
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01159-z

SPEC IAL SECT ION PAPER

Lazy model checking for recursive state machines

Clemens Dubslaff1,2 · Patrick Wienhöft2,3 · Ansgar Fehnker4

Received: 30 June 2022 / Revised: 31 January 2024 / Accepted: 8 February 2024
© The Author(s) 2024

Abstract
Recursive state machines (RSMs) are state-based models for procedural programs with wide-ranging applications in program
verification and interprocedural analysis. Model-checking algorithms for RSMs and related formalisms have been intensively
studied in the literature. In this article, we devise a newmodel-checking algorithm for RSMs and requirements in computation
tree logic (CTL) that exploits the compositional structure of RSMs by ternary model checking in combination with a lazy
evaluation scheme. Specifically, a procedural component is only analyzed in those cases in which it might influence the
satisfaction of the CTL requirement. We implemented our model-checking algorithms and evaluate them on randomized
scalability benchmarks and on an interprocedural data-flow analysis of Java programs, showing both practical applicability
and significant speedups in comparison to state-of-the-art model-checking tools for procedural programs.

Keywords Model checking · Lazy verification · Interprocedural static analysis · Recursive state machines · Computation tree
logic

1 Introduction

Model checking [6, 20] is a well-established automated ver-
ification technique that shows for a system model whether a
formal requirement is met or not. System models are most
commonly given as Kripke structures, i.e., directed graphs
over states whose edges model the operational behavior of
the systemwith labels over a set of atomic propositions speci-
fying properties of states. Over these labels, requirements are
usually formalized in a temporal logic such as computation
tree logic (CTL, [18]). CTL is an expressive branching-time
logic that iswell-accepted in the community and coversmany

Communicated by Antonio Cerone and Frank de Boer.

B Clemens Dubslaff
c.dubslaff@tue.nl

B Patrick Wienhöft
patrick.wienhoeft@tu-dresden.de

Ansgar Fehnker
ansgar.fehnker@mq.edu.au

1 Eindhoven University of Technology, Eindhoven, The
Netherlands

2 Centre for Tactile Internet with Human-in-the-loop, Dresden,
Germany

3 Technische Universität Dresden, Dresden, Germany

4 Macquarie University, Sydney, Australia

of themost important requirement patterns [26].Whilemodel
checking is first and foremost applied toward a sound and
exhaustive analysis of systems, it has been also shown to be
effective for a static code analysis by model checking data-
flow or control-flow graphs [46]. Static analysis is in partic-
ular challenging for interprocedural properties, i.e., require-
ments that exceed the scope of single procedures and objects
that consequently depend on a multitude of environments
in which the procedures can be called. Several approaches
have been proposed to tackle the challenges of an interpro-
cedural analysis, e.g., by introducing property summaries of
procedures [10, 48] or by exploiting analysis techniques on
operational procedural models by means of pushdown sys-
tems (PDSs, [45]) or recursive state machines (RSMs, [3]).

The scope of this article is in the context ofmodel checking
RSMs against CTL properties, e.g., for interprocedural static
code analysis. RSMs closely follow the compositional struc-
ture of programs with recursive procedure calls by modeling
each procedure by a separate Kripke structure (called a com-
ponent). Each component has entry and exit nodes used to
model the input and output functionalities of the correspond-
ing procedure. Procedure calls in RSMs are then formalized
through boxes that are placeholders for components with
the matching call and return nodes in the calling Kripke
structure. To this end, RSMs can be also seen as “nested”
Kripke structures. The operational semantics of RSMs arises

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01159-z&domain=pdf

C. Dubslaff et al.

by replacing boxes with associated components matching
entry and exit with call and return nodes, respectively. As
components can be called recursively in RSMs (different
fromhierarchical state machines [5]), the semantics ofRSMs
might have infinitelymany states, which renders the standard
CTL model-checking algorithm for finite Kripke structures
[6, 18] not directly applicable [3]. However, as first noticed
in the area of PDSs [15], the satisfaction of a given CTL
formula in a component of an RSM solely depends on the
satisfaction of subformulas in return nodes of the compo-
nent, so-called contexts [5, 15]. Intuitively, contexts model
the environmental influence on the component, i.e., how the
satisfaction of the formula depends on the calling component.
A CTL model-checking algorithm for RSMs then could be
almost directly derived by eagerly generating all contexts
that could arise during program execution and then apply-
ing the standard CTL model-checking algorithm for finite
Kripke structures on components [3]. Such an algorithm runs
in time exponential in the size of the RSM due to possibly
exponentially many contexts that have to be considered for
each component. Further, the above direct algorithms employ
a decomposition method on executions that does not take the
compositional structure of RSMs into account [3], possibly
leading to exponentially many break points for executions.
Since the model-checking problem for RSMs and CTL for-
mulas is ExpTime-complete [9], this algorithm cannot be
improved in the worst case. Nevertheless, there is plenty of
room for optimizations. First, one could investigate methods
that are fully compositional by means of investigating com-
ponents depending on their contexts in isolation, also on the
execution path level. Second, onemight reduce the number of
subformulas and contexts to be evaluated by heuristics. Both
could provide a more clean approach and also show runtime
improvements in practical relevant applications—an oppor-
tunity that has, to the best of our knowledge, not yet been
considered in the literature.

1.1 Contribution

We contribute to the quest of devising practical algorithms
and heuristics that speed up CTL model checking for RSMs.
In particular, we make the following contributions:

1. Eager and lazy CTL model-checking algorithms for
RSMs that use ternary model checking and path decom-
position at the level of components.

2. An implementation of the eager and lazy approaches
along with various context expansion heuristics.

3. Evaluation of our algorithms regarding scalability, on
community benchmarks, and on real-world Java bench-
marks that show superior performance and practical
applicability of our algorithms and implementation.

Ad1: To establish our algorithms,we extend theRSMmodel-
checking approach by Alur et al. [3] to arbitrary RSMs
(not bounding the number of exit nodes). Further, we take
inspiration from ternarymodel checking by Bruns andGode-
froid [12] toward a ternary component-wise decomposition
scheme of executions.We call this generalized method eager
approach, since with this method, all subformulas and all
components with reachable contexts are checked. The idea
behind our secondmethod, whichwe call lazy approach, is to
adjoin a lazy evaluation scheme that successively refines the
ternary global satisfaction relation by step-wise evaluating
contexts and subformulas that could contribute to deciding
the overall model-checking problem [28]. To this end, the
lazy approach can avoid to check subformulas and certain
components with their contexts if the satisfaction of a for-
mula is already determined independent of such.

Ad 2:We implemented both, the eager and lazy approach,
in a tool called RSMCheck

1. To the best of our knowledge,
RSMCheck is the first model checker specifically dedicated
to RSMs, while existing state-of-the-art model checkers for
procedural programs such as PDSolver [33] and PuMoC

[49] rely on PDSs. Besides RSMs, RSMCheck can also
model check PDS input formats of PDSolver and PuMoC

via conversion scripts we implemented to transform PDSs to
RSMs based on the well-known linear-time transformation
that preserves the Kripke structure semantics [11]. However,
RSMs have the advantage of directly reflecting the compo-
sitional structure of a procedural program and providing an
intuitive visual representation. To this end, choosingRSMsas
model for procedural programs facilitates the lazy approach
can ease the interpretation of counterexamples and witnesses
generated bymodel checking and hence also supports debug-
ging during program development steps.

Ad 3: We conduct three experimental studies for
RSMCheck, addressing scalability, comparison to existing
model-checking tools, and application to real-world exam-
ples by means of an interprocedural data-flow analysis on
Java programs. In these studies we show that our eager and
lazy approaches are effective, where the lazy one evaluates
less contexts than in the eager case, leading to significant
speedups up to one order of magnitude. Applied on their
own benchmark suites, PDSolver and PuMoC show time-
outs or exceed memory constraints on several instances [49].
We demonstrate that our lazy approach manages to verify all
instances and outperforms PDSolver and PuMoC by being
up to two orders of magnitude faster.

1 The tool can be downloaded at https://github.com/PattuX/
RSMCheck. A static reproduction package detailing how to reproduce
our experimental studies can be downloaded at https://osf.io/h2f5u/

123

https://github.com/PattuX/RSMCheck
https://github.com/PattuX/RSMCheck
https://osf.io/h2f5u/

Lazy model checking for recursive state machines

1.1.1 Disclaimer

This article is based on the conference publication titled
“Be Lazy and Don’t Care: Faster CTL Model Checking for
Recursive State Machines” [25]. Besides full proofs of the
correctness of the algorithms presented, an additional modu-
lar formalization and evaluation of contextualization heuris-
tics, discussions on problem instances with their impact on
algorithmic complexities, an improved implementation of the
eager approach, we provide further explanations, examples,
and descriptions that underpin the overall approach.

1.1.2 Outline

After settling notations and basic definitions in Sect. 3, we
first extend the model-checking approach by Alur et al. [3] to
themulti-exit and ternary setting inSect. 5.Our lazy approach
is detailed in Sect. 6 and evaluated in Sect. 7 for different
heuristics. We close the paper with concluding remarks and
future work in Sect. 8. In the appendix, we provide the full
proofs of theorems and lemmas.

2 Related work

In this section, we relate our work to the literature. For gen-
eral overviews about temporal logics andmodel checking we
refer to standard textbooks [6, 21].

2.1 Recursive operational models

The most commonly used state-based formalisms for proce-
dural programs are pushdown systems (PDSs) and RSMs,
for which there are linear-time transformations that lead
to bisimilar Kripke structure semantics [4]. While PDSs
take a more theoretical perspective, essentially encoding
pushdown automata, RSMs directly reflect the programs pro-
cedural structure. Model checkers for procedural programs
have been first-and-foremost implemented for PDSs, ranging
fromPuMoC [49] forCTL requirements andPDSolver [33]
for requirements specified in the CTL-subsumingμ-calculus
[39], to the LTL model checker Moped [47] also integrated
into PuMoC. The latter relies on a symbolic engine that uses
binary decision diagrams (BDDs, [14]), shown to be ben-
eficial for LTL model checking on large-scale procedural
programs [47].

There are several other related hierarchical modeling
formalisms for which model-checking methods have been
established, e.g., hierarchical state machines [5], nested
Kripke structures [29], and incomplete Büchi automata [44].
They all do not support infinite recursion and hence do not
face the challenges we address in our approach. However,

those approaches could surely benefit also of our lazy evalu-
ation schemes presented in this article.

2.1.1 Abstraction and refinement

Abstraction methods and stepwise refinement constitute key
techniques to provide scalable verification [24], ranging
from, e.g., abstract interpretation [22, 23], predicate abstrac-
tion [32], and counterexample-guided abstraction refinement
(CEGAR, [19]) to multi-valued modeling and verification on
abstracted models [17].

Most related to our work is the latter view on abstrac-
tion, i.e., explicitly modeling parts of systems as “unknown”
or “uncertain” and perform ternary logic reasoning. Modal
transition systems (MTSs) [41] model underspecification or
incomplete information at the level of transitions, distin-
guishing transitions that must be, possibly may, or are surely
not present in an actual implementation (cf., e.g., a survey
on MTSs [40]). Verification of MTSs mainly has been inves-
tigated for formulas expressed in the modal μ-calculus [30]
with action labels, but also state-labeled extensions bymeans
of Kripke MTSs [36, 37]. Ternary CTL model-checking of
Kripke structures, as we also do in in this paper, has been
first considered to reason about partial state spaces, formal-
ized as partial Kripke structures (PKSs) [12]. Besides the
ternary semantics of formulas and PKSs [12], the alterna-
tive thorough semantics allows for deducing more definitive
labels where the classical semantics would not come to a
conclusion [13]. While interesting by its own, we chose
the original semantics [12]: thorough evaluation is compu-
tational more expensive—ExpTime-complete [13]—while
classical ternary model checking is doable in polynomial
time. Further, the corner cases can usually be treated by
formula simplifications (e.g., resolving tautologies) when
transforming CTL formulas into existential normal form.

Within PKSs, full information on the system topology is
assumed, only supporting partial information on the state
labelings. The recursive state machines we consider in this
article have a different nature, allowing for a component
structure where whole parts of the system are not evalu-
ated. However, PKSs and ternary evaluations already show
great applicability also in software refinement cycles, e.g.,
in combination with proof assistance [7, 43]. Verification
on partial behavioral models such as PKSs can be used as
basis for incremental model-based software engineering and
analysis [50].

2.1.2 Lazy evaluation approaches

Opposed to classical eager abstraction and refinement,where
reasoning steps are exhaustively performed, on-demand or
lazy approaches postpone abstraction and refinement until
it is inevitable toward drawing conclusions. A generic

123

C. Dubslaff et al.

abstract-check-refine approach with lazy evaluation has been
presented through lazy abstraction [34], which, however, did
not support infinite state spaces as we have to deal with in
RSMs. This work has been extended to support infinite state
spaces by using interpolants instead of predicate abstraction
[32], also fastening the lazy evaluation process [42, 51].How-
ever, their work approaches model checking more from a
SAT-perspective and does not take the potential composi-
tional structure of RSMs into account, as we do.

Lazy approaches for interprocedural analysis have been
considered, e.g., to determine evaluation points for a priori
narrowed scopes [35], or to analyze the interplay between
classes and objects in JavaScript programs [38]. Contrary,
our approach focuses on lazyverificationon state-basedmod-
els.

3 Preliminaries

We first settle notations and build the formal framework for
recursive state machines and computation tree logic we use
throughout this paper.

For a set X we denote by ℘(X) the power set of X and
by X∗, X+, and Xω the sets of finite, finite non-empty, and
infinite sequences of elements in X , respectively. Given a
sequence π = x1, x2, . . ., we denote by π [i] = xi the i th
element of π . An interpretation over X is a function ∂ : X →
{tt, ff, ??}where tt stands for “true”, ff for “false”, and ?? for
“unknown”. We denote by�(X) the set of all interpretations
over X . An interpretation ∂ ∈ �(X) is a refinement of ∂ ′ ∈
�(X) if for all x ∈ X we have ∂ ′(x) = tt implies ∂(x) =
tt, and ∂ ′(x) = ff implies ∂(x) = ff. Further, ∂ is a strict
refinement of ∂ ′ if additionally ∂ �= ∂ ′.

A Kripke structure (see, e.g., [6]) is a tuple K =
(S,−→, AP, L) where S is a set of states, −→ ⊆ S × S is a
transition relation, AP is a finite set of atomic propositions,
and L : S → ℘(AP) is a labeling function that labels states
with atomic propositions. To ease notations, wewrite s−→s′
for (s, s′) ∈ −→. A path in K is a sequence s1, s2, . . . ∈ Sω

where for each i ∈ N we have si −→ si+1. The set of all
paths starting in a state s ∈ S is denoted by �(s).

3.1 Recursive state machines

A labeled recursive state machine (RSM, [3]) over a set
of atomic propositions AP is a tuple A = (A1, . . . ,Ak)

comprising components

Ai = (Ni , Bi , Yi , Eni , Exi ,−→i , AP, Li)

for i = 1, . . . , k where

• Ni is a set of nodes for which Ni ∩ N j = ∅ for all
j = 1, . . . , k, i �= j ,

• Bi is a set of boxes for which Bi ∩ B j = ∅ for all
j = 1, . . . , k, i �= j ,

• Yi : Bi → {1, . . . , k} is a mapping assigning a compo-
nent index to every box,

• Eni , Exi⊆Ni with Eni∩Exi=∅, are sets of entry and exit
nodes, respectively, defining the following auxiliary sets:

– the set of call nodes of a box Callb
def= {(b, en) | b ∈

Bi , and en ∈ EnYi (b)}
– the set of call nodes of a component Calli

def=
⋃

b∈Bi
Callb

– the set of return nodes of a box Returnb
def= {(b, ex) |

b ∈ Bi , and ex ∈ ExYi (b)}
– the set of return nodes of a component Returni

def=⋃
b∈Bi

Returnb

– the total node set Nall
i

def= Ni ∪ Calli ∪ Returni

• −→i ⊆ (Ni\Exi)∪Returni × (Ni\Eni)∪Calli is a tran-
sition relation, and

• AP is a set of atomic propositions,
• Li : Nall

i → ℘(AP) is a node labeling function for which
Li ((b, n)) = LYi (b)(n) for all (b, n) ∈ Calli ∪ Returni .

For brevity, we will omit indices from the parts of a com-

ponent to refer to the union over all component, e.g., N
def=

⋃k
i=1 Ni or B

def= ⋃k
i=1 Bi . Lastly, we extend the transition

relation trans to toward containing transitions into compo-
nents as follows:

−→+
def= −→ ∪

k⋃

i=1

{
((b, n), n) | b ∈ Bi , n ∈ EnY (b)

}

We assume that all nodes except exit nodes are not final, i.e.,
for all i ∈ {1, . . . , k} and n ∈ (Ni\Exi) ∪ Returni there is
n′ ∈ (Ni\Eni)∪Calli such that n−→i n′. Note that we allow
for direct transitions from return to call nodes.
The semantics of a componentAi is defined as Kripke struc-
ture �Ai � = (Nall

i ,−→i , AP, Li). The semantics of A is a
Kripke structure

�A� = (B∗×Nall ,
⇒, AP, L)

where L labels each state as the corresponding node, i.e.,
L((σ, n)) = Li (n) for all σ ∈ B∗ and n ∈ Nall

i , and
⇒ is
the smallest transition relation that obeys the rules of Fig. 2.
Intuitively, a state (σ, n) of the Kripke structure �A� com-
prises a call stack σ and a local node n of some component
ofA. Rule (loc) represents an internal transition of a compo-
nent, (loop) implements that the execution stays in the exit
nodes when leaving the outermost component, and (call) and
(return) formalize entering and leaving a box, respectively.

123

Lazy model checking for recursive state machines

Fig. 1 Java dataflow example [33] and its generated control-flow
RSM with components main, a and b. Rounded rectangles represent
nodes with labels attached next to them on gray background. Boxes

are represented by rectangles with the box label giving their referenced
component in the top left. Transitions are denoted by arrows

Fig. 2 Kripke structure semantics of recursive state machines

Example 1 Fig. 1 depicts a Java program (left) and a corre-
sponding RSM model (right). Nodes in the RSM stand for
control-flow locations with names encoding references back
to the abstract syntax tree of the source code. Furthermore,
nodes are labeled with usei and defi , indicating whether
variable i is read or written, respectively.

