior of the given dataset. This iter-
ative approach is repeated until the number of states cannot
be reduced any further.

Algorithm 4 describes our iterative learning approach.
For learning, we require a dataset D, which is a sample of
the language to be learned, and a specific learning strategy.
We distinguish between two learning strategies: best effort
(“bestEffort”) and exhaustive (“exhaustive”). In the
best-effort strategy, a learning iteration (Lines 5–22) ends
upon the first successful attempt, if any, to learn an automa-
ton which perfectly explains the training data (Line 19). In
contrast, the exhaustive strategy performs all #runs attempts
to learn an automaton that is correct to the dataset and selects
among them the minimal one, if any, for further process-
ing. Consequently, the exhaustive strategy tries within the
given budget of #runs to find an even smaller automaton
with the known upper bound of the current learning itera-
tion, even if an automaton with the current upper bound has
already been found. That is, the exhaustive strategy always
executes all #runs iterations of the for-loop (Line 7),whereas
the best-effort strategy at most #runs. Algorithm 4 returns
a triplet consisting of (i) the best learned automaton, (ii) a
Boolean variable confirming that, at the last learning itera-
tion, an automaton of the same size has been learned as in the
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previous iteration, meaning that no smaller automaton could
be further learned, and (iii) the number of performed learn-
ing iterations. The best learned automaton corresponds to an
automaton with the fewest number of states learned in all
iterations. The Boolean variable indicates whether the RNN
model learned the same smallest automaton after setting the
upper bound to the minimal number of states found so far.

Algorithm 4 Minimal automaton learning
f i xpoint(D, strategy)
Require: Trials budget #runs, Training dataset D =

{(x1, y1), . . . , (xm , ym)}, Minimization strategy ∈
{“bestEffort”, “exhaustive”}

Ensure: Triplet of best learned automaton Amin, and Boolean variable
approvedmin indicating whether a fixpoint has been reached, and
number of learning iterations #i t

1: Amin ← I OPT A(D)

2: #i t ← 0
3: repeat
4: #i t ← #i t + 1
5: statesmin ← statesn(Amin)

6: approvedmin ← ⊥
7: for i ← 1 to #runs do
8: M ← RNN (statesmin)

9: converged, M ← train(M, D)

10: if converged then
11: A ← extract(M, D)

12: A ← minimize(A)

13: if statesn(A) < statesn(Amin) then
14: Amin ← A
15: else
16: approvedmin ← �
17: end if
18: if strategy = “best E f f ort” then
19: break
20: end if
21: end if
22: end for
23: until statesmin = statesn(Amin)

24: return (Amin, approvedmin, #i t)

Algorithm 4 starts by creating an IOPTA from the given
dataset D, as described in Sect. 2.2, and initializing the
number of learning iterations #i t to 0. The generated tree
represents the initial automaton and provides the first upper
bound on the number of states based on the number of nodes
in the tree. We then start our iterative learning procedure. A
learning iteration represents one iteration of the repeat-loop
and includes the block from Lines 5–22.2 We terminate the
learning procedure if the learned automaton cannot be further
minimized.

Let statesn(A) be a function that returns the number of
states of a given FSM A. In Line 5, we save in statesmin the
states number of the currently best learned automaton Amin,

2 Note that one learning iteration of our learning algorithmmay include
several, at most #runs, RNN trainings.

i.e., the automaton with the fewest states learned so far. In
the next step, we initialize a Boolean variable approvedmin

to false, represented by ⊥. This variable indicates whether
the RNN model learns again an automaton with the number
of states equal to statesmin after setting the upper bound of
states to statesmin (Line 8) at the current iteration. In the
following (Lines 7–22), we attempt to reduce the number
of states further to minimize the automaton Amin with our
RNN-based learning technique.

The attempt to minimize the automaton is limited to a
maximum number of runs. In Line 8, we initialize our RNN
model M based on the current upper bound on the number of
states. In terms of the RNN cell architecture we introduced
in Sect. 3.1, the given number of states defines the size of the
state vector s<t>. We then train the RNN model M on the
provided dataset as described inAlgorithm2 (Line 9). Hence,
we obtain the trained RNN model M and a Boolean variable
indicating whether the trained model achieved 100% accu-
racy in predicting the outputs of the provided dataset D. If the
RNNmodel converges to 100% accuracy, from Lines 11–20,
we (i) extract the automaton, (ii) check the automaton size,
and (iii) stop trying to learn further automata with potentially
fewer number of states if the best-effort strategywas selected.

(i) First, we extract the automaton A as described in Algo-
rithm 3. Since we do not know the exact number of states,
we may learn an automaton that has more states than the
minimal automaton representing the dataset D. The RNN
model might extract an automaton that has states that cannot
be distinguished. As described in Sect. 2.2, we can further
minimize an automaton by grouping indistinguishable states.
For this, wemerge all indistinguishable states of the extracted
automaton A and create an equivalent automaton containing
only distinguishable states in Line 12. Note that any kind of
minimization on A does not affect the behavior learned by
the RNN model.

(ii) We then compare the size of the minimized automa-
ton A and the size of the current minimal automaton Amin

(Line 13). If the newly extracted automaton A has fewer states
than the previously learned minimal automaton Amin, A
becomes the newminimal automaton. In the case thatwe can-
not further reduce the automaton size, we set approvedmin to
true, represented by �, indicating that the fixpoint has been
reached (Line 16).

(iii) Ifwe use the best-effort strategy,we do not execute the
remaining runs of the current learning iteration after learn-
ing the first automaton perfectly explaining the training data
(Line 19). In the exhaustive strategy, on the other hand, we
continue the current learning iteration until the entire budget
#runs is consumed and train newRNNmodels with the min-
imum number of states from the previous learning iteration
as upper bound for the size of the state vector s<t>. After the
maximum number of runs has been performed, Amin con-
tains the best among all automata, if any, learned during the
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Table 1 Description of Tomita
grammars

Grammar Description # States

Tomita 1 Strings of the form 1∗ 2

Tomita 2 Strings of the form (1 0)∗ 3

Tomita 3 Strings that do not include an odd number of consecutive 0
symbols following an odd number of consecutive 1 symbols

5

Tomita 4 Strings without more than 2 consecutive 0 symbols 4

Tomita 5 Even strings with an even number of 0 and 1 symbols 4

Tomita 6 Strings where the difference between the numbers of 0s and 1s
is divisible by three

3

Tomita 7 Strings of the form 0∗1∗0∗1∗ 5

#runs attempts to learn an automaton perfectly explaining
the training data.

Finally, Algorithm 4 terminates if at the current learning
iteration (i) either the fixpoint is reached, i.e., an automaton
with the same number of states as in the previous learn-
ing iteration is learned, or (ii) no automaton at all perfectly
explaining the training data can be learned due to insufficient
budget. The algorithm returns the best learned automaton,
if any, otherwise I OPT A(D), along with the information
whether the fixpoint has been reached and the number of
performed learning iterations.

4 Case studies

4.1 Case study subjects

4.1.1 Tomita grammars

We use Tomita grammars [25] to evaluate our approach.
These grammars are popular subjects in the evaluation of
formal-language-relatedworkonRNNs [26–28], as theypos-
sess various features, while they are small enough to facilitate
manual analysis. All of the grammars are defined over the
input symbols 0 and 1. We transformed the ground-truth
DFAs into Mealy machines, thus the outputs are either true
(string accepted) or false (string not accepted). Table 1 con-
tains for each Tomita grammar a short description of the
accepted strings and the number of states of the smallest
Mealy machine accepting the corresponding language. For
example, Tomita 5 accepts strings depending on parity of 0
and 1 symbols. The language described by Tomita 5 has been
used to illustrate the L∗ algorithm [5]. Automata accepting
such languages are hard to encode using certain types of
RNNs [29].

4.1.2 Bluetooth Low Energy (BLE)

To evaluate the applicability to practical problems, we con-
sider the BLE protocol. BLEwas introduced in the Bluetooth

standard 4.0 as a communication protocol for low-energy
devices. The BLE protocol stack implementation is different
from the Bluetooth classic protocol. Pferscher and Aich-
ernig [30] learnedwith L∗ behavioralmodels ofBLEdevices.
They presented practical challenges in the creation of an
interface to enable the interaction required by active automata
learning. Especially, the requirement of adequately reset-
ting the device after each performed query raises the need
for a learning technique that requires less interaction with
the SUL. We selected three devices from their case study.
The selected devices have a similarly large state space and
show more stable deterministic behavior than other devices
in the case study by Pferscher and Aichernig [30] which
would have required advanced data processing that filters
out non-deterministic behavior. Table 2 states the investi-
gated devices, the used System-on-Chip, and the running
application. In the following, we refer to the devices by
the System-on-Chip names. The running application initially
sends BLE advertisements and accepts a connection with
another BLE device. If a connection terminates, the device
again sends advertisements. The generated behavioral model
should formalize the implemented connection procedure.
Compared to existing work [30], we extended the considered
nine inputs by another input that implements the termination
request, which indicates the termination of the connection by
one of the two devices. Since every input must be defined for
every state, the complexity of learning increases with the size
of the input alphabet. Hence, the BLE case study provides a
first impression of the scalability of our presented learning
technique.

Figure 7 depicts a behavioral model of the CYBLE-
416045-02. For the illustration, some input and output labels
have been simplified and combined by a ‘+’-symbol. The
model shows that a connection can be established with a
connection request and terminated by a scan or termination
request. A version request is only answered once during an
active connection. Pferscher and Aichernig [30] provide a
link to complete models of all three considered examples.
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Table 2 Investigated Bluetooth
Low Energy (BLE) devices
including the running
application

Manufacturer (Board) System-on-chip Application # States

Texas instruments (LAUNCHXL-CC2650) CC2650 Project zero 5

Cypress (CY8CPROTO-063-BLE) CYBLE-416045-02 Find me target 3

Nordic (decaWave DWM1001-DEV) nRF52832 Nordic GATTS 5

The column #States indicates the number of states of the models created by active automata learning

q0

q1

q2

connect /
DATA

scan / ADV
termination / DATA

version /
VERSION IND

connect /
DATA

scan / ADV
termination / DATA

scan / ADV
+ / EMTPY

+ / +

+ / +

version / DATA

Fig. 7 Simplified model of the CYBLE-416045-02 (‘+’ abbreviates
inputs/outputs)

4.2 Experimental setup

We demonstrate the effectiveness of our approach on both
(i) the canonical Tomita grammars from the literature [26,
28, 31], and (ii) the physical BLE devices that were intro-
duced in the previous section. Both evaluations (i) and (ii) are
performed with AAL data and successively with randomly
generated data.

We consider the automata learnedwith the active automata
learning (AAL) algorithm L∗ and the corresponding data
produced by AAL as given. We call these the AAL automata
and AAL data, respectively. In general, we do not require
AAL to be executed in advance. AAL rather provides an
outline for the evaluation of our proposed RNN architecture.

Our case study is based on the following four experimen-
tal setups: (i) We first evaluate the capability of our RNN
architecture to learn the correct automaton when the num-
ber of states of the AAL automaton is known in advance.
This number of states k is used to set the size of s<t> in the
RNN architecture. The AAL automaton itself is only used
as ground truth. It does not affect the RNN training proce-
dure in any way other than defining the size of s<t>. We say
that the RNN learned the correct automaton if the automaton
extracted from the trained RNN according to Algorithm 3 is
isomorphic to the minimal ground-truth automaton.