3.2 Computation tree logic

We specify system requirements formulas of computation
tree logic (CTL, [18]), which are defined over atomic propo-
sitions AP by the grammar

	 = tt | a | ¬	 | 	 ∨ 	 | ∃X	 | ∃G	 | ∃	U	

where a ranges over AP. Further standard operators, e.g., ∧,
F, and ∀, can be derived through standard transformations
such as DeMorgan’s rule [6]. We denote by Subf () and
Subf∃() the set of subformulas and existential subformulas
of 	, respectively. We say a formula φ ∈ Subf () is a strict
subformula of 	 if φ �= 	. Given a Kripke structure K =
(S,−→, AP, L), we define the satisfaction relation |
 for
CTL formulas over AP recursively by
s |
 tt
s |
 ¬	 iff s �|
 	

s |
 a iff a ∈ L(s)
s |
 	1 ∨ 	2 iff s |
 	1 or s |
 	2

s |
 ∃X	 iff ∃π ∈ �(s).π [2] |
 	

s |
 ∃G	 iff ∃π ∈ �(s).∀i ∈ N.π [i] |
 	

s |
 ∃	1 U	2 iff
∃π ∈ �(s), j ∈ N.∀i < j .π [i] |
 	1 ∧ π [j] |
 	2

An interpretation ∂ over S × Subf () is consistent withK if
for all s ∈ S and φ ∈ Subf () we have ∂(s, φ) = tt implies
s |
 φ and ∂(s, φ) = ff implies s �|
 φ.

Example 2 The dataflow example RSM provided in Exam-
ple 1 could be subject of an interprocedural data-flowanalysis
employing its use-def annotations. For instance, the require-
ment that whenever the variable i is defined, it is eventually
used, can be expressed by the CTL formula

	 = ∀G(
defi → ∃F(usei)

)
.

Our Dataflow example does not meet this requirement: after
squaring i in Line 10, the new value of i is not used in later
program execution steps. In the RSM of Fig. 1, this is wit-
nessed by the only existing execution that starts in the initial
node main_11_0, reaches the defi -labeled node b_23_6
after calling b(), and finally continues with b_24_7 and
main_14_3 that are both not labeled with usei .

4 Problem statement

In this section, we formalize the model-checking problem
for RSMs and CTL properties that we target in this paper,
and elaborate more on the main challenges that have to be
tackled.

For a CTL formula 	, we write A |
 	 if for all entry
nodes of the outermost component n ∈ En1 can ensure
satisfaction of 	, i.e., (ε, n) |
 	 in the Kripke structure
semantics �A� of the A [15, 16]. The model-checking prob-

123

C. Dubslaff et al.

Fig. 3 Running example RSM

lem we consider here in this paper then asks whetherA |
 	

for a given RSM A and CTL formula 	, both over AP.

Example 3 Fig. 3 depicts an RSMA = (A1,A2) over AP =
{ , , }. Initially, there is a choice between again enteringA1

or enteringA2. When entering A1 via b1, this choice can be
repeated arbitrarily many times, leading to a box stack filled
with arbitrarily many b1’s. Note that this behavior includes
the infinite case of unboundedly many times re-enteringA1.
Otherwise, when entering A2 via b2, we have to leave A2

directly after one step. After leaving, there is a choice to
re-enteringA2 after visiting n2, which can also be done arbi-
trarilymany times, leading to an increasing box stack but now
with boxes b2. Not enteringA2 again leads to transitioning to
n4, leaving A1 through this exit node. This reduces the box
stack by b1, transitioning from return node (b1, n5) to exit
node n4 or from return node (b1, n4) to exit node n5, alter-
nating whether we leave b1 via n4 or n5 until the box stack
is empty. Due to this alternation, the final node depends on
the parity of the number of times b1 has been entered.

Consider the CTL property ∃G , which is satisfied for
A, witnessed by the infinite run (ε, n1)(ε, (b1, n1))(b1, n1)

(b1, (b1, n1))(b1b1, n1) To prove satisfaction, a naive
attempt would be to flatten the A into a Kripke structure,
i.e., recursively replacing all boxes by their references com-
ponent. However, this flattened Kripke structure is infinite,
since b1 ∈ B1 calls A1, leading to an infinite recursion. To
circumvent exhaustive flattening, we could flatten A up to a
certain box stack size, obtaining a finite partial Kripke struc-
ture (PKS) [7, 13, 43, 44]. Nevertheless, since the property
can only be fulfilled onmodels with infinite runs, finite PKSs
cannot directly verify satisfaction of the property.

One possible approach to solve the model-checking prob-
lem on the level of PKSs would be to find a depth bound k
such that after flattening boxes up to the depth k we can use
interpolation techniques toward complete verification [42,
51]. However, this process of flattening loses information
about the compositional structure. To provide a compo-
sitional approach, we will propose methods that operate
directly on the component structure. This allows us to do
reasoning locally on the components and also eases explana-
tion of witnesses and counterexamples when referring back
to the actual code the RSM was constructed from.

4.1 Contexts

As illustrated inExample 3, oneof themain challengeswithin
RSMmodel checking is the potentially infinite state space of
the underlying Kripke structure. Fortunately, previous work
on verifying CTL formulas 	 in components showed that it
is sufficient to consider finitely many contexts to determine
the complete satisfaction relation [5, 15]. Contexts comprise
all possible (but finitely many) satisfactions of subformulas
in return nodes of components. Formally, for an RSMA and
a CTL formula 	 both over a set of atomic propositions AP
as formalized in Sect. 3, a 	-context of a component Ai in
A is an interpretation γi ∈ �

(
Exi × Subf∃()

)
over the

component’s exit nodes and existential subformulas of 	.
For A = (A1, . . . ,Ak) we again denote the union over all

contexts by γ
def= ⋃k

i=1 γi .
Intuitively, an existential formula 	 = ∃ψ and an exit

node ex ∈ Exi a context γi specifies whether there is a path
that satisfies the path formulaψ when leaving the component
Ai through ex . Note that we do not need to consider other
subformulas than such existentially quantified ones, since we
assume 	 to be in existential normal form (cf. Section3.2)
andother subformulas’ satisfaction canbe locally determined
or directly dependon existential formulas.Hence,we identify
contexts with sets of existentially quantified subformulas.

The challenge on the computational side is that in gen-
eral the number of possible contexts is exponential, both in
the length of the CTL formula as well as in the number of
exit nodes. While the ExpTime-completeness of the model-
checking problem on RSMs and CTL formulas [3] reduces
hope toward an efficient algorithm, there are many examples
where the number of relevant contexts is much smaller. This
motivates the main goal of our approaches to be developed:
computing as few contexts as possible to speed up verifica-
tion.

Example 4 Consider again the RSM in Example 3, and the
CTL property	 = ∃F∃G , which holds iff we reach n4 with
the empty box stack. Then, there are two existential subfor-
mulas: 	 itself and φ1 = ∃G . Since each pair or existential
subformula and exit node must be mapped to either tt or ff,

123

Lazy model checking for recursive state machines

this yields 2|Exi |∗|Subf∃()| different contexts for component
Ai , i.e., 16 possible contexts forA1, and 4 possible contexts
for A2.

Notice however, that inA1, regardless of the box stack, φ1

cannot hold in n5. Only in n4 the formula φ1 can be satisfied
in the case where the box stack is empty, a case in which also
	 immediately holds in n4. Further, due to the structure of
the RSM, if 	 holds in n5 for some box stack, then it cannot
hold in n6 for the same box stack and vice versa. In total,
this leaves us with only 3 possible fully specified contexts in
A1: one where only (n4,) is mapped to tt, one where only
(n5,) is tt, and one where (n4,	1) and (n4, φ1) are both
mapped to tt. Similarly, A2 has only 2 consistent contexts
since φ1 cannot hold in n6, leading to a total number of 5
consistent contexts out of 20 possible ones.

5 Ternary RSMmodel checking

This section provides the foundations for a ternary model-
checking algorithm of multi-exit RSMs against CTL for-
mulas. Our approach is an adaptation of the CTL∗ model-
checking algorithm for single-exit RSMs by Alur et al.
[3] toward ternary reasoning and support multi-exit RSMs.
Multi-exit RSMs are RSMs where components might have
more than one exit node, which constitutes a large class of
real-world procedural programs, not being able tomodelwith
single-exit RSMs. For instance, different return values of pro-
cedures naturally appear in practical programming examples:
except the Dataflow example from Fig. 1, all examples we
consider in our experimental studies of Sect. 7 require multi-
exit RSMs for their analysis. Meanwhile, CTL as a subclass
of CTL∗ is still expressive enough to specify lots of relevant
properties, e.g., use-def properties for interprocedural static
analysis and other standard practical patterns [26].

5.1 Motivation

Our reasoning for employing ternary model-checking is that
we want to exploit the compositional structure of the RSM.
While the algorithm by Alur et al. [3] also computes only
reachable contexts, it does so by computing all decomposi-
tions of path formulas. The drawback is that the number of
decomposition of a formula may be exponential in its length.
Further, the computation of decompositions does not exploit
the structure of the RSM, neither locally nor globally. Hence,
we do not use path formula decompositions but refinement
of ternary contexts as an alternative approach. Other reasons
for the ternary model-checking procedure we present is that
it can provide a basis for lazy evaluation schemes and ease
cycle detection, two challenges we face in the forthcoming
sections.

Ternary interpretations arise naturally in RSMs as a node
satisfying a propertymay depend on the path after leaving the
node’s component, which may be unknown until a context is
provided. The intuitive semantic meaning of a ternary inter-
pretation that assigns ?? to CTL formula φ in node n could
be phrased as “The local information about the component
and the information provided through contexts is not suffi-
cient to determine whether φ holds in n”. In particular, this
does not necessarily mean that it depends on the box stack
whether n satisfies φ. It could also mean that (n, σ) |
 φ for
all (or no) box stacks σ ∈ B∗, but the relevant information
for determining this has not yet been added to the context of
n’s component.

5.1.1 Consistency

To formalize the correctness of our algorithms, we introduce
the following notions: Given an RSM A, a CTL formula 	,
and a ternary interpretation ∂ over all node-formula pairs
Nall × Subf (), we say that ∂ is consistent (w.r.t. A) iff the
following conditions hold for all n ∈ Nall , φ ∈ Subf (), and
σ ∈ B∗:

∂(n, φ) = tt
⇒ (σ, n) |
 φ

∂(n, φ) = ff
⇒ (σ, n) �|
 φ

If both implications also hold the other way around, we say
that ∂ is a maximally consistent. Note that since both state-
ments quantify universally over stacks σ ∈ B∗, it is still
possible that a maximally consistent ternary interpretation
maps some inputs to ??. That is, a ternary interpretation with
∂(n, φ) = ?? may still be maximally consistent if there are
box stacks σ1, σ2 ∈ B∗ with (σ1, n) |
 φ but (σ2, n) �|
 φ.

The support of ternary CTL model checking follows the
ideas by Bruns and Godefroid [12] and replaces the role
of refinement operations on satisfaction sets in the classi-
cal CTL model-checking algorithm for RSMs [3]. To ensure
compositional RSM model checking, we discuss two kinds
of deductions: first, how ternary interpretations are refined
locally for an RSM, and second, how the ternary refinements
are globally propagated through contexts.

5.2 Ternary refinement

Toward a complete ternary CTL model-checking algorithm,
we first discuss how we refine ternary interpretations for a
given RSM. As described earlier, the value of formula in a
node may depend on global information, such as the context
in which the node’s component is called. Hence, it is possi-
ble that locally some values are unknown. For this reason, we
introduce a ternary model-checking approach that operates
on locally known transitions, i.e., transitions within a compo-
nent and transitions that enter a box. For transitions leaving

123

C. Dubslaff et al.

Fig. 4 Ternary semantics of CTL formulas in RSMs

a component, we rely on information provided through its
context.

Formally, we inductively define the value of a ternary for-
mula	 in a node n0 ∈ Nall by adapting the ternary semantics
[n0 |
] by Bruns and Godefroid [12]. The rules for the
resulting ternary semantics [n0 |
]γ including the infor-
mation provided through context γ are depicted in Fig. 4.

Here, comp is the complement function which maps tt
to ff, ff to tt, and ?? to ??. Both min and max are defined
on the order tt > ?? > ff. Our definition extends the usual
definition of ternary semantics for cases where 	 is an exis-
tentially quantified formula by not only quantifying over all
paths in the (partial) Kripke structure that satisfy 	 in the
usual way, but also quantifying over all paths that lead to
an exit node and considering the context in the exit node.
Specifically, CTL formulas of type ∃X can easily be defined
as usual for non-exit nodes since all successors are known,
but we exclusively have to rely on the context γ to deter-
mine whether the formula holds in an exit node since we do
not know its successors without contextual information. For
formulas of type 	 = ∃Gφ1 we do not only check for the
standard conditions that directly serve aswitness (i.e., a cycle
on which φ1 holds) but also whether an exit node nl in which
the value of 	 is specified through the context is reachable
via aφ1-path. Similarly, for	 = ∃Gφ1 we additionally check
we also check whether such an exit node is reachable via a
φ1-path. In the ternary setting, for all paths we consider the
minimum value over the ternary semantics. As an example,
for 	 = ∃Gφ1 this means that as soon as a node on the path
does not satisfy φ1, or the path reaches an exit node in which
	 does not hold, the path can no longer serve as a witness
for 	. As soon as φ1 is ?? or tt in all nodes on the path, and
for paths which end in an exit node also the context specifies

that 	 is ?? or tt in the exit node, the path may serve as
a witness for 	 maybe holding. Only if φ1 surely holds on
the entire path (and potentially in the exit node through the
context), the path serves as a witness for 	 surely holding.
Since the formula is existentially quantified we then take the
maximum value of a path over all such paths.

In contrast to the common application of this ternary
semantics in PKSs, where uncertainty is modeled by [n |

] = ?? based on a labeling function L , in RSMs the
uncertainty comes from a context γ evaluating an existen-
tial formula to ?? in an exit node.

Lemma 1 Let A be an RSM with a consistent context γ over
a CTL formula 	. Then the ternary interpretation induced
by the ternary semantics given by

∂(n, φ) = [n |
 φ]γ

for all n ∈ Nall and φ ∈ Subf () is consistent.

5.2.1 Maximal consistency

While Lemma 1 shows that the interpretations induced by
ternary semantics are consistent, we cannot achieve maximal
consistency: for a node n and CTL formula 	, the ternary
semantics may evaluate [n |
 φ] = ??, even if 	 |
 n can
be determined locally. This is due to the ternary semantics
defined separately considering subformulas and not taking a
global formula perspective into account, checking whether
there is an interpretation that fulfills or refutes the whole
formula.

Example 5 Consider node n5 ∈ N1 in theRSM inExample 3,
and the CTL property 	 = ∃F∃G ∨ ¬∃F∃G and assume

123

Lazy model checking for recursive state machines

the context γ maps all node-formula pairs to ??. As it cannot
be determined locally by only A1 along with its context γ1
whether ∃F∃G holds in n5, we have [n5 |
 ∃F∃G]γ = ??.
By definitionwe also have [n5 |
 ¬∃F∃G]γ = comp(??) =
??. Finally, we have [n5 |
]γ = max(??, ??) = ??.
However, 	 is clearly a tautology and thus trivially holds in
n5.

This phenomenon arises in many different applications of
ternary model checking and has led to the introduction of the
thorough semantics [7, 13, 43]. Intuitively, thorough seman-
tics is not defined inductively, but rather checkswhether there
is an extension of a PKS inwhich the formula is satisfied, and
whether there is another extension inwhich the formula is not
satisfied. It is possible to also adapt the thorough semantics
towardRSMsby incorporating information through contexts.
In particular, one could check whether there exist consistent
refinements of the context such that the formula is satisfied
or violated, respectively.

However, while thorough semantics would directly ensure
maximal consistency also in RSMs, we decided for the
standard semantics. This has mainly two reasons: First, the
computation of the value of a formula in a node is computa-
tional expensive, i.e.,ExpTime-complete even for PKSs [13].
This is further amplified by the fact that the size of the PKS
induced by the RSM may be exponential in the size of the
RSM (cf. Section4). Second, maximal consistency can also
be ensured when fixing contexts, a property which is crucial
for providing a correct model-checking algorithm for RSMs
and CTL:

Lemma 2 Let A be an RSM with context γ over a CTL
formula 	 such that γ (n, φ) �= ?? for all n ∈ Ex and
φ ∈ Subf∃(). Then the ternary interpretation induced by
the ternary semantics given by

∂(n, φ) = [n |
 φ]γ

for all n ∈ Nall and φ ∈ Subf () is maximally consistent.

We will later show that we can always refine contexts in
such a way that they never map to ?? which allows us to
apply this Lemma.

There is a crucial difference between our application of
ternary model checking and the application of PKS mainly
considered in the literature/ For RSMs we can always refine
contexts, which are the only source of uncertainty in our
model, and ultimately are able to remove all uncertainty,
while in PKSs uncertainty is part of the model specification.
Herein lies the reason why the ternary semantics is sufficient
for our approach while the thorough semantics is required in
other ternary model checking algorithms [7, 43].

5.2.2 Computation

To compute the value of a given ternary formula 	 on
an RSM under the ternary semantics, we use the func-
tion RefineTernary(A,	, ∂, γ). It maps an RSM A =
(A1, . . . ,Ak) as in Sect. 3.1, a CTL formula 	, both over
AP, the context γ of A, and an interpretation ∂ that is con-
sistent with A and γ to an interpretation ∂ ′ refining ∂ .