(ii) We then evaluate the capability of our approach to
learn the correct automaton without making any assumption
on the number of automaton states other than a data-based
upper bound, as shown in Algorithm 4. We fix #runs = 10
andperforma statistical evaluationby running10 timesAlgo-
rithm 4 for each use case. For simplicity, we use the same
values from (i) for the RNN architecture and training hyper-
parameters (e.g., number of hidden layers and neurons per

layer, activation function, learning rate, regularization factor,
etc.), except the size of the state vector s<t> which is now
controlled by the algorithm itself. In practice, these hyperpa-
rameters can be tuned by running Algorithm 4 with different
hyperparameter values and selecting those with better con-
vergence properties.

(iii) Furthermore, we evaluate the effects of changing
RNN hyperparameters.

(iv) Finally, we compare our proposed RNN-based learn-
ing technique with a classic passive learning technique from
the literature. To enable a fair comparison, we again use the
randomly generated data.
AAL Data. Firstly, we use the AAL data as RNN train-
ing data. This finite set of traces from AAL is complete
in the sense that passive automata learning could learn a
behavioral model with k states that conforms to the model
learned by AAL. For AAL data generation, we used the
active automata learning library AALpy [6], which imple-
ments state-of-the-art algorithms including the L∗-algorithm
variant for Mealy machines by Shahbaz and Groz [22]. The
logged data include all performed output queries and the
traces generated for conformance testing during the equiv-
alence check. The model-based testing technique used for
conformance testing provides state coverage for the interme-
diate learned hypotheses.

For the BLE data generation, we use a similar learn-
ing framework as Pferscher and Aichernig [30]. To collect
the performed output queries during automata learning, we
logged the performed BLE communication between the
learning framework and the SUL. The logged traces are then
post-processed to exclude non-deterministic traces. Non-
determinism might occur due to packet loss or delayed
packets. In this case, the active automata learning frame-
work repeated the output query. To clean up the logged BLE
traces, we execute all input traces on the actively learned
Mealy machine. If the observed output sequence deviates
from the Mealy machine output, the trace is removed from
the considered learning dataset.
Random Data. Secondly, we use randomly generated data
as training data. That is, we are not guided by any active
learning procedure to generate the training data. Instead, we
simply sample random inputs from the input alphabet and
observe the outputs produced by the system, i.e., the Tomita
grammars or the physical BLE devices. This corresponds to
a more realistic real-world scenario where the data logged
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during regular system operation is the only available training
data. To speed up the experiments, we use the AAL automa-
ton instead of the real system to generate random data. More
precisely, we achieve this through randomwalks on the AAL
automaton. Each random walk represents a trace in the train-
ing data. It always starts from the initial state of the AAL
automaton and collects the sequence of input–output pairs
obtained by running the AAL automaton on the randomly
generated inputs. We set a value max_length for the maxi-
mal length of the generated traces and the number of traces
to be generated.

• For Tomita grammars, in each iteration, we produce a
trace through a random walk from the initial state with
a length uniformly distributed within [1,max_length].
We add the produced trace to the dataset if it was not
already generated before.

• For the BLE devices, we generate traces that simulate
BLE sessions between real-world devices. For this, each
trace ends with a terminate request indicating the end of
the connection.
Hence, we can extract such traces from a long random
walk by extracting the subtraces between two subsequent
terminate requests. Thus, we start a random walk from
the initial state. At each step, we sample an input request
or force a terminate request to ensure a maximum indi-
vidual trace length of max_length.
Every time we return to the initial state, we add the cor-
responding generated trace to the dataset, if not already
contained. We start a new random walk and iterate as
long as the dataset does not contain the desired number
of traces.
Since each episode ends in the initial state due to the
final terminate request, we exploit this knowledge during
the RNN training by adding to the overall loss (Algo-
rithm 2, Line 9) the term cross_entropy(q0, s<last>)

corresponding to the deviation of the last RNN state
s<last> from the initial state of the learned automaton,
which is fixed to q0 by construction.

We start with a smaller random dataset and progressively
generate bigger random datasets until the RNN learns the
correct automaton or a predefined time budget is consumed.

All experiments were performed with PyTorch 1.8. The
evaluation (i) was performed on a Dell Latitude 5501 lap-
top with Intel Hexa-Core I7-9850H, 32GB RAM, 2.60GHz,
512GB SSD, NVIDIA GeForce MX150, and Windows-
10 OS. The evaluations (ii) and (iii) were performed due
to the increased amount of RNN training sessions on a
scientific cluster based on Intel(R) Xeon(R) Gold 6230R
CPU @ 2.1GHz and Ubuntu 20.04. The evaluation (iv) was
performed on an Apple MacBook Pro 2019 with an Intel
Quad-Core i5 running at 2.4 GHz and with 8GB memory.

4.3 Results and discussion

The following section presents the results for our four
experimental setups, followed by a discussion on the gener-
alizability of our presented learning technique to other case
studies.

4.3.1 Minimal states number is given

In this evaluation, we assume that the number of states of
a minimal automaton is given. This should demonstrate the
basic feasibility of our proposed RNN architecture.

Tables 3 and 4 illustrate the experimental results obtained
by applying our approach to learn the automata of Tomita
grammars and BLE devices, respectively, from both AAL
data and random data. Compared to the same tables from our
conference paper [15], we present different numbers here
since we repeated the experiments under slightly different
conditions for the following reasons:

• We adapted the random data generation procedure to
provide exactly the desired number of unique episodes,
instead of just removing the duplicates after the episodes
were generated and providing the remaining episodes.

• We enhanced some procedures to support the new Algo-
rithm 4 which is introduced in this article.

The number of traces contained in the training data is given
in the column Size for both AAL data and random data. For
the random data, it is interesting to know how many traces
from the AAL data were contained also in the random data.
This information is shown in the columnAALDataCoverage
as the ratio between the number of AAL traces contained in
the random data and the overall number of traces in the AAL
data.