In essence, RefineTernary implements one step of the
ternary CTL model-checking algorithm on PKSs [12]. Inter-
pretations on subformulas are refined in a bottom-up fashion
along the abstract syntax tree of the formula. This is done as
in classical CTLmodel checking [18] but on ternary interpre-
tations instead of binary ones. The extension toward ternary
interpretations is rather straight forward for local formulas
as well as ∃X formulas. To achieve ternary deduction for ∃G
and ∃U formulas, an optimistic and a pessimistic run of the
classical CTLdeduction step is performed on binary interpre-
tations of subformulas. Tomatch our extension of the ternary
semantics [12] toward the compositional setting of RSMs,
our deduction depends on contexts γ the components are
evaluated in. In the optimistic run all direct subformulas that
are “unknown” are assumed to hold, while in the pessimistic
run they are assumed to not hold. Hence, in the initialization
the pessimistic run collects all nodes in which the relevant
subformula (i.e., φ1 for ∃G	1 and φ2 for ∃φ1 Uφ2) surely
holds, checking whether the interpretation ∂ maps the for-
mula to tt in a specific node, whereas the optimistic run
collects all nodes in the subformula may hold, i.e., includ-
ing nodes in which ∂ maps the relevant subformula to ??
as well. Afterward, we use the standard CTL model check-
ing scheme, utilizing a backward reachability analysis where
again optimistic and pessimistic satisfaction for the subfor-
mulas is assumed in the respective run. Then, all subformulas
that do not hold after the optimistic run do surely not hold in
the ternary setting and likewise, all subformulas that do hold
after the pessimistic run surely hold.

Notice that RefineTernary only operates at the level of
a single formula 	 and the optimistic and pessimistic runs
are only required for ∃G and ∃U formulas. In these cases,
the used backward reachability analysis only considers tran-
sitions in −→+, i.e., local transitions within a component
and transitions from call nodes to entry nodes, however, not
transitions from exit to return nodes. This is because for a call
node (b, en) we surely know its successor is en. In contrast,
for a return node (b, ex) we only know its predecessor was
ex . While this does not mean that ex always has (b, ex) as a
successor, it potentially has some other return node (b′, ex).
Thus, we cannot conclude with certainty whether (b, ex) is
reachable from ex .

Thus, since dealingwith ∃G and ∃U can be done locally, it
is not necessary to transform CTL formulas before applying
the algorithm. To then compute an interpretation of all sub-

123

C. Dubslaff et al.

Algorithm 1: RefineTernary(A,	, ∂, γ)

input : an RSM A, a CTL formula 	 over AP, a ternary interpretation ∂ : Nall × Subf () → {tt, ff, ??}, and contexts γ

output: a ternary interpretation ∂ ′ : Nall × Subf () → {tt, ff, ??} following the ternary semantics

1 Satopt , Sat pes := ∅,∅
2 forall the n ∈ Nall and φ ∈ Subf () \ {	} do ∂ ′(n, φ) = ∂(n, φ)

3 forall the n ∈ Nall do ∂ ′(n, φ) = ??
4 if 	 = a with a ∈ AP then
5 forall the n ∈ Nall do
6 if a ∈ L(n) then ∂ ′(n,) = ttelse ∂ ′(n,) = tt
7 if 	 = ¬φ1 then
8 forall the n ∈ Nall do ∂ ′(n,) = comp(∂ ′(n, φ1))

9 if 	 = φ1 ∨ φ2 then
10 forall the n ∈ Nall do ∂ ′(n,) = max(∂ ′(n, φ1), ∂

′(n, φ2))

11 if 	 = ∃Xφ1 then
12 forall the n ∈ (Nall \ Ex) do ∂ ′(n,) = maxn−→+n′ ∂ ′(n′, φ1)

13 forall the ex ∈ Ex do ∂ ′(ex, φ) = γ (ex, φ)

14 if 	 = ∃Gφ1 then
/* pessimistic run */

15 Sat pes := {n ∈ Nall \ Ex | ∂ ′(n, φ1) = tt} ∪ {n ∈ Ex | γ (n,) = tt}
16 while there is n ∈ Sat pes \ Ex with n′ /∈ Sat pes for all n −→+ n′ do
17 Sat pes := Sat pes \ {n}
18 forall the n ∈ Sat pes do ∂ ′(n,) := tt

/* optimistic run */

19 Satopt := {n ∈ Nall \ Ex | ∂ ′(n, φ1) �= ff} ∪ {n ∈ Ex | γ (n,) �= ff}
20 while there is n ∈ Satopt \ Ex with n′ /∈ Satopt for all n −→+ n′ do
21 Satopt := Satopt \ {n}
22 forall the n ∈ Nall \ Satopt do ∂ ′(n,) := ff
23 if 	 = ∃φ1 Uφ2 then

/* pessimistic run */

24 Sat pes := {n ∈ Nall \ Ex | ∂ ′(n, φ2) = tt} ∪ {n ∈ Ex | γ (n,) = tt}
25 while there is n −→+ n′ where n /∈ Sat pes , n′ ∈ Sat pes and ∂ ′(n, φ1) = tt do
26 Sat pes := Sat pes ∪ n
27 forall the n ∈ Sat pes do ∂ ′(n,) := tt

/* optimistic run */

28 Satopt := {n ∈ Nall \ Ex | ∂ ′(n, φ2) �= ff} ∪ {n ∈ Ex | γ (n,) �= ff}
29 while there is n −→+ n′ where n /∈ Satopt , n′ ∈ Satopt and ∂ ′(n, φ1) �= ff do
30 Satopt := Satopt ∪ n
31 forall the n ∈ Nall \ Satopt do ∂ ′(n,) := ff
32 return ∂ ′

formulas of 	, we can simply call RefineTernary on all
subformulas of 	 bottom-up as usual in CTL model check-
ing. An extension of optimistic and pessimistic run toward
other logics such as LTL fragments would require taking
care of additional details. For instance, dealing with negation
might require specific techniques, e.g., ensuring formulas in
negation normal form [3, 7, 12, 43]. Differently, our algo-
rithm does not face such particularities, since our bottom-up
procedure treats every subformula in isolation.

On the level of the single formula 	 we indeed check
the entire system nodes whether 	 holds under the ternary
semantics. However, recall that the system representation as
an RSM is always finite as opposed to the underlying Kripke
structure, and even if the underlyingKripke structure is finite,
it may be exponentially larger than the RSM. Thus, utilizing

the compositional structure of the RSM potentially can make
the ternarymodel-checking approach significantly faster than
flattening the RSM and model-checking the resulting Kripke
structure.

Example 6 Consider again the RSM in Example 3 and
CTL formula 	 = ∃F∃G = ∃ttU ∃G . Let us
run RefineTernary on all subformulas of 	, bottom-up.
Assume that initially ∂ maps all node-formula pairs to ??.
Also, assume that γ (n4, ∃G) = ff and γ (n6,) =
γ (n6, ∃G) = tt and otherwise γ (·, ·) = ff.

First, we run RefineTernary on . This trivially con-
structs ∂ ′ such that it maps nodes to tt and ff, depending on
their labels.

Next, we run the algorithm on ∃G and ∂ ′. To extend
∂ ′, we first copy γ for all inputs for which the output is

123

Lazy model checking for recursive state machines

not ??. So here, ∂ ′(n6, ∃G) = tt and ∂ ′(n4, ∃G) = ff.
For the pessimistic run, we follow the standard CTL model
checking procedure for ∃G formulas and first collect all
nodes in which holds in the set Sat pes and then succes-
sively remove all non-exit nodes which have no successor
in Sat pes until we reach a fixed point. This leaves us with
Sat pes = {n6, n3, (b2, n3), n2, (b1, n6)}, in which ∃G defi-
nitely holds. For the optimistic run, collect all nodes in which
may hold in the set Satopt . Note that this includes nodes

in which would be ??. However, since is an atomic
proposition, it is known in this example and thus this step is
identical to the pessimistic run.We then successively remove
all non-exit nodes without a Satopt successor. This results in
Satopt = {n6, n3, (b2, n3), n2, (b1, n6), n5} as a fixed point.
For all other nodes n /∈ Satopt we thus set ∂ ′

i (n, ∃G) = ff.
To refine ∂ ′ for 	 we again perform a pessimistic and

an optimistic run. The pessimistic run is again similar
to the standard (binary) CTL model checking, addition-
ally incorporating contextual information. We first collect
all nodes in which 	 is known to hold, either a priori
(e.g., through the context) or by ∃G holding. This is
{n6, n3, (b2, n3), n2, (b2, n6)} in this example. We then col-
lect all nodes than can reach a node in this set through
backward reachability analysis, leading to Sat pes containing
all those node as well as n1 in which	 is now known to hold.
For the optimistic run we again start by collecting nodes in
which 	 may hold., optimistically assuming that ∃G holds
in nodes where it is unknown, i.e., all nodes except n1 and
(b1, n4). Notice that 	 does optimistically hold in n4 itself
due to γ1(n4,) = ??. After reachability analysis, Satopt

contains all nodes, meaning we do not set ∂ ′(·,) = ff for
any node.

All node-formula pairs for which we have not set a truth
value here agree with ∂ and thus are mapped to ??.

Lemma 3 Let A = (A1, . . . ,Ak) be an RSM A with consis-
tent contexts γ over a CTL formula 	. Further, let ∂ be the
ternary interpretation induce by the ternary semantics for all
n ∈ Nall and φ ∈ Subf ()\{	}, i.e., ∂(n, φ) = [n |
 φ]γ

Then Algorithm 1 terminates and returns a ternary inter-
pretation ∂ ′ that follows the ternary semantics for all n ∈ Nall

and φ ∈ Subf (),i.e., ∂ ′(n, φ) = [n |
 φ]γ .

5.3 Contextualization

The main difference of our RefineTernary method com-
pared to a single deduction step by the standard ternary CTL
model-checking algorithm [12] is that we explicitly give a
consistent partial interpretation ∂ and consistent context γ

as input parameter. To this end, we can include assumptions
on the satisfaction of subformulas in the deduction process
such as knowledge on the environment a component is exe-
cuted in, i.e., the box stack that lead to the component being

executed. What remained open thus far is how we actually
come up with a suitable interpretation and contexts as input
for RefineTernary.

The issue is that if a box b invoking Ai is called multiple
times, either at different locations or on different recursion
levels, it is possible that all fully specified contexts, i.e., con-
texts that do not map any inputs to ??, are inconsistent. Thus,
Lemma 2 is not applicable and we may not directly obtain a
result on whether a certain CTL formula is satisfied.

Example 7 Consider again the RSM in Example 3, and the
CTL property 	 = ∃F∃G . Any context γ1 for which
γ1, (n4) = ff is inconsistent since (ε, n4) |
 	. However,
also any context γ1 for which γ1(n4,) = tt is inconsistent
since (b1, n4) �|
 	. Without this contextual knowledge, it
is impossible to deduce whether A |
 	 using the ternary
semantics, i.e., running RefineTernary.

To obtain complete results but still be able to reason about
components in a modular way, we consider each compo-
nent multiple times under different contexts. This is achieved
by computing all reachable contexts and reasoning about
each component separately for each context. To implement
this, we introduce the function Contextualize, described
inAlgorithm 2,whichmapsA, a CTL formula	, contexts γ ,
an interpretation ∂ overA and a target box b ∈ Bi to a possi-
blymodified RSMA′, in which the context of the component
called by b is refined, potentially by creating a new compo-
nent. Additionally, the function returns consistent contexts γ ′
and a consistent ternary interpretation ∂ ′, both over A′ and
	, The refinement of the context of box b can be formalized
by requiring that the A′ satisfies the following requirement
for all ex ∈ ExY (b) and φ ∈ Subf∃():

γ ′(ex, φ) = ∂((b, ex), φ)

The challenge then becomes to modify the RSM in such a
way that ensures that γ ′ is still consistent.

Our algorithm for Contextualize first checks whether
there already exists a component A j with context γ j being
equivalent to the context induced by b’s return nodes. For-
mally, equivalence here means that A j and AY (b) must be
isomorphic, i.e., there exists an isomorphism f between Nall

j

andNall
Y (b) such that the transition relation−→ is preserved, as

well as an isomorphism g between boxes Bk and BY (b) such
that the referenced components, i.e., AY (b) and AY

(
g(b)

)

are the same. The contexts γ j and γb are then equivalent if
γ j (ex) = γb

(
f (ex)

)
for all ex ∈ Ex j . On a technical level,

to check whether such a context exists, whenever we create
a copy of a component we track from which component was
originally copied from, which we call a base component. If
two componentswere copied from the same base component,
they are always isomorphic. Thus, to check whether a con-
text equivalent to γb exists, we only need to check whether

123

C. Dubslaff et al.

Algorithm 2: Contextualize(A,	, γ , ∂, b)

input : an RSMA = (A1, . . . ,Ak), an existentially quantified CTL formula 	, context γ , ternary interpretation ∂ overA, and a box b ∈ Bi

output: a modified RSM A′ with refined contexts γ ′ and interpretations ∂ ′ for component Y (b)

1 forall the φ ∈ Subf () and (b, ex) ∈ Returnb do γb(ex, φ) := ∂
(
(b, ex), φ

)

2 ∂ ′ := ∂

3 if there is j where γb and γ j are equivalent then
4 A′ := A
5 Y ′

i (b) := j
6 else
7 Ak+1 := copy(AYi (b))

/* copies of nodes and boxes are denoted by ′ */
8 A′ := (A1, . . . ,Ak ,Ak+1)

9 γ ′ := (γ1, . . . , γk , γb)

10 forall the n′ ∈ Nall
k+1 and φ ∈ Subf () do ∂ ′(n′, φ) = ∂(n, φ)

11 Y ′
i (b) := k + 1

12 A′ = RemoveUnreachableComponents(A′
)

13 return A′, γ ′, ∂ ′

there is a component that has the same base component as
AY (b) and for which γb agrees with its context on all inputs.
If an equivalent context exists, we (re)assign b to the found
contextualized component. Otherwise, a copy2 Ak+1 of the
component AYi (b) is generated (i.e., the number of compo-
nents of the RSM increases from k to k + 1) with context γb

and the box b is reassigned to the fresh component Ak+1 by
updating function Yi (see Sect. 3.1). As this new component
structurally is a copy ofAY (b), it is isomorphic toAY (b) and
has the same base component. Lastly, we remove any com-
ponents that became unreachable during contextualization
which can be achieved by a simple graph reachability anal-
ysis. Note that this also means we remove its corresponding
context from γ .

Example 8 Consider again the RSM in Example 3 and CTL
formula 	 = ∃F . Assume contexts γ (n4,) = tt and
else γ (·,) = ??. Further, let ∂ be the result of run-
ning RefineTernary, i.e., ∂(n4,) = ∂((b1n4),) =
tt and ff otherwise, and ∂(n,) is tt for nodes n ∈
{n4, (b1, n5)), (b2, n6)} and otherwise ??.

Let us contextualize box b1. The induced context follows
∂ , i.e., we construct γb1(n4,) = γb1(n5,) = tt. As this
does not match the context γ1 of A1 we construct a new
component A3 and setting Yb = 3, resulting in the RSM
depicted in Fig. 5. Here, the ternary value behind each exit
node ex specifies the value γ (ex,).

We can now extend ∂ toward including A3 by running
RefineTernary again. Afterward, we can continue contex-
tualizing, e.g. w.r.t. b′

1 for which we again first construct the
induced context γb′

1
(n4,) = γb′

1
(n5,) = tt. In this case

now a component exists which is isomorphic toAY (b′
1

= A1

2 This is done due to better understandability of the approach. For prac-
tical implementations, one might only copy and modify contexts of the
components.

Fig. 5 Example RSM contextualized w.r.t. b1 and 	 = ∃F•◦

forwhich the context agreeswith γb′
1
, namelyA3 itself. Thus,

to refine b’s context, we simply set Y (b′
1) = 3.

Lemma 4 Let A be an RSM with consistent contexts γ and
consistent interpretation ∂ over a CTL formula 	. Then for

123

Lazy model checking for recursive state machines

any input box b Algorithm 2 returns γ ′ and ∂ ′ that are con-
sistent with A′.

Algorithm 3: Initialize(A,)

input : an RSM A = (A1, . . . ,Ak) and a CTL formula, both 	

over AP
output: initial RSM A with contexts γ

1 forall the i ∈ {1, . . . , k} do
2 forall the n ∈ Nall

i and φ ∈ [Subf ()] do γi (n, φ) = ??
3 A0 = copy(A1)

4 forall the φ ∈ [Subf ()] do
5 forall the ex ∈ Ex0 do
6 if φ = a for a ∈ AP then
7 ∂ini t (ex, φ) := L0(ex, a)

8 if φ = ¬φ1 then
9 ∂ini t (ex, φ) := ¬∂ini t (ex, φ1)

10 if φ = φ1 ∨ φ2 then
11 ∂ini t (ex, φ) := ∂ini t (ex, φ1) ∨ ∂ini t (ex, φ2)

12 if φ = ∃Gφ1 or φ = ∃Xφ1 then
13 ∂ini t (ex, φ) := ∂ini t (ex, φ1)

14 γ0(ex, φ) := ∂ini t (ex, φ)

15 if φ = ∃φ1 Uφ2 then
16 ∂ini t (ex, φ) := ∂ini t (ex, φ2)

17 γ0(ex, φ) := ∂ini t (ex, φ)

18 A′ = (A0,A1, . . . ,Ak)

19 γ ′ := γ0 ∪ ⋃k
i=1 γi

20 return A′, γ

5.3.1 Initial context

To obtain a complete result, it is not sufficient to alternate
between callingRefineTernary andContextualize. One
issue that is left, is that we have not handled the Kripke struc-
ture semantics rule (loop) yet (cf. Fig. 2). Recall that this
rule specifies that that if we reach an exit node ex with the
empty box stack ε, we loop forever in ex . In order to properly
capture this behavior, we explicitly handle this case by first
contextualizing the outermost component as this is the only
component that we can be in while the box stack is empty.

Formally, we construct a new initial component A0 with
the same structure as the original initial component along
with a context γ0 over its exit nodes Ex0 and all existential
subformulas φ ∈ Subf∃() such that

γ0(ex, φ) = tt ⇐⇒ (ε, ex) |
 φ

γ0(ex, φ) = ff ⇐⇒ (ε, ex) �|
 φ

To contextualize the outermost component, which does
not depend on a calling component, we utilize a function
Initialize that is implemented by Algorithm 3.

The intuition behind the algorithm is rather straight for-
ward. First, we initialize all contexts to ?? in Line 2. Then,

in Line 3 we create a copy of the initial component A0 for
which we aim to construct a ternary interpretation ∂ini t over
its exit nodes Ex0 inducing an initial context that it is consis-
tent with the rule (loop) of the underlying Kripke structure
�A�. The reason for creating a copy is that we do only know
the context ofA0 under the empty box stack ε. However,A1

may also be invoked by other boxes and thus in a different
context.

To construct the maximally consistent interpretation ∂ini t

over all nodes in Ex0, we perform local deduction steps for
all φ ∈ Subf () in a bottom-up fashion as for standard CTL
model checking.Wewill denote this ordered selection of sub-
formulas φ, where all subformulas of φ already have been
selected before, by φ ∈ [Subf ()] in the following. For
the propositional formulas (cf. Lines 6–11) the deduction is
straight forward. For existentially quantified formulas (cf.
Line 12 to Line 17), since the only path from an exit node ex
with an empty stack is a self-loop, we know that ∃Gφ1 and
∃Xφ1 hold in ex iff φ1 holds in ex , and φ = ∃φ1 Uφ2 holds in
ex iff φ2. The initial context γ0 then is the projection of ∂ini t

on nodes in Subf∃(). Notice that due this recursive defini-
tion, the initial context is fully specified, i.e., never returns
?? for any node-formula pair.

Finally, we add the new component along with its context
to the RSM and return it.

Example 9 Consider again the RSM in Example 3 and CTL
formula 	 = ∃F∃G .

For the initialization, we create a new initial component
A0 in whichwe checkwhether which formulas hold inwhich
exit nodes. We denote nodes in A0 with a superscript 0. In
this case, all subformulas of 	 are satisfied in n0

4 whereas
none are satisfied n′

5. Thus, γini t maps (n0
4,) and (n0

4, ∃G)
to tt, and(n′

5,) and (n0
5, ∃G) to ff.

Note that all boxes refer to either A1 or A2, but not to
the initial component A0, ensuring that A0 is only reached
with the empty box stack ε. However, it is possible that later
in the model checking procedure Contextualize modifies
the RSM by redefining Y (b) for some box b such that b is
referencingA0. In that caseA0 can then also be reached with
some non-empty box stack. This is not a problem since as
we have seen Contextualize ensures that this redefining
maintains consistency of γ .

Lemma 5 For an RMS A and CTL formula 	 Algorithm 3
returns an RSM A′ with consistent contexts γ ′.

5.4 Eager RSMmodel checking

Piecing together the algorithms sketched so far, we devise a
compositional algorithm for model checking RSMs against
CTL formulas. That is, the algorithm runs locally on the
components of the RSM and propagates their satisfaction
relations toward a global satisfaction relation.

123

C. Dubslaff et al.

Algorithm 4: EagerCheck(A,)

input : an RSM A = (A1, . . . ,Ak) and a CTL formula 	, both over AP
output: tt if A |
 	 and ff if A �|
 	

1 A′, γ ′ := Initialize(A,)

2 forall the φ ∈ [Subf ()] do
3 repeat

/* exhaustively construct reachable contexts */
4 if 	 is existentially quantified then
5 forall the b ∈ B do A, ∂ := Contextualize(A, φ, γ , ∂, b)
6 ∂ := RefineTernary(A, φ, ∂)

7 until ∂ did not change
8 forall the n ∈ Nall with ∂(ex, φ) = ?? do
9 if φ = ∃Gψ then

10 ∂(ex, φ) := tt
11 if n ∈ Ex then γ (n, φ) := tt
12 if φ = ∃ψ1 Uψ2 then
13 ∂(ex, φ) := ff
14 if n ∈ Ex then γ (n, φ) := tt
15 if there is en ∈ En1 with ∂(en,) = ff then return ff
16 else return tt

The procedure follows ideas by Alur et al. [3] where sat-
isfaction of CTL subformulas is evaluated in a bottom-up
fashion, determining the truth value of minimal subformulas
in all nodes before proceeding to larger subformulas. Dur-
ing the evaluation, contextualized components are created
whenever there is not enough information present to fully
determine the truth values for subformulas in all nodes of
calling components. Algorithm 4 shows the decision proce-
dure EagerCheck(A,) that decides for an RSM A and a
CTL formula	whetherA |
 	 holds or not. The algorithm
starts with an initialization of the local ternary interpreta-
tions of the components ofA (function Initialize) in Line 1.
After initialization, in Line 2 EagerCheck iterates over all
subformulas of 	 in a bottom-up fashion as within clas-
sical CTL model checking. For each formula we alternate
between contextualizing components assigned to boxes by
Contextualize (cf. Line 5) and a ternary deduction by
RefineTernary, refining local interpretations of compo-
nents and determining new contexts toward a propagation
from calling components to called ones (cf. Line 6). This
is done until we reach a fixed point, i.e., the ternary inter-
pretation is not refined any further by RefineTernary and
Contextualize can no longer refine any contexts.

5.4.1 Global dependency cycle resolution

The reached fixed point does not solely ensure that all truth
values for the considered subformula are determined in all
nodes, i.e., ∂ may still map to ??. Intuitively, this can hap-
pen when the context of a box depends on the evaluation of
the boxes’ entry nodes. For this, we need to have a cycle
that passes through an exit node and thus hinders refinement
through contextualization.

Formally, we define a global dependency cycle in an RSM
A w.r.t. a formula 	 = ∃Gφ1 or 	 = ∃φ1 Uφ2 as a cyclic
sequence of nodes n1n2...n�n1 with

• ni ∈ Nall for all i ∈ {1, . . . , �}
• n j ∈ Ex for at least one j ∈ {1, . . . , �}
• (σ, ni) |
 φ1 for all σ ∈ B∗ and i ∈ {1, . . . , �}
• in the ∃U -case (σ, ni) �|
 φ2 for all σ ∈ B∗ and i ∈

{1, . . . , �}

such that there exists a cyclic path (·, n1)
⇒ (·, n2)
⇒
. . .
⇒ (·, n�)
⇒ (·, n1) in the underlying Kripke structure
�A� and there is no witnessing path for 	, except poten-
tially such a cycle. We illustrate this situation on our running
example:

Example 10 Consider again the RSM in Example 3 and CTL
formula 	 = ∃G .

To initialize, we create a component A0 and obtain
the RSM A with context γ that maps (·,) to tt for

n0
5, to ff for n0

4 and to ?? for all other exit nodes. Run-
ning RefineTernary we find that 	 does not hold in
n1, (b1, n1), n4, (b1, n4), (b1, n5) or any of their copies.
Contextualizing w.r.t. all boxes yields that neither b2 nor b02
can be refined as (b2, n6) = (b′

2, n6) = ??. For b′
1 and b01 we

see that both induced contexts γb′
1
and γb01

map every node-
formula pair to false since we found that neither (b1, n4) nor
(b1, n5) or any of their copies satisfy 	. Thus, we create a
new component A3 by copying A1 and assigning it context
γb′

1
, and redirect b′

1 and b01 to A3. This makes A1 unreach-
able; hence, we remove it. This leaves us in the situation
depicted in Fig. 6. Here, the truth value behind each node n
represents ∂(n,). We can see that 	 is still unknown in

123

Lazy model checking for recursive state machines

Fig. 6 Example RSM contextualized w.r.t. b1 and 	 = ∃G•◦

n2, n3 and n6 as well as in all corresponding box call and
return nodes (b2, n3), (b2, n6) and all copies of them. We
cannot refine any contexts via Contextualize since for all
boxes b the induced context γb is the same as the context of
the referenced component γY (b). Also RefineTernary can-
not refine ∂ any further since determining 	 in, e.g., (b2, n6)

would requires knowing γ2(n6)which in turn depends on the
value of 	 in (b2, n6).

Intuitively, we thus have a cycle of dependencies con-
nected through several components that hinders further
refinement via Contextualize and RefineTernary. If
such cycles appear locally, RefineTernary can take care
of them, but in this case, where the cycle traverses an exit
node, we cannot make progress via Contextualize and
RefineTernary.

Since we found this cycle now, we can manually deduce
that this is a witness for 	 holding in this cycle and set the
context γ2(n6,) = tt.

In general, we resolve such situations by the following
reasoning: Since there is a dependency cycle that hindered
refinement of 	 = ∃Gφ1, all nodes on this cycle have to
satisfy φ1. Thus, this cycle can serve as a witness of 	 to
hold and we refine all contexts for 	 and exit nodes on
the cycle toward tt. A similar argumentation can be applied

when 	 = ∃φ1 Uφ2 formula but with refining all ??-nodes
toward ff since the φ1 cycle hindering further refinement
is not a witness for 	, and other possible witnesses for 	

would have been found by alternating RefineTernary and
Contextualize.

We can also show formally that the two scenarios
described above is the only reason that a fixed point in which
∂(·,) = ?? can occur. In the next lemma, we prove that
this can only happen for ∃G and ∃U formulas, and that for
∃G formulas this immediately yields a witness, while for ∃U
formulas the formula does not hold on cycles.

Lemma 6 Let A be an RSM with consistent contexts γ and
consistent interpretation ∂ over a formula 	. If A has
been initialized via Initialize, and ∂ = RefineTernary

(A,	, ∂, γ)andA, γ , ∂ = Contextualize(A,	, γ , ∂, b)

for all b ∈ B, i.e., both are fixed points, and ∂(n, φ) �=
?? �= γ (n, φ) for all n ∈ Nall and φ ∈ Subf ()\{	}, then
∂(n,) = ?? implies that either

• 	 = ∃Gφ1 and (σ, n) |
 	 for all σ ∈ B∗, or
• 	 = ∃φ1 Uφ2 and (σ, n) �|
 	 for all σ ∈ B∗.

This is reflected in Algorithm 4 in Line 8 to Line 14 where
we modify ∂ according to Lemma 6.

Note that our efficient resolution of global dependency
cycles relies on ternary deduction, since cycles of unrefinable
??-nodes directly provide information about the satisfac-
tion of CTL formulas. While our algorithm is based on
[3], their algorithm uses binary refinements and thus can-
not exploit such a resolution. However, their algorithm also
includes mechanisms to reason about satisfaction of formu-
las expressed in linear temporal logic (LTL), which is used
to cover the cycle resolution step.

5.4.2 Eager RSMmodel checking

Taking global dependency cycle resolution into account
and piecing together the algorithms discussed so far, we
obtain correctness of our eager model-checking algorithm
EagerCheck:

Theorem 1 Algorithm 4 terminates and is correct, i.e.,
returns tt iff A |
 	 and ff iff A �|
 	 for any RSM A and
CTL formula 	 over a common set of atomic propositions.

6 Lazy RSMmodel checking

The model-checking algorithm presented in Sect. 5 mainly
combined existing techniques for model-checking RSMs
with ternarymodel checking techniques forCTL formulas [3,
5, 12, 15, 18]. In this section, we reuse the elements of Algo-
rithm 4 toward heuristics to reduce the number of deduction

123

C. Dubslaff et al.

steps involved. This is achieved by exploiting the structure
of the target CTL formula and the compositional structure of
the RSM toward lazy evaluation of subformulas and compo-
nents, respectively.

6.1 Lazy contextualization

Eager RSM model checking determines satisfaction of sub-
formulas φ ∈ Subf () in all nodes of the RSM A by
evaluating the satisfaction relation within components w.r.t.
all possible contexts. The possibly exponentially many con-
texts that have to be consideredwith this approach is themain
reason for CTL model checking over RSMs to be ExpTime-
complete [9]. Reducing the number of contexts considered
during the deduction process thus provides a potential to
speed up the model-checking process.

6.1.1 Lazy formula evaluation

The main idea toward reducing the number of contexts to
be evaluated is to leave satisfaction of subformulas φ of 	

unspecified in case they do not have any influence on the
satisfaction of 	.

Example 11 Let us consider theRSMofFig. 3 and	 = ∃X ∨
∃X(∃ U). Then, satisfaction of 	 can be determined by
solely regarding φ = ∃X in n1 and not reasoning about
either disjunct in other nodes, which would be necessarily
done in the bottom-up approach. Further, evaluating φ in n1

does not require any contextualization of box b since (b1, n1)

is labeled by and thus, in component A1 we can already
locally deduce φ to hold in n1 and thus n1 |
 	, directly
leading to A |
 	. In this example, we reduced the number
of contexts to be evaluated as we did not evaluate any context
for component A2.

6.1.2 Lazy expansion

To determine those contexts that have to be evaluated to
solve the model-checking problem, we combine the ternary
formula evaluationwith a heuristic that determines those con-
texts that might be the reason for underspecified satisfaction
of subformulas and impact satisfaction of 	 in the RSM.

Given an RSM A with contexts γ and ternary interpreta-
tion ∂ over a CTL formula 	, we define its contextualizable
boxes C(A, γ , ∂) as the set of boxes which contain more
contextual information than their corresponding component,
i.e.,

C(A,	,γ , ∂) =
{
b ∈ B | there is n ∈ ExY (b) and

φ ∈ Subf∃() s.t. ∂
(
(b, n), φ

) �= ??

and γ (n, φ) = ??
}

An expansion heuristic H is any function that maps an
RSM A with contexts γ and ternary interpretation ∂ over a
CTL formula 	 to a subset of C(A,	, γ , ∂). Intuitively, an
expansion heuristic returns boxes that are to be contextual-
ized, including ∅ if no box shall be contextualized. We call
an expansion heuristic H complete iff it returns ∅ only when
there are no contextualizable boxes, i.e.,

H(A,	, γ , ∂) = ∅ ⇐⇒ C(A,	, γ , ∂) = ∅.

6.2 Lazy approach

The idea of lazy contextualization of boxes in an RSM can be
incorporated into the eager RSM model-checking approach
EagerCheck presented in Algorithm 4. This leads to a
method LazyCheck presented in Algorithm 5. We outline
the difference in the workflow of both approaches in Fig. 7.

One of the main differences is that the lazy approach
no longer follows a strict bottom-up approach. While the
eager approach only considers a formula φ ∈ Subf () once
the truth value for all strict subformulas of φ are known
(cf. Line 2 in Algorithm 4), the lazy approach attempts to
compute whether A |
 	 before knowing the value of all
subformulas for 	 in all nodes. To employ such reasoning
we heavily rely on the ternary model-checking approach. In
fact, in Line 3 we already compute the maximally consistent
ternary interpretation before contextualizing any boxes (apart
from the initial context) and check in Line 4 whether that is
sufficient to determine whetherA |
 	. If the lazy approach
cannot deducewhetherA |
 	, it additionally performs con-
textualization in a lazy fashion. While EagerCheck surely
contextualizes all boxes with contexts encountered during
ternary deduction RefineTernary, Algorithm 5 calls an
expansion heuristic H in Line 5 to find boxes B whose con-
textualizationmight contribute to decidingwhether the target
formula 	 holds in the outermost component of the RSM.
Then it proceeds to contextualize A with respect to 	 and
the boxes in B in Line 16. As a special case, if the expansion
heuristic does not find any boxes to contextualize, we do a
global dependency cycle resolution and modify γ in Line 6
to Line 14 according to Line 6.

Due to consistency of our ternary reasoning implemented
in RefineTernary and the progress and contextualizing
boxes through H in combination a global dependency cycle
resolution similar as described in Line 5.4.1, we obtain cor-
rectness and soundness of our newmodel-checking algorithm
for RSMs for complete expansion heuristics H .

Theorem 2 Algorithm 5 terminates and is correct for com-
plete expansion heuristic H, i.e., LazyCheck(A,	, H)

123

Lazy model checking for recursive state machines

Algorithm 5: LazyCheck(A,	, H)

input : RSM A = (A1, . . . ,Ak) and CTL formula 	, both over AP, and an expansion heuristic H
output: tt if A |
 	 and ff if A �|
 	

1 A′, γ := Initialize(A,)

2 forall the n ∈ Nall and φ ∈ Subf () do ∂(n, φ) := ??
3 forall the φ ∈ [Subf ()] do ∂ := RefineTernary(A, φ, ∂, γ)

4 while there is en ∈ En1 with ∂(en,) = ?? do
5 B = H(A,	, γ , ∂)

6 if B = ∅ then
7 forall the φ = ∃Gφ1 ∈ Subf∃() for which all ψ ∈ Subf (φ) \ {φ} are fully determined do
8 forall the n ∈ Nall with ∂(n, φ) = ?? do
9 ∂(n, φ) = tt

10 if n ∈ Ex then γ (n, φ) = tt
11 forall the φ = ∃φ1 Uφ2 ∈ Subf∃() for which all ψ ∈ Subf (φ) \ {φ} are fully determined do
12 forall the n ∈ Nall with ∂(n, φ) = ?? do
13 ∂(n, φ) = ff
14 if n ∈ Ex then γ (n, φ) = ff
15 else
16 forall the b ∈ B do Contextualize(A,	, γ , ∂, b)

17 forall the φ ∈ [Subf ()] do
18 ∂ := RefineTernary(A, φ, ∂, γ)

19 if there is en ∈ En1 with ∂(en,) = ff then return ff
20 return tt

returns tt iff A |
 	 and ff iff A �|
 	 for any RSM A, and
CTL formula 	 over a common set of atomic propositions.

6.3 Incomplete expansion heuristics

So far we have considered only complete expansion heuris-
tics. While they make use of lazy contextualization and
ternary model checking, there are still plenty of scenarios
where a complete expansion heuristic demands the contex-
tualization of boxes that do not contribute to the final result.
In particular, this affects scenarioswhere a global cycle check
is necessary but which under a complete expansion heuristic
can only be started whenC(A,	, γ , ∂) = ∅, i.e., when there
are no more boxes to be contextualized.

Example 12 Consider the RSM given in Example 3 and the
CTL formula 	 = ∀X∃ U . To determine whether A |
 	

we have to check whether φ1 = ∃ U holds in all successor
nodes of n1. It is immediately clear that (b1, n1) satisfies φ1

as (b1, n1) has label . However, as discussed in the global
cycle check paragraph of Example 10, determining whether
φ holds in the nodes in the upper part of the RSM, in partic-
ular (b2, n3) requires a global dependency cycle resolution
w.r.t. 	. In LazyCheck with a complete expansion heuris-
tic the global dependency cycle resolution can only be done
once all contexts match the interpretation in the return nodes
of all boxes, in particular γ (n4, φ) = ∂((b1, n4), φ) and
γ (n5, φ) = ∂((b1, n5), φ) for all φ ∈ Subf (). However,
after runningRefineTernarywe have that ∂((b1, n4), φ) =

Fig. 7 Workflows of the eager and lazy RSM model-checking approaches

123

C. Dubslaff et al.

Algorithm 6: GetNextExpansion(A,	, γ , ∂)

input : RSMA = (A1, . . . ,Ak), a formula 	, contexts γ , and a
ternary interpretation ∂

output: a box b to contextualize, or a set of node-formula pairs
D in a global dependency cycle

1 Dall = ∅
2 forall the en ∈ En1 with ∂(en,) = ?? do
3 b, D = FindReason(A, en,	, γ , ∂, ε,∅,∅)

4 if b �= ∅ then return b
5 Dall := Dall ∪ D
6 return Dall

∂((b1, n5), φ) = ff, whereas γ (n4, φ) = ∂(n5, φ) = ??.
Thus any complete expansion heuristic H by definition must
return {b1} in this scenario even though it is clear that any con-
textualization of b1 will not yield any new information as to
whether n1 |
 	 holds. Of course we can amplify this effect
by directing b1 to another, arbitrarily complex component
and adding further conjunctions to	, such that LazyCheck
requires exponentially many unnecessary contextualization
steps.