The columnEpisode Lengths contains themeans and stan-
dard deviations of the lengths of the traces in the training data.
The column RNN contains (i) the RNN architecture parame-
ters which possibly changed across the experiments (i.e., the
activation function af and the number of hidden layers #hl in
Table 3 and the regularization factor C in Table 4), and (ii)
the number of epochs #e and the time t required by the RNN
training to learn the correct automaton.

The values of other RNN architecture parameters, which
were the same in all experiments, are mentioned in the table
captions. For instance, it turned out that the values 0.001
and 256 for the learning rate and the number of neurons per
hidden layer, respectively, worked for all considered case
studies.

For the Tomita grammars (Table 3), the value of the regu-
larization factor Cwas also fixed and equal to 0.001, whereas
different activation functions and numbers of hidden lay-
ers were used across the different grammars. For the BLE
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devices (Table 4), the number of the hidden layers and the
activation function were also fixed and equal to 1 and ReLU,
respectively, whereas different regularization factors were
used across different devices.

The results show that we could find an appropriate archi-
tecture to learn the correct automata in all considered cases,
meaning that the RNN accuracy was 100% in all cases. This
was expected when learning from AAL data, as the AAL
data were sufficient for the L∗ algorithm to learn the under-
lying minimum automaton. More surprising is that we could
learn for all examples the correct automaton also from rel-
atively small random datasets with a low coverage of the
AAL data. Even more surprising is that for all Tomita gram-
mars, except Tomita 2 and 3, we could significantly shrink
the random datasets compared to the AAL dataset and still
learn correctly. The datasets became smaller in terms of both
number of traces and average trace length. Moreover, only a
small fraction of the AAL data happened to be included also
in the random data. This suggests that the proposed RNN
architecture and training may better generalize on sparser
datasets than AAL. The good performance on Tomita gram-
mars might be attributed to the small number of automaton
transitions and input/outputs alphabets that only consist of
‘0’ and ‘1’ symbols.

For the BLE device CYBLE-416045-02, which has much
larger input and output alphabets, we could still learn the cor-
rect automaton froma randomdataset containing fewer traces
than the AAL data. The other two BLE devices required
larger random datasets due to the higher number of tran-
sitions to be covered.

For all case studies, except Tomita 7 and 6, the same
RNN architecture worked for both AAL and random data.
For Tomita 7, ReLU worked for the AAL data, whereas tanh
worked better for the random data. For Tomita 6, two hid-
den layers worked better for the random data, as opposed to
a single hidden layer. Typically, the tuning process of RNN
hyperparameter values depends on the dataset, and each case
study involves a distinct dataset. When learning from ran-
dom data, we also attempted to learn from datasets as small
as possible. In the case of Tomita 6 and 7, this necessitated
different values for some hyperparameters compared towhen
learning from AAL data.

4.3.2 Minimal states number is learned

In the following, we present the results of the evaluation for
learning the minimal ground-truth automaton from scratch
with Algorithm 4, i.e., without knowing in advance the
minimal number of states. In the following, we denote an
automaton that is isomorphic to the minimal ground-truth
automaton as the minimal AAL automaton.

We define an ‘experiment’ as the endeavor to learn a mini-
mal automaton by executing Algorithm 4, with the following Ta
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components: (i) a training dataset, such as the AAL dataset
or randomly generated data, related to a Tomita grammar or
a BLE device, (ii) an RNN architecture specified by param-
eters like the number of hidden layers, number of neurons,
activation function, learning rate, and regularization factor
(C), and (iii) a training budget that includes the maximum
number of runs at each iteration of the fixpoint computa-
tion, the maximum number of training epochs, and, in the
case of random data, the number of episodes to be randomly
generated and the maximum allowed length for a generated
episode. We say that an experiment is approved if the value
of the variable approvedmin returned by Algorithm 4 is true,
i.e., the last fixpoint iteration return as result an isomorphic
automaton to the automaton learned in the previous itera-
tion. In general, we follow the ‘best-effort’ strategy if not
otherwise stated.

Our minimal automaton learning procedure is inherently
stochastic. There are two sources of stochasticity: (i) RNN-
related stochasticity (e.g., RNN parameters initialization,
samples ordering during training, etc.), and (ii) random gen-
eration of training data. To account for the RNN-related
stochasticity, we repeat an experiment with the same input
ten times. When learning a minimal automaton from random
data, the training data are always newly randomly generated
in each of the ten experiments.

Tables 5, 6, 9 and 10 show the results individually for
all experiments for the Tomita grammars and BLE devices,
respectively. An entry in these tables reports following infor-
mation related to the corresponding experiment of a Tomita
grammar, resp. BLE device:

• overall result: (i) ✓ if a minimal automaton was learned,
(ii) ✗ if an automaton was learned but this is not minimal,
(iii) if the fixpoint has not been reachedwithin the given
budget, i.e., approvedmin = ⊥ in Algorithm 4, (iv) (✓)
if an automaton with the minimal number of states was
learned but this is not the same as the minimal AAL
automaton due to incomplete randomly generated data,

• fixpoint convergence details: N
#i t−→nwhereN is the upper

bound size of the state vector s<t> (i.e., the maximal
number of states that can be learned) initially estimated
with IOPTA computation, n is either the states number
of the learned automaton or n.a. (not applicable) if no
automaton could be learned, and #i t is the number of
the learning iterations which is equal to the number of
iterations of the repeat-loop in Algorithm 4,

• FSM minimization contribution: (i) ‘min(I:i)’: the max-
imum reduction of states achieved by the FSM mini-
mization approach, as described in Sect. 2.2, during the
learning iterations, where I and i (with I > i) are the
numbers of states of the extracted automaton from the
trained RNNbefore and after FSMminimization, respec-
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9 tively, (ii) ‘−’: if I = i, i.e., the FSM minimization could
not further reduce the number of states of the automaton
extracted from the trained RNN at any learning iteration,
or (iii) ‘n.a.’: if no automaton could be learned,

• execution time hh:mm:ss representing the number of
hours, minutes and seconds taken to run the experiment.