6.3.1 Top-down expansion heuristic

Toward recognizing whether a contextualization poten-
tially aids in verifying a property over an RSM, we pro-
vide an incomplete expansion heuristic by the function
GetNextExpansion, specified byAlgorithm 6 that calls the
recursively defined function FindReason. The latter utilizes
classical reasoning for local formulas and the well-known
expansion laws of CTL for path formulas, in particular:

∃Gφ ≡φ ∨ ∃XGφ

∃φ1 Uφ2 ≡φ2 ∨ ∃(φ1 ∧ Xφ1 Uφ2)

For this, FindReason traverses 	 in a top-down fashion
to reason on why 	 is unknown in a node n and to find a box
b where adding a subformula to its context might refine the
interpretation of	 in n. By only contextualizing heuristically
selected boxes that may contribute to determining whether
A |
 	 holds, we can potentially save contextualization
steps.

Algorithm 7 considers several cases during recursion,
from which we exemplify the most significant ones. In
the first line we collect all node-formula pairs for which
FindReason has been called. This is to later on prevent
infinite cyclical calls of FindReason. First, those properties
that could be locally resolved are considered. For instance,
Line 3 deals with 	 being a disjunction where it is known
that at least one disjunct must be unknown since other-
wise 	 would be determined in n. Then, the first disjunct
φi for which ∂(n, φi) = ?? is chosen and FindReason is

recursively called, determining a box b for which contextu-
alization could resolve whether φi holds in n. If no such box
exists, FindReason returns ∅ and the remaining disjuncts
are checked. The cases of entering and leaving a box b are
considered in Line 7 and Line 8, respectively. Notably, if n is
an exit node, we consider the satisfaction of	 in all possible
calling components. If we find a box b ∈ C(A,	, γ , ∂), i.e.,
a box where contextualizing yields additional information,
we return that box as our base case in Line 9. Otherwise,
we continue our search in all possible return nodes (b, n).
For existential path properties, let us exemplify the case
where 	 = ∃φ1 Uφ2 (see Line 26). Here, we determine the
next recursive call arguments following the expansion law
of ∃U . First, we consider the local cases where φ2 or φ1 are
unknown in n, asking for a box to contextualize by invoking
FindReason on φ2 and φ1, respectively. Notice we check φ2

first here, since the truth value ∃φ1 Uφ2 may solely be deter-
mined by the truth value φ2 in some cases, but never by only
φ1’s truth value. If both φ1 and φ2 are known but 	 is yet
unknown in n, the reason for is not local in n and we continue
in a successor node n′ of n where	 is still unknown. Similar
to the disjunction case, we recursively call FindReason on
all successors, returning any contextualizable box containing
helpful information found, and returning∅ if no such boxwas
found after traversing all successors. Additionally, notice that
we do not call FindReason recursively if we called it before
already on the same node, signaled by the pair (n′,) being
in R. As mentioned before, this is to prevent the algorithm
calling itself in an infinite recurring cycle. Note that we only
consider the node and formula for which FindReason was
called to detect such behavior, but not the box stack, since
the box stack merely serves as a tool for determining the
successor of exit nodes here.

6.3.2 Modified global dependency cycle resolution

In the eager model checking algorithm (cf. Algorithm 4)
alternating Contextualize and RefineTernary until a
fixed point is reached does not guarantee that the ternary
interpretation is maximally consistent due to potential global
dependency cycles as shown in Example 10.

If FindReason enters a global dependency cycle, it even-
tually reaches a point where R contains all node-formula
pairs on the dependency cycle and attempts to call itself recur-
sively on a node-formula pair (n′,) ∈ R (see Line 21 and
Line 30). If this is the case, we can surely determine that
there is a cycle and also deduce which nodes lie on the cycle,
namely all those that have been added to R since the last time
FindReasonwas called on (n′,). On a technical level, this
can easily be done by implementing R as an ordered list rather
than a set. Importantly, R is used as a local variable here. This
ensures that whenever FindReason is executed, R contains
exactly the node-formula pairs that lead to the current call,

123

Lazy model checking for recursive state machines

Algorithm 7: FindReason(A, n,	, γ , ∂, R, D)

input : RSM A = (A1, . . . ,Ak), node n ∈ Ni , formula 	, contexts γ , a ternary interpretation ∂ , set of requested node-formulas pairs R,
and a set of node-formula pairs in a global dependency cycle D

output: a singleton set of a box b to contextualize

1 R := R ∪ {(n,)}
2 if 	 = ¬φ1 then return FindReason(A, n, φ1, γ , ∂, R, D)

3 if 	 = φ1 ∨ . . . ∨ φ� then
4 forall the j ∈ {1, . . . , �} with ∂(n, φ j) = ?? do
5 b, D := FindReason(A, n, φ j , γ , ∂, R, D)

6 if b �= ∅ then return b, D
7 if n = (b, en) ∈ Calli then return FindReason(A, en,	, ∂, R, D)

8 if n ∈ Ex and there is b ∈ B with ∂((b, n),) �= ?? then
9 return {b}, D // base case

10 else
11 forall the b ∈ B such that (b, n) ∈ Nall do
12 b, D := FindReason(A, (b, n),	, γ , ∂, R, D)

13 if b �= ∅ then return b, D
14 if 	 = ∃Xφ1 then
15 forall the n′ with n −→ n′ do
16 b, D := FindReason(A, n′, φ1, γ , ∂, R, D)

17 if b �= ∅ then return b, D
18 if 	 = ∃Gφ1 then
19 if ∂(n, φ1) = ?? then return FindReason(A, n, φ1, γ , ∂, R, D)

20 forall the n′ with n −→ n′ and ∂(n′,) = ?? do
21 if (n′,) ∈ R then
22 D := D ∪ {(n′,)} ∪ {(m, φ) ∈ R | (m, φ) added to R after (n′,)}
23 else
24 b, D := FindReason(A, n′,	, γ , ∂, R, D)

25 if b �= ∅ then return b, D
26 if 	 = ∃φ1 Uφ2 then
27 if ∂(n, φ2) = ?? then return FindReason(A, n, φ2, γ , ∂, R, D)

28 if ∂(n, φ1) = ?? then return FindReason(A, n, φ1, γ , ∂, R, D)

29 forall the n′ with n −→ n′ and ∂(n′,) = ?? do
30 if (n′,) ∈ R then
31 D := D ∪ {(n′,)} ∪ {(m, φ) ∈ R | (m, φ) added to R after (n′,)}
32 else
33 b, D := FindReason(A, n′,	, γ , ∂, R, D)

34 if b �= ∅ then return b, D
35 return ∅, D

but not any other branches of the call tree of FindReason.
Once we detect a global dependency cycle, we add it to the
set D and do no call FindReason recursively on that cycle
any more but instead try calling it on other successors of
n. If no other successors n′ for which ∂(n′,) = ?? exist,
the algorithm backtrack to the last nondeterministic choice
made, e.g., when choosing a successor node in the ∃U case,
by repeatedly returning ∅, D (see Line 35) until we reach a
point where we find another candidate for a recursive call.

This backtracking possibly leads to a box to be contex-
tualized but only if there is a box for which contextualizing
may help determiningwhetherA |
 	 for which the relevant
return node is not involved in such a dependency cycle. If no
such box if found, we return ∅, D to GetNextExpansion.
In turn, we try to invoke FindReason on the next entry node.
If however for all entry nodes FindReason returned ∅, D,

we conclude that further progress must be hindered by a
global dependency cycle with similar reasoning as in the
eager algorithm. For this, we have to slightly adapt the global
dependency cycle resolution inLazyCheck by changing the
following two details:

• the return value of the heuristic is now a pair B, D
• if B = ∅, the global dependency resolution uses the same
logic but may only modify γ (ex, φ) if (ex, φ) ∈ D

We denote the algorithm that implements these two changes
as LazyCheck′. The reason that this modification is neces-
sary is that otherwise we may make γ inconsistent in case
there is an exit node ex and an existential formula φ for
which γ (ex, φ) = ?? but that is not on a global dependency
cycle but also never contextualized because it is never called

123

C. Dubslaff et al.

by FindReason as contextualization does not provide any
information regarding whether A |
 	.

Example 13 An example where an infinite chain of calls of
FindReason is only prevented by the recursion check via
R is in the RSM Fig. 3 when checking against the formula
	 = ∀X∃ U . Here, FindReason would be called with
(b2, n3) and φ = ∃ U . In the following steps, FindReason
would be invoked with φ on n3, n6, (b2, n6), n2, and finally
the recursion checks in Line 30 via R prevents FindReason
being invoked on (b2, n6) again. Instead, (b2, n3), n3, n6,
(b2, n6) and n2 along with formula φ are all added to D.
The backtracking procedure then attempts to find another
box but in this case will not succeed since we did not make
any non-deterministic choices as φ is known in all other
branches going from n1 (i.e., in (n4) and (b1, n1)). Thus,
FindReason return∅, D. Next,GetNextExpansionwould
invoke FindReason with another entry node but since n1 is
the only entry node of the initial component, it returns ∅ as
well. As we did not find a box to contextualize with this top-
down expansion heuristic, we know we must have a global
dependency cycle and thus perform a cycle dependency res-
olution on D by setting γ (n6, φ) = ff. Note that the global
dependency cycle resolution in the lazy algorithm (cf. Line 6
in Algorithm 5) only allows this if the truth value of all sub-
formulas are known in all nodes. For φ this is indeed the
case, as all subformulas of φ are atomic propositions. Fur-
ther, we are only allowed to modify the value of γ (n6, φ)

since (n6, φ) ∈ D. Notice that also γ (n5, φ) = ?? but
(n5, φ) /∈ D, hence we do not modify γ (n5, φ) as we can-
not guarantee consistency there. Indeed, notice that despite
γ (n5, φ) = ??, we can see that n5 is not even part of a global
dependency cycle. In fact, we could easily contextualize b1
w.r.t.. φ to find that γb1(n4, φ) = γb1(n4, φ) = ff is the only
consistent, fully specified context for b1 w.r.t. φ1 since no
node labeled is reachable from either exit node. However,
we can also see that indeed this contextualization is not use-
ful w.r.t. checking whether A |
 	 as the only way to reach
b1 is through (b1, n1) in which we already know that φ and
	 hold.

Theorem 3 Algorithm 5 terminates and is correct for the spe-
cial expansion heuristicGetNextExpansionwith the modi-
fied global dependency cycle resolution, i.e.,
LazyCheck

′
(A,	,GetNextExpansion) returns tt iffA |

	 and ff iff A �|
 	 for any RSM A and CTL formula 	 over
a common set of atomic propositions.

6.4 Problem instances

Having introduced the generalized lazy model-checking
scheme for RSMs, we now investigate the impact of our
algorithm on special instances of the CTL model-checking

problem for RSMs and compare them to the eager approach
from a theoretical point of view.

6.4.1 Guaranteed exponential succinctness of the lazy
approach

It is well known that the CTL model-checking problem for
RSMs is ExpTime-complete [3], which directly provides
exponential worst-case time complexity of our algorithms.
However, we can construct a CTL formula 	 and a class
of RSMs A for which the lazy model checking algorithm
requires constant contextualization steps, regardless of the
expansion heuristic, while the eager approach requires expo-
nentially many contextualizations for every RSM in A. This
directly implies polynomial run time of the lazy algorithm in
the size of the RSM but exponential run time for the eager
approach on this specific class of problem instances.

To construct such an example, take an RSMA and a CTL
formula 	 for which the eager approach requires building
exponentially many contexts with respect to the size of 	.
Such instances must exist, since the CTL model-checking
problem forRSMs isExpTime-completewhile the local CTL
deduction on finite Kripke structures is doable in polynomial
time. We then construct a modified RSM A′ by assigning
a fresh label to all initial nodes. When checking whether
A′ |
 	 ∨ , the eager approach still requires exponential
time w.r.t the size of the RSM since it performs a bottom-up
search and	 is a direct subformula of	∨ . Meanwhile, the
lazy approach (with any heuristic) is guaranteed to determine
thatA′ |
 	∨ in linear time in the size of the RSMwithout
any contextualization due to the ternary model checking that
operates top-down and terminates directly after evaluating
locally.

While this of course does not hold for all problem
instances due to the ExpTime-completeness of the model-
checking problem, it shows that there is a non-empty
subclasses of themodel-checking problem for which the lazy
algorithm asymptotically outperforms the eager algorithm.

6.4.2 Bounding exit and entry nodes

Single-exit and single-entry RSMs constitute themost promi-
nent subclasses of RSMs that have been considered toward
efficient model-checking algorithms. In general, we say that
an RSM A is k-entry or k-exit depending on a parameter
k ∈ N if for each component Ai ∈ A we have |Eni | ≤ k or
|Exi | ≤ k, respectively. It is known that for 1-exit RSMs the
CTLmodel checkingwith a fixed formula is solvable in linear
time in the size of the RSM [3]. Themain insight we can draw
from this restriction to a single-exit node n per component
is that at most three distinct contexts have to be constructed
for each component as they can only map n to either tt, ff,
or ??. This reasoning can easily be extended to RSMs with a

123

Lazy model checking for recursive state machines

fixed parameter k that bounds the number of exit nodes per
component and hence also puts a constant (albeit exponential
in k) bound on the number of different contexts. Thus, for a
fixed parameter k, the CTL model-checking problem on k-
exit RSMs has linear-time parametrized complexity. Clearly,
the parametrized complexity agrees for both, lazy and eager
RSM model checking, since the global deduction necessary
for both approaches runs in linear time with respect to the
size of the RSM. It is known that restrictions on the number
of entry nodes of a component do not influence the complex-
ity of the model-checking problem [3], hence bounding or
parametrizing them does not have any impact on the asymp-
totic complexity of our algorithms neither.

6.4.3 Single-component and single-box RSMs

Anatural question concerning subclasses ofRSMs iswhether
there is a class of RSMs restricted only on the parameters
of the RSM, like for k-exit RSMs, but not its structure, for
which the lazy model-checking scheme requires strictly less
contextualization steps than the eager algorithm.

One might consider RSMs consisting of a single com-
ponent; however, every RSM can be transformed into an
equivalent single-component RSM. Moreover, its size is lin-
ear in the size of the original RSM. This follows from the
transformations given in [11] with which we can linearly
transform any RSM into a PDS and the resulting PDS back
to an RSM which by way of the transformation consists of
only a single component.

A stronger restrictionwemay impose is to only allow for a
single box b. Notice that this directly implies that there is only
one component (or there is an equivalent RSMwith only one
component), since the boxmust be in the initial component in
order to be reachable. IfY (b) = 1 then no other component is
reachable and as such they may be removed. If Y (b) = i > 1
then the boxmay be replaced byAi , resulting in an equivalent
box-less RSM.

Box stacks of single-box RSMs, where b is the box in
the RSM, obviously only consist of strings of the form b∗
and can thus be uniquely characterized by the size of the
box stack. Thus, they correspond to one-counter automata
(OCA) [31], which are a variation on PDSs where instead of
a tape we have a counter. This intuitive correspondence by
can be shown by transformations between single-box RSMs
and OCA. A linear transformation from OCA to single-box
RSM follows immediately from the general PDS to RSM
transformation given in [11] since an OCA can equivalently
be expressed as a PDS with a single tape symbol.

We show that there is a linear transformation from OCA
to single-box RSM as well, which can be obtained by mod-
ifying the transformation in [11] to encode the current node
in the state of the PDS, rather than in the tape, i.e., for a
single-box RSM A = A1 = (N , {b}, Y , {en1, . . . , enl},

{ex1, . . . , exk},−→, AP, L) we define an equivalently labe-
led PDS P = (Q, �,−→′, AP, L) with

• Q = N ∪ ({b} × En) ∪ ({b} × Ex)
• � = {b}
• −→′ such that

– n1 −→′ n2 if n1 −→ n2

– (b, eni) −→′ n b if eni −→ n
– exi b −→′ n if (b, exi) −→ n
– all transitions of −→′ are defined by the above rules

This now gives us a linear transformation from single-box
RSM to a PDSwith a single tape symbol, and thus to anOCA.
Notice that this transformation is indeed linear for single-box
RSM as otherwise for arbitrary RSMs the state space of the
PDS would be quadratic in the size of the RSM.

Since the CTL model-checking problem for OCA is
PSpace-complete for a fixed formula [31, Theorem 7.2], as
well as for a fixed system [31, Theorem 5.8], our transfor-
mation is sufficient to show via a polynomial (even linear)
reduction that the same results hold for single-box RSM.

Hence, unless P = PSpace, the CTL model-checking
problem for a fixed formula over single-box RSMs is not
solvable in polynomial time. In particular, this means that the
lazy approach most likely does not perform asymptotically
better than the eager approach in this subclass of RSMs.

6.4.4 Summary

To sum up, while the general problem of model check-
ing RSMs against CTL formulas is ExpTime-complete, we
have seen that restricting the RSM to a constant number
of exit nodes per component renders the problem to have
parametrized polynomial time complexity. Additionally, for
single-box RSMs, the problem is PSpace-complete.

In general, while it is possible to specifically construct
classes of problem instances in which the lazy approach out-
performs the eager approach by an exponential factor, we do
not expect that there is a “natural” restriction on RSMs or
CTL formulas such that model-checking problem with the
lazy evaluation scheme performs asymptotically better than
with the eager algorithm. Nonetheless, in the next section we
will show that the lazy approach yields a significant speed-up
in practice in various experimental studies.