Tables 7, 8, 11 and 12 summarize the statistics averaged over
the ten experiments performed for each Tomita grammar and
BLE device with AAL and random training data. The mean-
ing of the columns is as following:

1. “Autom. Learned”: the percentage of experiments overall
where an automaton could be learned, i.e., the percentage
of approved experiments,

2. “Learned Autom. is min.”: the percentage over the
approved experiments, where the learned automaton is
minimal,

3. “Minim. Boost”: the percentage of the experiments over-
all where the extracted automaton from the trained RNN
at some fixpoint iteration could be minimized with the
FSM minimization, hence resulting in a reduction of the
fixpoint iterations number,

4. “Initial State Vector Size”: the mean and standard devi-
ation over all experiments of the upper bound estimated
with IOPTA computation which is used to set the size of
the state vector s<t> in the RNN architecture (Fig. 6) for
the first fixpoint iteration,

5. “#Iterations”: the mean and standard deviation over the
accepted experiments of the number of iterations required
to converge,

6. “Non-min. Autom. #states”: the mean and standard devi-
ation of the learned automaton states number over all
accepted experiments where a non-minimal automaton
was learned,

7. “Learning Time”: the mean and standard deviation over
all accepted experiments of the execution time, both in
form of hh:mm:ss.

Tomita grammars. First, a budget of 100 epochs has been
employed for all Tomita grammars. Aswe can see in Tables 5
and 7, this budget was sufficient, indicated by ✓, to learn
the minimal AAL automaton for most Tomita grammars in
most experiments, except for Tomita 5 and Tomita 7 with
AAL training data. For Tomita 5, we only have one approved
experiment where it was also possible to learn the minimal
automaton. In the remaining nine experiments, indicated by
, already at the first learning iteration, in none of the ten

runs we could learn an automaton perfectly explaining the
training data, i.e., training the model does not converge to
100% accuracy within the given budget. This strongly sug-
gests that themaximumnumber of epochs of 100was too low
and stopped the RNN training too early. Similarly for Tomita
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7, but less drastically than Tomita 5, there were four unap-
proved experiments in which no automaton could be learned.
We thus increased the maximal number of epochs to 200 and
repeated the ten experiments for Tomita 5 and Tomita 7 with
the AAL training data. The results reported in Tables 6 and 8
show significant improvements with the increased budget.

All learned automata have the minimal number of states
required to model the corresponding ground-truth system.
After having increased the maximal training epochs num-
ber for Tomita 5 and 7, there were very few unapproved
experiments overall. Remarkably, in 9 out of 16 Tomita train-
ing setups, the minimal AAL automaton could be learned in
all conducted experiments. Moreover, the number of unap-
proved experiments can be further reduced, if necessary,
by further increasing the budget. Importantly, Algorithm 4
directly provides information on whether it is necessary to
address an unapproved experiment by increasing the bud-
get. This information is conveyed through the approvedmin

variable.
It is worth noting that for all Tomita grammars, except

Tomita 3, learning a minimal automaton was more efficient
with random data than AAL data. A randomly generated
dataset which was smaller than the AAL dataset was suffi-
cient to learn the minimal AAL automaton. This suggests
that the AAL data, which is an optimal dataset for the L∗
algorithm to learn the minimal automaton, is not necessarily
also an optimal dataset for the RNN.

The FSMminimization contributed inmost cases to speed
up the fixpoint convergence by reducing the number of
necessary iterations. In all cases (incl. the ones with no
FSM minimization contribution), except one experiment for
Tomita 1, the minimal AAL automaton could be learned in
the minimum number of fixpoint iterations which is 2. This
means that for most experiments, we could learn a minimal
automaton within the first fixpoint iteration using a data-
based upper bound on the number of states. The second
iteration is only required to approve the previous learning
result.

Finally, the above results were obtained by employing the
best-effort strategy which was sufficient to learn the minimal
AAL automaton for all Tomita grammars.
BLE devices. We first employed the best-effort strategy
for all BLE devices in all experiments. This was sufficient
to learn the minimal automaton in most cases, except the
CC2650 device with AAL data, as we can see in Tables 9
and 11. Remarkably, only two unapproved experiments
occurred overall. For the nRF52832 device in particular, all
test setups delivered the minimum AAL automaton.

For the CYBLE-416045-02 and CC2650 devices with
random data, there were a few experiments in which an
automatonwith the same number of states as the ground-truth
automaton could be learned but with different transitions.
This experiments are indicated by (✓). This suggests that
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the coverage of the ground-truth automaton was not fully
ensured by the randomly generated training data. Increasing
the dataset with more randomly generated episodes could be
beneficial to solve this issue.

For the CC2650 device, an automaton has been learned
which is not minimal, indicated by ✗. Note that the learned
automaton still conforms the provided dataset. Learning a
non-minimal automaton was more frequently experienced
with AAL data. We explain this phenomenon by the differ-
ence in the concepts of the used AAL algorithm and our
learning technique. The L∗ algorithm starts incrementally
increasing the automaton size and stops when no further
counterexample to the conformance between the learned
automaton and SUL can be found. In contrast, our algorithm
incrementally decreases the maximum allowed number of
states of the automaton. Let S be the AAL dataset, MA be the
respective automaton learned by L∗, and MR be the automa-
ton learned by ourRNN-based technique, thenwe experience
the following relation for the CC2650 device: S ⊂ L(MA)

but also S ⊂ L(MR). Since we assume that MA correctly
represents the SUL, our dataset S misses a trace that shows
that L(MA) �= L(MR). This would be an issue in a generic
application scenario where we do not know the ground truth
automaton since we would learn a non-minimal automaton
without knowing it is not minimal. In practice, we can cir-
cumvent this problem by testing conformance between the
learned model and the SUL following a conformance test-
ing approach as in active learning. Moreover, employing the
more expensive exhaustive strategy improves significantly
the probability to fix the non-minimality issue, as we can see
by comparing Tables 9 and 10. In fact, with the exhaustive
strategy, only in 1 out of 8 approved experiments the learned
automaton was not minimal. However, it is worth noting that,
whenever a non-minimal automatonwas learned, the automa-
ton size was not very different from the minimal automaton
size, e.g., 6 or 7 states of the non-minimal automaton versus 5
states of the minimal automaton.

Compared to Tomita grammars, we find that the upper
bounds estimated with the IOPTA calculation are much
larger. This is due to the larger training datasets in the BLE
devices, especially CC2650 and nRF52832 devices. Never-
theless, the fixpoint convergence is still reached in a low
number of iterations, mostly 2 or 3 iterations. This is because
our RNN architecture, thanks to the way how the regular-
ization was designed, is capable of learning a number of
automaton states which is close to the minimal automaton
states number even if the size of the state vector s<t> would
allow to learn many more states. However, even if having
such large initial size values of the state vector s<t> does not
affect much the functional capability of learning the mini-
mal automaton, this is slowing down the training procedure
since the RNN size increases considerably. Finding a bet-
ter approximation than IOPTA for computing lower upper
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bounds for the initial size of the state vector s<t>, or simply
making a good guess and trying with a much lower initial
size, could significantly speed up the learning of the mini-
mal automaton. For example, setting the initial size to 100
would represent a significant reduction (of up to 2 orders of
magnitude) compared to IOPTA computation, yet it remains
reasonable as it is much higher than the actual minimal
number of states. Specifically, for the nRF52832 device,
we found that the learning time of the minimal automaton
could be reduced by approximately 21% from 00h:05m:22s
to 00h:04m:15s with the AAL data and by around 94%
from 02h:59m:50s to only 00h:11m:03s with the random
data. However, in this paper, we adhere to IOPTA instead of
defining ad-hoc fixed upper bounds since IOPTA provides
a theoretical guarantee for the upper bound of the minimal
number of states.

In summary, whether Algorithm 4 learns a minimal
automaton equivalent to the ground truth depends on the
training data quality and the ground truth automaton com-
plexity in terms of number of states and transitions and
input/output alphabet size. Unapproved experiments are not
critical since they are directly signalized by the algorithm
and can be mitigated by increasing the epochs budget. If a
higher guarantee for automaton minimality is required, the
more expensive exhaustive strategy should be used.

4.3.3 Effects of RNN hyperparameter changes

In the following, we illustrate how varying hyperparameter
values can influence the results of our RNN-based learning
technique.

The hyperparameter values provided in Tables 3 and 4
were determined through a tuning process until we reached a
point where we were satisfied with the results. When dealing
with AAL data, we explored different hyperparameter values
until we could learn the minimal automaton in a reasonable
timeframe. For random data, we additionally experimented
with varying the size of the dataset, prioritizing learning
from smaller datasets. The hyperparameter tuning process
was repeated for each dataset size, starting from a size of 10
and gradually increasing it until the automaton could be suc-
cessfully learned. This explains why we obtained different
hyperparameter values for random data compared to AAL
data in Table 3 for the Tomita 6 and Tomita 7 grammars.
To discuss the influence of the hyperparameters, we exam-
ine how learning results change when altering the number
of hidden layers and the activation function for Tomita 6
and Tomita 7, respectively. Tables 13, 14 and 15 illustrate
the results with the new RNN architecture compared to the
initial RNN architecture, utilizing the same seeds to ensure
consistent non-deterministic starting conditions.
Tomita 6. In Table 3 for Tomita 6 with random data, we
could successfully learn the minimal automaton from a ran- Ta
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dom dataset as small as containing 20 traces when increasing
the number of hidden layers from 1 to 2. In contrast, with a
single hidden layer, as used for AAL data, a random dataset
including 50 traces would have been needed to learn the min-
imal automaton. In the following, we will therefore check if
learning with two hidden layers also works for AAL data.

As can be seen in Table 13, when the minimum num-
ber of states is given, we could still successfully learn the
minimal AAL automaton but the execution time almost dou-
bles due to the additional hidden layer, while the number
of training epochs remains almost constant. Learning the
minimum number of states increases significantly for most
experiments the learning time (see Table 15), especially for
two experiments where convergence could not be reached
(see Table 14). However, the RNN’s performance improved
independently, where FSMminimization helped only in 60%
of the experiments, as opposed to 100% with the initial
RNN architecture. This improvement can be attributed to the
increased capacity of the RNN obtained through the addi-
tional hidden layer. Although there were two experiments
where no convergence was reached at the first iteration, the
overall convergence success rate of 80% remained satisfac-
tory, and there was no need to repeat the experiments with
an increased budget.
Tomita 7. In Table 3 for Tomita 7 with random data and
the minimum states number given, we successfully learned
the minimal automaton from a random dataset as small as
including 50 traces when switching from the ReLU activa-
tion function, which first worked with the AAL data, to tanh
(see Table 3). Attempting to learn the automaton from the
AAL data with the tanh activation function did not complete
within a set time budget of 10min, which was a magnitude
order higher than the learning time achieved with the ReLU
activation function. In the following, we analyze the effects
on learning the minimal automaton from random data when
using the ReLU activation function, as with the AAL data,
instead of tanh. Table 13 reveals an increase in the required
random dataset size from 50 to 80 traces, which, in turn,
explains the increase in AAL data coverage and learning
time. When the minimal number of states is also learned
(see Tables 14 and 15), there is an improvement in the con-
vergence rate (90% instead of 80%), see Table 15, and in
the RNN performance compared to external FSMminimiza-
tion (0% instead of 40%), attributable to the larger training
dataset. The larger training dataset is also responsible for the
increased average learning time.