7 Implementation and evaluation

We implemented both the eager and the lazy approach pre-
sented in this paper in a prototypical tool RSMCheck.
Written in Python3, it is supported by almost all com-

123

C. Dubslaff et al.

mon operating systems. RSMs are specified by a dedicated
JSON format, to which our tool also provides a transla-
tion from pushdown systems for model checkers PDSolver
[33] or PuMoC [49] that follows the standard translation
method (see, e.g., [11]).

7.1 Research questions

To demonstrate applicability of our tool and investigate prop-
erties of the algorithms presented in this paper, we conducted
several experimental studies driven by the following research
questions:

1. Is our lazy approach effective, i.e., generates signifi-
cantly less contexts and is faster compared to the eager
approach?

2. How do analysis times of our approaches implemented
in RSMCheck compare to state-of-the-art procedural
model checkers?

3. Can real-world procedural programs be verified with our
approaches?

Specifically, here we called EagerCheck the eager
approach while the lazy approach refers to LazyCheck

with GetNextExpansion and as expansion heuristics with
correct global cycle resolution as discussed at the end of
Sect. 6.3.

7.1.1 Experimental setup

All our experiments were carried out using PyPy 7.3.3 on
an Intel i9-10900K machine running Ubuntu 21.04, with a
timeout threshold of 30min and a memory limit of 4 GB of
RAM. Compared to the experimental studies we conducted
in the conference version [25] of this article, we run the
experiments on an updated version ofRSMCheckwhere for
the eager approach, optimized data structures using hashing
were used. This explains the potentially arising speedups for
EagerCheck of up to 40%.

7.2 Scalability experiment

First, we conducted a scalability experiment to compare
the eager and lazy approach. We randomly generated 2500
RSM/CTL formula pairs (Ai ,	 j) of increasing sizes and
formula lengths: For i, j ∈ {1, . . . , 50} the RSM Ai con-
tains i components, each having �i/3� boxes and 3i nodes
with connectivity of 20%, and the formula	 j has a quantifier
depth of � j/9�. Note that the chosen degree of connectivity
is sufficient to obtain indirect recursions in the majority of
cases. Figure8 shows the analysis times in seconds for our
lazy (top) and eager (bottom) approach. We observe that the
more compositional structure and the bigger the requirement

Fig. 8 Analysis times for the scalability experiment in seconds (loga-
rithmic scale, lazy on the top, eager on the bottom, • stands for memout)

formulas, the more the lazy approach pays off compared to
the eager approach, both in memory consumption and anal-
ysis speed. In 5% of the cases, the eager approach ran into
memouts and in all other cases the lazy approach is on aver-
age eight times faster than the eager one. For 1 we conclude
that lazy contextualization is an effective method that allows
for faster RSM model checking.

123

Lazy model checking for recursive state machines

Fig. 9 Analysis times for 500 PuMoC examples in seconds (logarith-
mic scale)

7.3 PUMOC benchmark set

Our second experimental study compares RSMCheck to the
procedural CTL model checker PuMoC on its benchmark
set [49], comprising 500 randomly generated pushdown sys-
tems. The pushdown systems Pi and CTL formulas 	i are
numbered as in [49] with i ∈ {10, 11, . . . , 509} where sizes
increase with increasing i . To enable RSM model checking,
we translated each Pi to an RSM Ai in the input format
of RSMCheck. The resulting RSMs have only one compo-
nent and thus, our lazy approach is expected to not fully use
its potential. However, as our results in Fig. 9 show, while
PuMoC runs into time- or memouts in 28 examples, the
lazy approach successfully completes each experiment in less
than 40s. Most of the analysis times are in the same range
(see Fig. 9 on the top) even though PuMoC is implemented
in C, while RSMCheck is implemented in Python, known
for broad applicability but comparably weak performance.
Regarding 2, we can conclude that RSMCheck is compet-
itive with the state-of-the-art model checker PuMoC even
on single-component RSMs. Figure9 on the bottom shows
a comparison of the lazy approach to the eager one, applied
on the 500 PuMoC examples. The eager approach is almost

always equally fast or slower compared to the lazy approach
and runs into memouts in 69% of the cases.

All the few cases inwhich the eager approach outperforms
the lazy approach are on formulas inwhich no quantified path
formulas occur, i.e., which can locally be solved in the entry
node. As model checking on these formulas does not require
any contextualization, the lazy and eager approach are equiv-
alent and both solve the problem in the order of 0.1 seconds
or less. We do not see that either approach is consistently
faster in those cases, and the difference is always negligible
(0.03 s or less) so we attribute these results to small fluc-
tuations in performance, or time measurement. Importantly,
in all “interesting” cases, i.e., where the CTL formula con-
tains at least one quantifier, the lazy approach outperforms
the eager approach.

This also supports our positive answer to 1 drawn in the
last section.

7.4 Interprocedural static analysis for JAVA
programs

Our last experimental study considers an interprocedu-
ral analysis for real-world systems, borrowed from the
benchmark set of [33], containing examples from the AVR
Simulation and Analysis Framework (avrora) [2], as well
as the Apache™ FOP Project (dom2pdf and fo2pdf) [1].
These benchmarks comprise pushdown systems modeling
the control-flow of Java programs with use-def annotations
for all variables of the program, allowing for a data-flow
analysis of the program. To give an estimate of the size of the
model, column k of Table 1 indicates the number of reachable
components of the RSM for the Java program. In all exam-
ples, with the exception of the Dataflow toy example (Fig. 1),
we observe recursive function calls, resulting in non-trivial
cyclic paths through boxes in the RSM.

We first used our implementation to translate programs
and the annotated requirement from the input formalism
of PDSolver to the input formalisms of PuMoC and
RSMCheck. The requirement we check formalizes that
whenever the selected variable is defined, it is eventually
used (see the Dataflow example in the preliminaries).

Additionally to the lazy evaluation scheme, with
GetNextExpansion as expansion heuristic, we also con-
sider the ternary evaluation scheme by which we refer to the
expansion heuristic H(A,	, ∂) = C(A, φ). This heuristic
is of particular interest, since it encapsulates the eager expan-
sion strategy ofEagerCheckwhile still avoiding potentially
unnecessary contextualization steps by employing ternary
model checking.

Table 1 shows characteristics of our analysis. First, the
lazy, ternary, and even the eager approach are significantly
faster than PDSolver and PuMoC. Firstly, as the exam-
ples are real-world models we can positively answer 3.

123

C. Dubslaff et al.

Table 1 Analysis statistics for Java interprocedural analysis (time in seconds)

Java program Result PDSolver time PuMoC time k Eager Ternary Lazy
#ctx Time #ctx Time #ctx Time

Dataflow (Fig. 1) ff <0.01 0.02 3 6 <0.01 1 <0.01 1 <0.01

avroraCFG tt >1800 >1800 3169 4372 107.53 160 56.73 2 8.22

avroraDisassemble tt 806.66 >1800 2085 4628 163.89 1731 118.92 1 3.47

avroraELF tt 26.68 71.28 248 614 4.79 1 0.29 1 0.29

avroraMedTest tt 12.48 37.09 238 264 1.32 28 0.69 4 0.43

avroraReg tt 8.73 16.12 173 477 1.77 27 0.56 2 0.32

dom2pdf tt 80.46 1345.56 615 2002 17.64 240 6.93 1 0.79

fo2pdf tt 61.68 >1800 607 2029 27.67 60 1.42 6 1.23

Further, contributing to 2, RSMCheck can be faster than
state-of-the-art proceduralmodel checkers also on real-world
models. This can be explained by the compositional structure
of RSMs and their generation of contexts: Even the eager
approach generates only those contexts that arise during
deduction steps in exit nodes. These studies also support that
our lazy approach is effective (cf. 1): Column #ctx indicates
the number of generated contexts during analysis, which is
significantly lower than the number of components in the
RSM (cf. column k). Hence, we can observe that the lazy
approach effectively avoids context generation for many of
the components, having a direct impact on the analyzed state
spaces and timings. This effect is most emphasized with the
GetNextExpansion heuristic. Further, in the lazy approach
we observe speedups of up to two orders of magnitude com-
pared to the eager approach.

For the performance of the ternary approach, we observe
two cases: For examples where the initial contextualization is
already enough do determine whetherA |
 	 (i.e., Dataflow
and avroraELF), the ternary evaluation scheme effectively
avoids any further contextualization steps, thus making the
ternary approach equivalent to the lazy one. In the other
exampleswenotice that the ternary approachgenerally builds
less contexts and takes less time than the eager algorithm but
is outperformed by the lazy approach.One reason for this that
we could observe when looking at the experiments in detail
(besides the lazy scheme clearly building less contexts over-
all) was that the lazy approach being able to initiate a global
cycle resolution step earlier than the ternary approach. This
is due to the ternary approach requiring all subformulas to be
known in every node before performing a global cycle reso-
lution while the lazy approach utilizing the FindReason as
a guided heuristic only requires subformulas to be known in
nodes which actually may influence the satisfaction relation.
This is most emphasized in the examples avroraDisassemble
and dom2pdf, where the lazy scheme can decide the model
checking problem only by global cycle resolution rather than

contextualization, whereas the ternary scheme requires sev-
eral contextualization steps before resolving global cycles.

7.4.1 Random expansion heuristic

To show the impact of using the guided heuristic
GetNextExpansion, we additionally ran all examples in
Table 1 with an expansion heuristic that in each step picks
a random box b ∈ C(A, ∂) to contextualize. Similar to the
ternary expansion heuristic, we observe that the approach
is equivalent to lazy checking if the model checking prob-
lem can be solved locally in each component, i.e., without
any contextualizations. For examples where a global cycle
check is required, we observe the same situation as in the
ternary case where all boxes need to be contextualized before
global cycles can be resolved. The major difference is that
the ternary approach contextualizes all boxes at once before
calling RefineTernary, while the random heuristics calls
RefineTernary after each contextualization. As the global
deduction is themost expensive solution, the runtime in avro-
raDisassemble was over 3.5h in all of our runs. For the
examples where no global cycle resolution is necessary, we
naturally observed fluctuating runtimes, depending on the
boxes chosen at random. Still in those examples, the random
heuristic is outperformed in every example by the ternary and
lazy approach by up to an order of magnitude.

Overall, we conclude that the guided heuristic as well as
the improvedglobal cycle resolutionofGetNextExpansion
improve the runtime immensely and that the overhead due to
GetNextExpansion is negligible.

8 Conclusion and discussion

Wepresented a novel technique tomodel checkRSMsagainst
CTL requirements, combining ternary reasoning with lazy
contextualization of components. While of heuristic nature,
our experimental studies showed significant speedups com-

123

Lazy model checking for recursive state machines

pared to existing methods in both scalability benchmarks
and in an interprocedural data-flow analysis on real-world
systems. Our tool RSMCheck is, to the best of our knowl-
edge, the first tool that implements the RSMmodel-checking
approach by Alur et al. [3] for verifying CTL formulas.

8.1 Counterexamples and witnesses

One major advantage of model-checking approaches is the
generation of counterexamples or witnesses for refuting or
fulfilling the analyzed requirement, respectively. Also in
RSMCheck we implemented a witness-generation method
that traverses the nodes of the RSM according to computed
interpretations similarly as FindReason does to find a path
responsible for requirement satisfaction. The main differ-
ence to the standard witness-generation methods in Kripke
structures is that not only nodes are tracked but also call
stacks and contexts. Counterexamples for universally quan-
tified requirements are obtained by our witness-generation
method applied on the complement existential requirement.

8.1.1 Heuristics for non-deterministic choices

Central in our lazy approach is the nondeterministic algo-
rithm FindReason, which determines the next context to
be considered. This algorithm leaves some freedom in
how the non-determinism is resolved, for which plenty of
heuristics are reasonable. We implemented two methods, a
random selection of subformulas and a deterministic selec-
tion that chooses the left-most unknown subformula for
further recursive calls, e.g., in the disjunctive case in Line 3
of Algorithm 6. The latter is set as default to enable devel-
opers to control the verification process by including domain
knowledge, e.g., by placing most influential subformulas
upfront to further exploit lazy context evaluation. In our
experimental studies, choosing either heuristic to resolve
the non-determinism did not significantly change runtimes,
which is explainable since the CTL requirements were either
randomly generated or a comparably simple use-def formula.
More complex settings could also benefit from integrating
advanced techniques to explain the reasons for unknown for-
mula evaluations [7].

8.1.2 Further work

In next development steps, we plan to also include the
support for CTL∗ requirements, usingwell-known automata-
theoretic constructions for LTL model checking (see, e.g.,
[3, 6]). Further, we plan to extend RSMCheck with a BDD-
based model-checking engine to investigate the impact of

our lazy algorithms also in the symbolic setting. Remind that
our experiments showed that explicit lazy model checking is
already efficient on large real-world systems where state-of-
the-art (symbolic) procedural model checkers were not able
to complete the verification process.

Many extensions for PDSs have been presented in the
literature, which could also serve as bases for extending our
work on lazy RSM model checking. For instance, weighted
RSMs (see, e.g., [45]) equip RSMs with labels from a semi-
ring, similarly as probabilistic RSMs equip transitions with
probabilities (see, e.g., [11, 27]).

Another direction would be to investigate the influence of
the ternary thorough semantics [13] on our RSM algorithms,
where unknown state interpretations require at least one can-
didate for each, fulfilling and not fulfilling state satisfaction.
However, the latter approach might lead to a higher compu-
tational complexity, an impact to be evaluated along with the
alternative semantics.

SAT-based model checking [8] may outperform classical
model-checking techniques also in the lazy abstraction set-
ting with interpolation [42, 51]. An interesting avenue would
be to include the compositional structure and our lazy evalua-
tion schemes into a SAT-based model checker, with potential
benefits of state-of-the-art advances in satisfiability check-
ing.

Acknowledgements The authors were partly supported by the DFG
through the Cluster of Excellence EXC 2050/1 (CeTI, project ID
390696704, as part ofGermany’s Excellence Strategy) and the TRR248
(see https://perspicuous-computing.science, project ID 389792660).
The first author has been further supported by NWO Veni grant
VI.Veni.222.431. Thanks go also to the anonymous reviewers who
helped to improve the quality of the manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

In this appendix, we provide the proofs of the main paper.

123

https://perspicuous-computing.science
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

C. Dubslaff et al.

A Ternary RSMmodel checking

A.1 Ternary refinement

Lemma 1 Let A be an RSM with a consistent context γ over
a CTL formula 	. Then the ternary interpretation induced
by the ternary semantics given by

∂(n, φ) = [n |
 φ]γ

for all n ∈ Nall and φ ∈ Subf () is consistent.

Proof We show this by induction on the CTL formula 	. In
the following, let n ∈ Nall be an arbitrary node.

For the base case, 	 = a where a ∈ AP the statement
clearly holds.

If 	 = ¬φ1 and [n |
 φ1]γ = tt we have that [n |

]γ = ff. By IH we have that ∂ is consistent for formula φ1

and thus it holds that (σ, n) |
 φ1, hence (σ, n) �|
 	 for all
σ ∈ B∗, which renders ∂ to be consistent. Analogously we
obtain consistency of ∂ for [n |
 φ1]γ = ff. If [n |
 φ1]γ =
?? then [n |
]γ = ?? and thus consistency of ∂ is trivial,
as both implications required to hold for consistency of ∂

trivially hold as none of the preconditions are satisfied.
Now consider the case	 = φ1 ∨φ2. If [n |
 φ1]γ = tt or

[n |
 φ2]γ = tt then [n |
]γ = tt. W.l.o.g. assume [n |

φ1]γ = tt. Then by IH (σ, n) |
 φ1 and hence (σ, n) |
 	

for all σ ∈ B∗. Thus, ∂ is consistent in this case. A similar
argument holds when [n |
 φ1]γ = ff and [n |
 φ2]γ = ff.
In the remaining cases where one of [n |
 φ1]γ and [n |

φ2]γ is ?? and the other is either ff or ?? we have [n |

]γ = ?? and thus consistency of ∂ is again trivial.

For existentially quantified formulas, first consider case
	 = ∃Xφ1. If n is an exit node, [n |
]γ = γ (n,)

and consistency trivially follows from the assumption that γ
in consistent. If n is not an exit node, we follow a similar
reasoning as in the disjunctive case. If [n′, φ1]γ = tt for
some n −→+ n′ then [n |
]γ = tt By IH (σ, n′) |
 φ1

and thus (σ, n) |
 	 for all σ ∈ B∗. Hence ∂ is consistent.
Analogously again, if [n′, φ1]γ = ff for all n −→+ n′ then
[n |
]γ = ff and again by IH and definition of ∃Xwe have
(σ, n) �|
 	 for all σ ∈ B∗ implying ∂ is consistent. For the
remaining cases we have [n |
]γ = ??, which again is
trivially consistent.

Now consider 	 = ∃Gφ1. Here, we can have two ways
for [n0,]γ = tt: The first possibility is that there is a cycle
n0 −→+ n1 −→+ n2 −→+ . . . −→+ nl −→+ n0 for which
[ni , φ1]γ = tt for all i ∈ {0, 1, . . . , l}. Then by IH for each
node ni on the cycle we have (σ, ni) |
 φ1 and thus (σ, n) |

	 for all σ ∈ B∗. Hence, ∂ is consistent. The second possible
reason for [n0,]γ = tt is if there is a path n0−→+ n1−→+
n2 −→+ . . . −→+ nl for which [ni , φ1]γ = tt for all i ∈
{0, 1, . . . , l} and nl ∈ Ex with γ (nl ,) = tt. Then by IH for

each node ni on the pathwe have (σ, ni) |
 φ1 for allσ ∈ B∗.
Additionally, by consistency of γ and γ (nl ,) = ttwe have
a (σ, nl) |
 	. Be definition of ∃G we thus have (σ, n) |
 	

for all σ ∈ B∗ and hence consistency of ∂ . We again give a
similar argument in case [n0,]γ = ff. This can only happen
if for every cycle n0−→+n1−→+n2−→+ . . .−→+nl −→+
n0 there is an ni for which [ni , φ1]γ = ff and additionally for
every pathn0−→+n1−→+n2−→+. . .−→+nl withnl ∈ Ex
there is an ni for which [ni , φ1]γ = ff, or γ (nl ,) = ff. In
either case, by definition of∃Gweobtain that (σ, ni) �|
 	 for
all σ ∈ B∗ and thus ∂ is consistent. Lastly, if [n |
]γ = ??
consistency of ∂ is trivial.