4.3.4 Comparison to a classic learning algorithm

We compared our RNN-based learning technique with a con-
ventional passive learning algorithm from the literature. We
chose a variant of the Regular Positive Negative Inference
(RPNI) algorithm [4, 18] for learningMealymachines. RPNI

is a passive learning algorithm that is supported by many
modern learning libraries such as LearnLib [7] or AALpy
[6]. The RPNI variant starts by building an IOPTA from the
given dataset, similar to ourAlgorithm4. Then, the algorithm
merges states based on the given dataset until nomoremerges
are possible. Twostates aremerged if their future input/output
behavior is equivalent.Originally,RPNI requires positive and
negative episodes, where positive episodes are included in
the language to be learned and negative ones are not. Neg-
ative traces are not required for learning Mealy machines,
as the states can be distinguished due to the different out-
put behavior for the same input sequences. For consistency
with our active-learning-based data generation, we use the
implementation of RPNI in AALpy for the performed com-
parison. Note that the chosen implementation merges states
deterministically.

Table 16 presents the results of performing RPNI on the
same randomly generated datasets as used for the RNN-
based experiments in Tables 5 and 9. The numbers of
episodes correspond to the numbers given in Tables 3 and 4.
For comparison, we measure the conformance between the
ground-truth automaton and the learned automaton checking
bi-similarity. The conformance metric provides the average
percentage of the number of common edges over the union
of the edges from both automata. In addition, we report the
average number of states of the learned automata, the per-
centage of automata that have the same number of states as
the minimal ground-truth automaton, and the required exe-
cution time of the learning algorithm.

Remark. Owing to space constraints, the conformance met-
ric values for the RNN-based experiments were not included
in the tables presented in the earlier sections. To facilitate
a more comprehensive comparison with the RPNI results
showcased in Table 16, we now provide, in Table 17, the
average and standard deviation of conformance values per
use case. These values correspond to experiments conducted
with the random data as outlined in 5 and 9. It is important to
note that experiments where the convergence point was not
reached, indicated by , have been excluded from consider-
ation.

The RPNI results indicate differences between the Tomita
and the BLE case studies. For the Tomita case study, we
find that RPNI achieves quite high conformance scores, with
only a few exceptions where a slightly larger automaton is
learned. This indicates that the generated random datasets
sufficiently cover the behavior of the underlying Tomita case
study. In contrast, the results for the BLE case study are
different. The automata learned with RPNI achieve signif-
icantly lower conformance with the ground-truth automata.
Moreover, RPNI failed to learn the minimal automaton in the
majority of experiments. These results emphasize that ran-
domly generated datasets might not be complete, meaning
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that not every input and output is defined for every state. For
the BLE case study, sparsity in the dataset is expected due to
the larger size of the input and output alphabet. This shows
that our RNN-based technique can generalize well enough
on incomplete datasets and learnsmore conforming automata
than RPNI. Regarding execution time, we observe that state
merging requires less time than training an RNN.

For the case studies considered in this paper, a comparison
of Tables 16 with Tables 7 and 11 indicates that our RNN-
based learning approach is more favorable than a traditional
passive automata learning algorithm like RPNI, when utiliz-
ing randomdata or data collected during the regular operation
of the SUL. If there is the option of a reliable online interac-
tion with the SUL, it is advisable to opt for a classical active
automata learning algorithm such as L∗ for effectively learn-
ing the minimal automaton of the SUL.

4.3.5 Generalizability

We evaluated the feasibility of learning minimal FSMs of
relatively small sizes from samples of Tomita regular lan-
guages and BLE devices. It remains to be provenwhether our
results generalize to more complex languages that require
larger FSMs. However, our main goal was to propose an
architecture that can accurately capture discrete dynamics.
The languages from our case studies possess various dif-
ferent features, like modular arithmetic in Tomita 5. Hence,
we argue that the architecture generalizes well to different
languages of comparable discrete complexity. While inter-
esting, it is not our foremost goal to scale to large discrete
systems. Since RNNs are generally well-suited to tasks, like
time-series forecasting, we rather plan to extend RNNs with
our architecture to be able to additionally model continuous
dynamics. Thus, we aim to pave the way toward end-to-end
learning of hybrid system models.

5 Related work

In this research, we address the challenge of learning an
FSM from a given sample by employing constrained training
of an RNN. The literature has presented various techniques
for extracting an FSM from sample data, including state-
merging-based approaches [4, 18, 32, 33], search-based
techniques [34–37], and methods relying on SAT [9–11]
and SMT [12, 13] solving. Similar to state-merging meth-
ods, we construct an IOPTA, with the distinction that we do
not merge its states. The IOPTA solely establishes an upper
bound on the maximum number of states of the ultimately
learned FSM. Our findings in Sect. 4 demonstrate that our
RNN-based method can learn more accurate FSMs for sys-
tems with more than two inputs and outputs compared to a
well-established state-merging technique [18, 32].

Early work on the relationship between finite automata
and neural networks examined the capacity of neural net-
works to simulate the behavior outlined by afinite automaton.
Pioneering this investigation, Kleene [38] was among the
first to demonstrate the suitability of neural networks for
such simulations. Subsequently, Minsky [39] provided a
comprehensive construction of neural networks capable of
simulating finite automata. In contrast, we do not simulate a
known automaton, but rather we learn an FSM from a sample
of a regular language.

The relationship between neural networks and automata
has also been exploited to explain the behavior of neu-
ral networks, by extracting automata from trained neutral
networks. The process of extracting an automaton from a
neural network is commonly referred to as knowledge dis-
tillation [40]. The literature comprises various techniques
for knowledge distillation: Giles et al. [41] demonstrated
the extraction of deterministic finite automata (DFAs) from
a particular type of RNNs trained on regular languages, a
method later refined by Omlin and Giles [42] to be appli-
cable to a broader range of RNN architectures. In a more
general context, Wang et al. [43] conducted a benchmark
study on different RNN architectures for DFA extraction.
Furthermore, Wang et al. [44] presented an empirical evalu-
ation, validating the reliability of the approach introduced by
Giles et al. [41]. The basis for their approach is that hidden
states of RNNs form clusters; thus, automata states can be
identified by determining such clusters. This property was
recently also used to learn DFAs [26]. Tino and Sajada [45]
used self-organizing maps to identify clusters for modeling
Mealy automata. Michalenko et al. [46] empirically ana-
lyzed this property and found that there is a correspondence
between hidden-state clusters and automata states, but some
clusters may overlap, i.e., some states may be indistinguish-
able. Hong et al. [47] and Dong et al. [31] utilized clustering
to find an adequate state abstraction and subsequently apply
a state-merging algorithm on the abstracted traces to learn
DFAs and Markov chains, respectively. The use of these
techniques relies on the assumption that the nodes of neu-
ral networks form distinct clusters.

In contrast to relying on clustering, which may not be
perfect, we enforce a clustering of the hidden states through
regularization. Closest to our work in this regard is the work
by Oliva and Lago-Fernández [27]. They enforce neurons
with sigmoid activation to operate in a binary regime, thus
leading to very dense clusters, by introducing Gaussian noise
prior to applying the activation function during training. The
identified clusters correspond to states of the FSM, where
the number of clusters is not necessarily minimal. Simi-
larly to our approach, they apply minimization algorithms
to minimize the extracted automaton. However, a key dis-
tinction from our technique lies in the fact that the definition
of state transitions relies on the inference of clusters in their
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approach, whereas our proposed RNN architecture directly
predicts the next states.

An additional method for knowledge distillation of neu-
ral networks involves treating the trained neural network
as an oracle that can be queried. Using an active learn-
ing approach, the learning algorithm constructs a behavioral
model based on the responses obtained from these queries.
Several approaches have been recently proposed based on
or related to the L∗ algorithm [5]. Weiss et al. proposed
automata-learning-based approaches to extract DFAs [26],
weighted automata [48], and subsets of context-free gram-
mars from RNNs [49]. Mayr and Yovine [50] applied the
L∗ algorithm to extract automata from RNNs, where they
provide probabilistic guarantees. Khmelnitsky et al. [51] pro-
pose a property-directed verification approach for RNNs.
They use the L∗ algorithm to learn automata models from
RNNs and analyze these models through model check-
ing. Muškardin et al. [28] examine the effect of different
equivalence-query implementations in L∗-based learning of
models from RNNs. Barbot et al. [52] use an A∗-based
technique to extract push-down automata from RNNs sim-
ulating context-free grammars. In addition to L∗-related
approaches, there are also query-based techniques utilizing
Hankel matrices [53]: Both, Eyraud and Ayache [54], and
Lacroce et al. [55] create weighted automata by populating
a Hankel matrix through queries to an RNN. Motivated by
the recent popularity of knowledge distillation, the TAYSIR
competition [56] has been initiated, with the aim of creating
models that provide simpler representations of trained RNN
and transformers. Muškardin et al. [57] emerged as the win-
ners of the competition, employing a learning-based testing
approach following their earlier work [28] and utilizing the
automata learning library AALpy [6]. It is important to note
that these active techniques focus on extracting an automa-
ton from a trained neural network, whereas our approach
involves a constrained training technique for RNNs to extract
automata from given samples.

Another approach to extract an FSM from a trained neural
network is to additionally train an autoencoder that encodes a
neural network as a finite state representation. Koul et al. [58]
introduce quantization through training of quantized bottle-
neck networks intoRNNs that encode policies of autonomous
agents. This allows them to extract FSMs in order to under-
stand the memory usage of recurrent policies. Carr et al. [59]
use quantized bottleneck networks to extract finite-state con-
trollers from recurrent policies to enable formal verification.

6 Conclusion

In this work, we presented a new machine learning tech-
nique for learning minimal finite-state models in the form
of Mealy machines. Our automata learning approach builds

upon a specialized RNN architecture together with a con-
strained training method in order to construct a fixed-size
Mealy machine from given training data. Starting from an
upper bound on the number of states, the approach iteratively
creates models of decreasing size. This iterative process
enables learning of minimal models. In common with clas-
sical passive automata learning methods, like RPNI [4] and
ALERGIA [32],we start froma tree-shaped representation of
the training data. However, instead of explicit state merging,
we employ RNN training to search for a smaller representa-
tion of the data.

We evaluated our method on example grammars from the
literature as well as on a Bluetooth protocol implementation.
In almost all cases, we were able to learn a minimal automa-
ton representing correctly the ground truth. Where this was
not the case, it was due to missing training data. Neverthe-
less, the learned Mealy machine was correct with respect to
the training data. A clear advantage compared to our previ-
ous work is that the user does not need to know the number
of states in advance.

We see the encouraging results as a step toward learning
more complex models comprising discrete and continuous
behavior, as found in many control applications. Control
applications commonly have only a few modes (discrete
states) but may possess complex continuous behavior. For
this reason, we focus on small automata in this work. As
a next step, we see the integration of continuous behavior
into our models as the most promising avenue for future
work. That is, we plan to learn the discrete behavior with
the regularized training described in this article while learn-
ing continuous behavior through conventional RNN training.
Having finite-state models of hybrid systems will especially
help in the explainability and interoperability of decisions of
hybrid system controllers. We leave these investigations for
future work. We will also apply our approach to case studies
with larger numbers of states.However, other automata learn-
ing techniques focused on discrete behavior may be more
suitable.

Finally, we dare to express the hope that this work might
contribute to bridging the gap between the research commu-
nities in machine learning and automata learning ultimately
leading to more trustworthy AI systems.
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