The argumentation for 	 = ∃φ1 Uφ2 is analogous to the
case 	 = ∃Gφ1 except that we do not consider cycles, but
finite paths that lead up to a state in which φ2 holds. ��
Lemma 2 Let A be an RSM with context γ over a CTL
formula 	 such that γ (n, φ) �= ?? for all n ∈ Ex and
φ ∈ Subf∃(). Then the ternary interpretation induced by
the ternary semantics given by

∂(n, φ) = [n |
 φ]γ

for all n ∈ Nall and φ ∈ Subf () is maximally consistent.

Proof We first show [n |
 φ]γ �= ?? for all n ∈ Nall and
φ ∈ Subf∃() by induction on 	.

In the base case, if 	 = a for some a ∈ AP, the statement
trivially holds.

For	 being a negation or disjunction, this directly follows
from the IH and the fact that {tt, ff} is closed under comp and
max.

If 	 is an existential formula, [n |
 φ]γ �= ?? is a com-
bination of minima and maxima of terms of form [n |
 φ]γ]
with φ ∈ Subf∃() \ {	}, and terms of form γ (n,) which
are all tt or ff due to IH or assumption, respectively. Hence,
any combination of those using only min and max is also tt
or ff, and in particular not ??, showing the claim.

Since ∂ is consistent due to Lemma 1, it only remains
to show that ∂ is maximally consistent. For this, fix a node
n ∈ Nall . Assume that (n, σ) |
 	 for all box stacks σ ∈ B∗.
Then ∂(n, φ) cannot be ff as consistency of ∂ would imply
that (n, σ) |
 	 for all box stacks σ ∈ B∗. Also, ∂(n, φ) =
[n |
], which is not ?? and hence ∂(n, φ) = tt.

Analogously, we have that from (n, σ) �|
 	 for all box
stacks σ ∈ B∗ it follows that ∂(n, φ) = tt. By definition,
this leads to ∂ being maximally consistent. ��
Lemma 3 Let A = (A1, . . . ,Ak) be an RSM A with consis-
tent contexts γ over a CTL formula 	. Further, let ∂ be the
ternary interpretation induce by the ternary semantics for all
n ∈ Nall and φ ∈ Subf ()\{	}, i.e., ∂(n, φ) = [n |
 φ]γ

Then Algorithm 1 terminates and returns a ternary inter-
pretation ∂ ′ that follows the ternary semantics for all n ∈ Nall

and φ ∈ Subf (),i.e., ∂ ′(n, φ) = [n |
 φ]γ .

123

Lazy model checking for recursive state machines

Proof This lemma is shown mainly by an inductive case dis-
tinction on ternary semantics definitions. Let us first consider
the case where n ∈ Nall and φ ∈ Subf ()\{	}. As we
set ∂ ′(n, φ) = ∂(n, φ) in Line 2, and because ∂ ′(n, φ) is
never modified after, from our assumption it follows that
ctxi ′(n, φ) = ∂(n, φ) = [n |
 φ]γ and thus the statement
holds.

Knowing that the statement holds for all φ ∈ Subf () \
{	}, we now show that the statement also holds for 	 itself.
Case I: 	 is propositional or 	 = ∃Xφ1.
If 	 is a propositional formula, i.e, an atomic proposition,
a negation or a disjunction, we can immediately see that
RefineTernary follows the ternary semantics by definition.
Similarly, if 	 = ∃Xφ1 we also simply compute ∂ ′(n, φ) by
definition by either copying γ (n,) if n is an exit node, or
else taking the maximum of ∂(n′, φ1) = [n′, φ1]γ over all
−→+-successors n′.
Case II: 	 = ∃Gφ1.
Case II.1: n ∈ Ex.
Assume γ (n,) = tt. Then n ∈ Sat pes and n ∈ Satopt

after the initialization in Line 15 and Line 15, respectively.
In the following while loop, only n /∈ Ex are considered and
thus we still have n ∈ Sat pes and n ∈ Satopt and hence
∂ ′(n,) = tt. Analogously, if γ (n,) = ff then initially
n /∈ Sat pes and n /∈ Satopt and they are never added as
we never add any elements to either Satopt or Sat pes in the
∃G-branch and thus ∂ ′(n,) = ff. Similarly, if γ (n,) =
?? then n /∈ Sat pes but n ∈ Satopt and hence ∂ ′(n,) =
??. We can summarize these three statements as ∂ ′(n,) =
γ (n,). As by definition of RSMs, exit node do not have
any successors, there are no n′ where n −→+ n′ and thus the
only path starting in n is the trivial path of length 1 consisting
of only n itself. In this case the ternary semantics simplifies
to [·,]γ = γ (n,), matching ∂ ′.
Case II.2: n /∈ Ex.
Case II.2.1: [n |
]γ = tt.
This implies that either there is a path n −→+ n1 −→+
. . . −→+ ni −→+ . . . −→+ ni such that [·, φ1]γ = tt for all
nodes on the path, or a path n−→+n′

1−→+ . . .−→+ex such
that ex ∈ Ex with γ (ex,) = tt and [·, φ]γ = tt for all other
nodes on the path. In RefineTernary, initially all nodes on
this path are included in Sat pes and Satopt . As witnesses
by this path, each non-exit node on the path has a −→+-
successor in Sat pes and Satopt and is thus never removed.
Additionally, exit nodes are never removed from Sat pes and
Satopt anyway. Hence we set ∂ ′(n,) = tt = [n |
]γ .
Case II.2.2: [n |
]γ = ff.
To be in this case, wemust have that all paths n−→+n1−→+
. . .−→+ni −→+. . .−→+ni contain at least one noden j with
[n j , φ1]γ = ff and for all paths n −→+ n′

1−→+ . . .−→+ ex
with ex ∈ Ex we either have γ (ex,) = ff or some other
node n′

j on the path with [n′
j , φ1]γ = ff.

If [n |
 φ1]γ = ff, then n is never added to Satopt and
trivially ∂ ′(n,) = ff. Otherwise, if ∂ ′(n,) �= ff, then n
is still in Satopt initially. However, we now show that it is
removed from Satopt after a finite number of iterations of
the while-loop in the optimistic run. As there is no cycle on
which [·, φ1]γ �= ff and no path to an exit node ex for which
γ (ex,) �= ff and [·, φ1]γ �= ff for all other nodes on the
path, there is a finite path n −→+ n1 −→+ . . . −→+ nl that
is maximal in its length for which [·, φ1]γ �= ff on all nodes
on the path and that does not contain any exit nodes.

We inductively show that after m iterations of the while-
loop in the optimistic run, the longest −→+-path in Satopt

starting in n has length l + 1 − m. For m = 0 this trivially
holds as the maximal path on which [·, φ1]γ = ff holds has
length l + 1 and only nodes for which [ni , φ1]γ = ff are ini-
tially added to Satopt . After m iterations, let n −→+ n1−→+
. . . −→+ nl−m be a longest −→+-path in Satopt . We show
that afterm+1 iterations, be longest−→+-path in Satopt has
length l −m. Notice that nl−m cannot have any non-exit node
successor in Satopt as otherwisewe could have found a longer
path. Further, nl−m can also not have an exit node ex as suc-
cessor in Satopt as the inclusion of ex in Satopt would imply
γ (ex,) �= ff. But then n −→+ n1 −→+ . . . −→+ nl−mex
would be a path from n to an exit node ex with γ (ex,) �= ff
and [·, φ1]γ �= ff for all other nodes on the path, which we
assumed does not exist. This means nl−m has no successors
in Satopt and is thus removed in the m + 1-th iteration of the
while loop. This argument holds for all paths of length l −m,
should there be multiple. Thus, after the m + 1-th iteration
of the while loop, the longest path in Satopt starting in n has
length l − m, finishing the proof.

This means that after l iterations, the longest −→+-path
in Satopt starting in n has length 1, i.e., is just n itself.
This means n has no −→+-successors in Satopt and thus
is removed from Satopt in the l + 1-th iteration. Hence,
∂ ′(n,) = ff.
Case II.2.3: [n |
]γ = ??.
For this, two assumptions must hold:
(1) all paths starting in n reaching a cycle contain at least
one node n j with [n j , φ1]γ �= tt and all paths from n to an
arbitrary exit node ex ∈ Ex either have γ (ex,) �= tt or
some other node n j on the path with [ni , φ1]γ �= tt, but
(2) there is a path n−→+n1−→+ . . .−→+ni −→+ . . .−→+
ni such that [·, φ1]γ �= ff for all nodes on the path, or a
path n −→+ n′

1 −→+ . . . −→+ ex such that ex ∈ Ex with
γ (ex,) = tt and [·, φ]γ = tt for all other nodes on the
path.
By the same argument as in Case II.2.1, assumption (2)
implies that n is initially added to Satopt and never removed.
On the other hand by the same inductive argument as in Case
II.2.2, assumption (1) implies that n is removed from Sat pes

after finitely many iterations of the while-loop in the pes-

123

C. Dubslaff et al.

simistic run. This means we set ∂ ′(n,) = ?? in Line 3
and never modify it afterward, which finally ensures that
∂ ′(n,) = [n |
]γ if 	 = ∃Gφ1.
Case III: 	 = ∃φ1 Uφ2.
The argumentation for this case is atmany places very similar
to Case II. As such, we only go briefly over the different cases
and highlight the differences.
Case III.1: n ∈ Ex.
For this case, the argument is similar as for the analogous case
where 	 = ∃Gφ1. The difference is that for γ (n,) = ff
we see n is not initially added to Sat pes or Satopt . Since we
add states to Sat pes and Satopt in the respective while-loops,
we need to ensure n is never added. This however trivially
holds, since n being an exit node implies it does not have any
successors and thus will never indeed not be added to Sat pes

or Satopt .
Case III.2: n /∈ Ex.
Case III.2.1: [n |
]γ = tt.
Here, we must have a path n −→+ n1 . . . −→+ nl such that
either [nl , φ2]γ = tt or nl ∈ Ex and γ (nl ,) = tt, and
additionally [·, φ1]γ = tt for all other nodes on the path.

Similar to Case II.2.2 we can inductively prove that after
finitely many iterations of the respective while-loop, n is an
element of both Sat pes and Satopt . For this, first notice that nl

is in both Sat pes and Satopt initially. After m iterations of the
respective while-loop we can in the same inductive fashion
as before prove that nl−m is in Sat pes and Satopt . In particular
this implies that n ∈ Sat pes ∩Satopt after l iterations. Hence,
we set ∂(n,) = tt.
Case III.2.2: [n |
]γ = ff.
Toward a contradiction, assume that n ∈ Satopt after the
while-loop. As [n |
]γ = ff we must have [n |
 φ2]γ =
ff. This implies that n was not added to Satopt initially in
Line 28, but after finitely many iterations of the while-loop.
Hence, we must have [n |
 φ1]γ �= ff there must have been
an n1 ∈ Satopt in the previous iteration with n −→+ n1. For
n1 ∈ Satopt wemust have that it was added to Satopt initially
in Line 28, or [n1, φ1]γ �= ff and n1 itself has a successor
that was in Satopt in the previous iteration. Inductively, we
can see that this implies the existence of a finite path n −→+
n1 . . . −→+ nl such that nl was initially added to Satopt in
Line 28 and [·, φ1]γ �= ff. But nl being in Satopt initially
implies that either [nl , φ2]γ �= ff or nl ∈ Ex with γ (nl ,) �=
ff. I either case, this is a contradiction to the assumption
[n |
]γ = ff.

Hence, we showed n /∈ Satopt after the while-loop and
thus ∂(n, φ) = ff.
Case III.2.3: [n |
]γ = ??.
Analogously to the argument for ∃Gφ1, by combining the
arguments from Cases III.2.1 and III.2.2 we can deduce that
∂(n,) = ??. ��

A.2 Contextualization

Lemma 4 Let A be an RSM with consistent contexts γ and
consistent interpretation ∂ over a CTL formula 	. Then for
any input box b Algorithm 2 returns γ ′ and ∂ ′ that are con-
sistent with A′.

Proof Let �A� = (B∗×N ,
⇒, AP, L) be the underlying
Kripke structure of A and σb ∈ B∗ a call stack. From
the Kripke structure semantics, in particular rules (loop) and
(return) (cf. Figure2) it follows that for all box stacks σ ∈ B∗
the states (σb, ex) and

(
σ, (b, ex)

)
in �A� have the same suc-

cessors. Further, by definition of the labeling function L , they
are labeled by the same atomic propositions. Thus, they must
satisfy the same CTL formulas.

Thismeans that if we redefine Yi (b) such that γYi (b) agrees
with ∂ on all exit nodes of AYi (b) we have by consistency of
∂ that γYi (b) remains consistent as well.

In case we introduce a new component, we can apply the
same reasoning to ensure that the new context γk+1 is con-
sistent and thus γ remains consistent. What remains to be
shown is that ∂ stays consistent. For this, assume that for
some φ ∈ Subf () we have ∂ ′(n′, φ) = tt. This means that
∂(n, φ) = tt. By consistency of ∂ we must have (σ, n) |
 φ

for all box stacks σ ∈ B∗. Since Ak+1 and AYi (b) are iso-
morphic, and we only replaced Yi (b) by k + 1 this means
there is an homomorphism from �A′� to �A�, where the
homomorphism simply maps all states (σ ′, n′) to (σ, n) and
states (σ ′, n) to (σ, n) where σ is obtained by replacing
all occurrences of b′

i by bi for all b′
i ∈ Bk+1. Thus, from

(σ, n) |
 φ in �A� for all box stacks σ ∈ B∗ it follows that
(σ, n) |
 φ in �A′� for all box stacks σ ∈ B ′∗ and hence
∂ ′(n′, φ) = tt does not violate consistency. The same argu-
mentation applies when ∂(n, φ) = ff. In case ∂(n, φ) = ??
we have ∂ ′(n′, φ) = ?? which trivially cannot violate con-
sistency.

Finally, removing unreachable components does not have
any influence on consistency of the other components. There-
fore, ∂ ′ is consistent. ��
Lemma 5 For an RMS A and CTL formula 	 Algorithm 3
returns an RSM A′ with consistent contexts γ ′.

Proof The initialization performed by Initialize can be seen
as contextualizing the initial component A1 such that the
rule (loop) of the semantics of the RSM �A� is respected. By
applying the same reasoning steps as in the proof of Lemma 4
we can see that γ ′ is consistent. ��

A.3 Eager RSMmodel checking

Lemma 6 Let A be an RSM with consistent contexts γ and
consistent interpretation ∂ over a formula 	. If A has
been initialized via Initialize, and ∂ = RefineTernary

123

Lazy model checking for recursive state machines

(A,	, ∂, γ)andA, γ , ∂ = Contextualize(A,	, γ , ∂, b)

for all b ∈ B, i.e., both are fixed points, and ∂(n, φ) �=
?? �= γ (n, φ) for all n ∈ Nall and φ ∈ Subf ()\{	}, then
∂(n,) = ?? implies that either

• 	 = ∃Gφ1 and (σ, n) |
 	 for all σ ∈ B∗, or
• 	 = ∃φ1 Uφ2 and (σ, n) �|
 	 for all σ ∈ B∗.

Proof First, notice that under thegiven assumptions ∂(n,) =
?? implies that 	 is either an ∃G- or an ∃U -formula. This
is because 	 = a for a ∈ AP then trivially ∂(n,) �= ??
by RefineTernary. Similarly, ∂(n, φ) �= ?? for all strict
subformulas φ of 	 implies that ∂(n,) �= ?? for 	 being
a propositional formula, i.e., negation or disjunction. Lastly,
if 	∃Xφ1 we must have ∂(n,) �= ??, which follows from
either ∂(n, φ) �= ?? (for n /∈ Ex), or γ (n, φ) �= ?? (for
n ∈ Ex). This leaves only ∃G- or an ∃U -formulas as possi-
bilities for 	.

First, we consider the case 	 = ∃Gφ1 and assume for an
arbitrary node n ∈ Nall that ∂(n,) = ?? for ∂ a fixed point
of RefineTernary and Contextualize. As ∂(n, φ1) �=
??, the pessimistic and optimistic runs in RefineTernary

only differ in the context-dependent part of the initialization,
i.e., Line 15 and Line 19 as ∂(n, φ1) �= ff is equivalent to
∂(n, φ1) = tt. However, ∂(n,) = ?? implies that n ∈
Satopt but n /∈ Sat pes . Thus there must be an exit node ex ∈
Satopt but ex /∈ Sat pes that is reachable from n through a
path n −→+ . . . −→+ ex on which ∂(·, φ1) = tt and in
which γ (ex,) = ??. As Contextualize is a fixed point
as well, we must have that ∂((b, ex),) = γ (ex,) =
?? for all b ∈ B. Since (b, ex) ∈ Nall we can apply the
same reasoning as we did for n and find a path (b, ex) −→+
. . . −→+ ex ′ to an exit node ex ′ ∈ Ex. Inductively applying
this reasoning we can construct an infinite (possibly cyclic)
path in the underlying Kripke structure �A�:

(σ0, n)
⇒ . . .
⇒ (σ1b, ex)
⇒
(σ1, (b, ex))
⇒ . . .
⇒ (σ2b′, ex ′)
⇒

(σ2, (b
′, ex ′))
⇒ . . .

The existence of a path from (σ0, n) to (σ1b, ex) is implied
by the−→+-path from n to ex . Notice that b here is arbitrary
and by writing the box stack in ex as σ1b we only assume the
existence of such a box b, i.e., that the box stack is not empty
in ex . Notice that indeed the box stack in ex cannot be empty
since an empty box stackwould implyγ (ex,) �= ?? as only
the initial component canbe reachedwith the emptybox stack
and the initial component has a fully specified context (i.e.,
does notmap to??) by definition of Initialize. The transition
from (σ1b, ex)
⇒ (σ1, (b, ex)) exists by definition of �A�,
specifically rule (exit). Lastly, notice that (σ, n) |
 φ1 for all
states (σ, n) on the constructed path in �A�. For n /∈ Ex this

immediately follows from ∂(n, φ1) = tt as discussed before
and consistency of ∂ . Thus, the constructed path is a witness
for (σ, n) |
 	.

Next, consider the case 	 = ∃φ1 Uφ2. Toward a contra-
diction, assume (σ, n) |
 	 for all σ ∈ B∗. This means there
must be a finite path

(σ, n)
⇒ . . .
⇒ (σ ′, n′)

such that (σ ′, n′) |
 φ2 and for all other states s along the path
s |
 φ1. By consistency of ∂ and the fact that ∂(·, ·) �= ??
for strict subformulas of 	 it follows that ∂(n′, φ2) = tt
and ∂(m, φ1) = tt for all other states (·, m) on the path.
If there was a path n −→+ n′ it would immediately follow
from by Lemma 3 and definition of the ternary semantics
that ∂(n,) = tt which would already be a contradiction.
Thus, there cannot be a path n −→+ n′ which necessarily
means that the path in �A� must contain at least one exit
node. Let ex be the last return node (b, ex) on the path such
that ex ∈ Ex. Then (b, ex) −→+ . . . −→+ n′ and hence
again by Lemma 3 and definition of the ternary semantics
we have ∂((b, ex),) = tt. As Contextualize is a fixed
point, we also have γ (ex,) = ∂((b, ex),) = tt. Now
we can apply the same reasoning to find that the statement
also holds for the last return node (b′, ex ′) on the partial path
(σ, n)
⇒ . . .
⇒ (σ1b, ex) and hence also ∂(ex ′,) = tt.
Inductively applying this argument and using the fact that the
path is finite (thus of course containing finitely many states
of exit nodes), we can see that ∂(exi ,) = tt holds for all
exit nodes exi ∈ Ex such that (·, exi) appears on the path,
in particular for the exit node ex1 for which a state (·, ex1)
first appears on the path. Thus, all transitions on the path
(σ, n)
⇒ . . .
⇒ (·, ex1) must be obtained from rules (loc)
or (call) in the Kripke structure semantics. Hence, n −→+
. . . −→+ ex1. But then by ∂(ex1,) = γ (ex1,) = tt
and Lemma 3 along with definition of the ternary semantics
we have ∂(n,) = tt. But this contradicts our assumption
∂(n,) = ??. Hence (σ, n) �|
 	. ��
Theorem 1 Algorithm 4 terminates and is correct, i.e.,
returns tt iff A |
 	 and ff iff A �|
 	 for any RSM A and
CTL formula 	 over a common set of atomic propositions.

Proof We first show termination. For this, we show that
RefineTernary and Contextualize reach a fixed point
after finitely many iterations. First, notice that
Contextualize can only create finitely many new compo-
nents. This is becausewheneverContextualize does create
a new component Ak+1, its context γb induced by the box
b that was given to Contextualize as parameter is a strict
refinement of the component AY (b) to which b redirected
before Contextualize was called, i.e., γb is a refinement
of γY (b) and there is an exit node ex for which γY (b) = ??
but γb �= ??. Hence, any box b can only be refined finitely

123

C. Dubslaff et al.

many times. Notice that the number of boxes is not con-
stant as it may also increase when a copy of a component
is created, but it is always bounded by the number of copies
of a component that can be created, which in turn in finite
as it is bounded by the number of contexts. This is suffi-
cient to ensure Contextualize eventually reaches a fixed
point. Similarly, notice that if γ ′ is a refinement of γ , then
the ternary interpretation induced by the ternary semantics
∂ ′ = [n |
 φ]γ is a refinement of ∂ = [n |
 φ]γ . This
directly follows from the definition of the ternary semantics.
Since Contextualize only refines contexts, this means as
long as Contextualize does not create a new context, the
number of node-formula pairs such that ∂(·, ·) = ?? for the
ternary interpretation computed by RefineTernary mono-
tonically decreases. As again, Contextualize can only
create finitelymany new components,RefineTernarymust
reach a fixed point.

For the correctness of the resultswefirst showby induction
that after executing the loop from Line 2 to Line 14 for a for-
mula φ ∈ Subf (), we have that ∂(n, φ) �= ?? �= γ (ex, φ)

for all n ∈ Nall and ex ∈ Ex. For the base case, where φ is an
atomic proposition this trivially follows from the definition of
/ALocDed. If φ is an ∃G or ∃U formula this trivially holds
due to the assignments following Line 8. Otherwise, this is
proven by application of Lemma 6 where the assumptions
hold due to the induction hypothesis.

This means that to show correctness, it is sufficient
to show that ∂ is consistent. The assignments following
Line 8 preserve consistency of ∂ and γ by Lemma 6. For
Contextualize we ensure via Lemma 4 that γ remains
consistent, given that ∂ is consistent. For consistency of ∂ ,
first notice that, as shown above, RefineTernary being
called for formula φ implies that for all nodes n ∈ Nall , exit
nodes ex ∈ Ex and strict subformulas ψ of φ both ∂(n, ψ)

and γ (ex, ψ) are not ??. By Lemma 2 we have that also
[n |
 ψ]γ �= ?? Also by consistency of the ternary seman-
tics (cf. Lemma 1) and assuming consistency of γ , applying
Lemma 3 inductively on the subformulas of φ we see that ∂
also actually matches the ternary semantics and is thus also
consistent for ∂(·, φ).

This creates a cyclic dependency where ∂ remains con-
sistent if γ is consistent, and vice versa. As by Lemma 5
Initialize returns an RSM A with consistent contexts, γ is
initially consistent. Also initially ∂(·, ·) = ?? for all node-
formula pairs, which is consistent by definition. Thus, we
obtain that γ and ∂ remain consistent throughout the algo-
rithm and hence yield correctness of the output result. ��

B Lazy RSMmodel checking

Theorem 2 Algorithm 5 terminates and is correct for com-
plete expansion heuristic H, i.e., LazyCheck(A,	, H)

returns tt iff A |
 	 and ff iff A �|
 	 for any RSM A, and
CTL formula 	 over a common set of atomic propositions.

Proof The argument for termination is exactly as in The-
orem 1, essentially showing there are only finitely many
contexts and for each context there are only finitely many
possible refinement steps.

Similarly, consistency of γ and ∂ is preserved through
subroutines Initialize, RefineTernary, Contextualize
is given by Lemma 5, Lemma 3with Lemma 1 and Lemma 2,
and Lemma 4, respectively. Also the assignments following
Line 6 preserve consistency by Lemma 6. To complete the
proof, we show that Lemma 6 is applicable, i.e., all assump-
tions hold.

Notice that the condition that the truth value for all subfor-
mulas is known in every node is explicitly checked. Further,
when reaching Line 6, we have B = ∅. Together with the fact
that H is complete this implies that C(A,	, γ , ∂) = ∅, i.e.,
no boxes are contextualizable and hence Contextualize is
a fixed point for all b ∈ B. Thus, Contextualize is a fixed
point. Lastly, if ∂ is computed bottom-up for allφ ∈ Subf ()

via RefineTernary then by Lemma 3 corresponds exactly
to the three valued semantics for all node-formula pairswhich
is uniquely defined and thusRefineTernary is a fixed point
as well. ��
Theorem 3 Algorithm 5 terminates and is correct for the spe-
cial expansion heuristicGetNextExpansionwith the modi-
fied global dependency cycle resolution, i.e.,
LazyCheck

′
(A,	,GetNextExpansion) returns tt iffA |

	 and ff iff A �|
 	 for any RSM A and CTL formula 	 over
a common set of atomic propositions.

Proof We first show correctness of the approach. As in the
proof of Theorem 2 we have already seen that all subrou-
tines preserve consistency of ∂ and γ , and initially both are
consistent by Lemma 5. Thus, we only need to show that the
modified cycle dependency resolution modifies γ and ∂ in
such a way that they remain consistent.

First, consider the case where φ = ∃Gφ1 and the if-branch
in Line 6 is entered, setting ∂(n j , φ) = tt for some node
n j ∈ Nall . Due to the modified global cycle dependency res-
olution described above this means we have (n j , φ) ∈ Dall

as well as ∂(n j , φ
′) �= ?? for all φ′ ∈ Subf (φ) \ {φ}.

Because (n j , φ) ∈ Dall we know it must have been added
to D in Line 22. Therefore there must be a sequence of
node-formula pairs (n1, ψ1) . . . (n j , ψ j) . . . (nl , ψl) where
ψ j = φ1 such that FindReason was recursively called
with (ni , ψi) in the input. Additionally, there must be a
transition nl −→ n1 and we must have φ1 = φl , such

123

Lazy model checking for recursive state machines

that FindReason(·, nl , φl , ·, ·, ·, ·) went into the if-branch
in Line 22 because (n1, φ1) ∈ R since FindReason was
called on (n1, φ1) before. As recursive calls of FindReason
only happen on formulas monotonically decreasing in size,
we have that φi = φ for all i ∈ {1, . . . , l}. This implies
that the if-statement in Line 19 was never entered, and hence
∂(ni , φ1) �= ??. If, on the other hand, we had ∂(ni , φ1) = ff
for some i , then we would have deduced ∂(ni ,	1) = ff by
RefineTernary and hence FindReason(·, ni , φi , ·, ·, ·, ·)
wouldnot havebeen called.Hence,wemust have ∂(ni , φ1) =
tt for all i ∈ {1, . . . , l}. Due to FindReason being called on
eachpair in the sequence (n1, φ1) . . . (n j , φ1) . . . (nl , φ1),we
must have executed either Line 7, Line 12, or Line 24 either
of which implies that there is a transition from ni to ni+1.
Thus, we have a cycle starting in n1 that goes through all
ni and for which ∂(ni , φ1) = tt for all i ∈ {1, . . . , l}. Due
to consistency of ∂ this is a witness for that ∂(ni ,) = tt
maintains consistency.

Nowwe prove consistency of the global dependency cycle
resolution for the case where φ = ∃φ1 Uφ2. Toward a con-
tradiction, assume that we set ∂(n1, φ) = ff in the global
dependency cycle resolution despite there being afinite short-
est witnessing path for φ of length l. W.l.o.g. we call the
nodes on this path ni for i ∈ {1, . . . , l}. Since the global
dependency cycle resolution assures that all subformulas of
φ are known in all nodes, we must have ∂(nl , φ2) = tt, and
∂(ni , φ1) = tt and ∂(ni , φ2) = ff for i ∈ {1, . . . , l − 1}.
AlsoRefineTernary ensures that ∂(nl , φ1) = tt. However,
since ∂(n1, φ) = ?? before the global dependency cycle res-
olution there must be a largest j such that ∂(n j , φ) = ??
but ∂(n j+1, φ) = tt. If n j −→+ n j+1 we would have that
RefineTernarywould have set ∂(n j , φ) = tt. Hence we do
not have n j −→+ n j+1. Since the witnessing path contains
n j followed by n j+1 and −→+ covers all local transitions
as well as transitions entering boxes, this leaves only one
possibility for n j and n j+1, namely that n j ∈ Ex and
n j+1 = (b, n j) for some b ∈ B. However then we would
have returned the non-empty set {b} along with D in Line 9
in the recursive call of FindReason.

Toward showing termination, noticefirst thatFindReason
can only call itself recursively finitely many times, as there
are only finitely many possible node-formula pairs. Because
whenever we call FindReason with a node-formula pair
(n, φ) in the input we immediately add (n, φ) to R, the recur-
sion can only have finite depth. Because the RSM and the
formula are finite we can also immediately see that the width
of the recursion tree is finite. Thus, FindReason terminates.
Lastly, because FindReason always returns a pair {b}, D
where either b ∈ C(A, ∂) or D �= ∅, we always either add
contextual information to a box or perform a global depen-
dency cycle resolution. Since the former can only be done
finitely many times and the latter strictly reduces the number
of node-formula pairs for which ∂(·, ·) = ??, we eventually

have ∂(en1,) �= ?? for all en1 ∈ En1 which means the
algorithm terminates. ��

References

1. The Apache™ FOP Project. https://xmlgraphics.apache.org/fop/.
Accessed 31 Jan 2024 (2016)

2. TheAVRSimulation andAnalysis Framework . https://github.com/
avrora-framework/avrora. Accessed 31 Jan 2024 (2016)

3. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yan-
nakakis, M.: Analysis of recursive state machines. ACM Trans.
Program. Lang. Syst. 27(4), 786–818 (2005)

4. Alur, R., Bouajjani, A., Esparza, J.: Model Checking Procedural
Programs, pp. 541–572. Springer, Cham (2018)

5. Alur, R., Yannakakis, M.: Model checking of hierarchical state
machines. ACM Trans. Program. Lang. Syst. 23(3), 273–303
(2001)

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

7. Bernasconi, A., Menghi, C., Spoletini, P., Zuck, L.D., Ghezzi, C.:
From model checking to a temporal proof for partial models. In:
Cimatti, A., Sirjani, M. (eds.) Software Engineering and Formal
Methods, pp. 54–69. Springer, Cham (2017)

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability—Second Edition, Volume 336 of Frontiers in Arti-
ficial Intelligence and Applications. IOS Press (2021)

9. Bouajjani, A., Esparza, J.,Maler, O.: Reachability analysis of push-
down automata:Application tomodel-checking. In:Mazurkiewicz,
A.W., Winkowski, J. (eds.) Proceedings of the CONCUR’97, Vol-
ume 1243 of LNCS, pp. 135–150. Springer (1997)

10. Brauer, J., Huuck, R., Schlich, B.: Interprocedural pointer anal-
ysis in goanna. Electron. Notes Theor. Comput. Sci. 254, 65–83
(2009). Proceedings of the 4th International Workshop on Systems
Software Verification (SSV 2009)

11. Brázdil, T.: Verification of Probabilistic Recursive Sequential Pro-
grams. Ph.D. thesis, Masaryk University Brno (2007)

12. Bruns, G., Godefroid, P.: Model checking partial state spaces with
3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.)
Proceedings of the CAV’99, pp. 274–287. Springer (1999)

13. Bruns, G., Godefroid, P.: Generalized model checking: reason-
ing about partial state spaces. In: Palamidessi, C. (ed.) CONCUR
2000—Concurrency Theory, pp. 168–182. Springer, Berlin (2000)

14. Bryant, R.E.: Graph-based algorithms for Boolean functionmanip-
ulation. IEEE Trans. Comput. 35, 677–691 (1986)

15. Burkart,O., Steffen,B.:Model checking for context-free processes.
In Cleaveland, W. (ed.) Proceedings of the CONCUR’92, pp. 123–
137 (1992)

16. Burkart, O., Steffen, B.: Model checking the full modal mu-
calculus for infinite sequential processes. Theor. Comput. Sci.
221(1–2), 251–270 (1999)

17. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.:
Multi-valued symbolic model-checking. ACM Trans. Softw. Eng.
Methodol. 12(4), 371–408 (2003)

18. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In: Kozen, D.
(ed.) Logic of Programs, Volume 131 of LNCS, pp. 52–71 (1981)

19. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement. In: CAV ’00: Pro-
ceedings of the 12th International Conference on Computer Aided
Verification, pp. 154–169. Springer, London (2000)

20. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The
MIT Press, Cambridge (2000)

123

https://xmlgraphics.apache.org/fop/
https://github.com/avrora-framework/avrora
https://github.com/avrora-framework/avrora

C. Dubslaff et al.

21. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of
ModelChecking. Incorporated, 1st edn. Springer,NewYork (2018)

22. Cousot, P.: Principles of Abstract Interpretation. The MIT Press,
Cambridge (2021)

23. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice
model for static analysis of programsby construction or approxima-
tion of fixpoints. In: ConferenceRecord of the FourthAnnual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Los Angeles, California, pp. 238–252. ACM Press,
New York (1977)

24. Dams, D., Grumberg, O.: Abstraction andAbstraction Refinement,
pp. 385–419. Springer, Cham (2018)

25. Dubslaff, C., Wienhöft, P., Fehnker, A.: Be lazy and don’t care:
faster CTL model checking for recursive state machines. In: Cali-
nescu, R., Păsăreanu, C.S. (eds.) Software Engineering and Formal
Methods, pp. 332–350. Springer, Cham (2021)

26. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property
specifications for finite-state verification. In: Proceedings of the
21st International Conference on Software Engineering, ICSE ’99,
pp. 411–420. Association for Computing Machinery, New York
(1999)

27. Etessami,K.,Yannakakis,M.: RecursiveMarkov chains, stochastic
grammars, and monotone systems of nonlinear equations. J. ACM
56(1), 1–66 (2009)

28. Fehnker, A., Dubslaff, C.: Inter-procedural analysis of computer
programs. US Patent 8,296,735 (2012)

29. Gmytrasiewicz, P.J., Durfee, E.H.: A logic of knowledge and belief
for recursive modeling: a preliminary report. In: Swartout, W.R.
(ed.) Proceedings of the 10th National Conference on Artificial
Intelligence, San Jose, CA, USA, July 12–16, 1992, pp. 628–634.
AAAI Press/The MIT Press (1992)

30. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model
checking usingmodal transition systems. In: Larsen,K.G.,Nielsen,
M. (eds.) CONCUR 2001—Concurrency Theory, pp. 426–440.
Springer, Berlin (2001)

31. Göller, S., Lohrey, M.: Branching-time model checking of one-
counter processes and timed automata. SIAM J. Comput. 42(3),
884–923 (2013)

32. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS.
In: Grumberg, O. (ed.) Proceedings of the Computer Aided Verifi-
cation, 9th International Conference, CAV ’97, Haifa, Israel, June
22–25, 1997, Volume 1254 of Lecture Notes in Computer Science,
pp. 72–83. Springer (1997)

33. Hague, M., Ong, C.-H.: A saturation method for the modal μ-
calculus over pushdown systems. Inf. Comput. 209(5), 799–821
(2011)

34. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstrac-
tion. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’02, pp.
58–70, New York, NY, USA. Association for Computing Machin-
ery (2002)

35. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow
analysis. In: Kaiser, G.E. (ed.) Proceedings of the SIGSOFT’95,
pp. 104–115. ACM (1995)

36. Huth, M.: Model checking modal transition systems using Kripke
structures. In: Cortesi, A. (ed.) Verification, Model Checking, and
Abstract Interpretation, pp. 302–316. Springer, Berlin (2002)

37. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems:
a foundation for three-valued program analysis. In: Sands, D. (ed.)
Programming Languages and Systems, pp. 155–169. Springer,
Berlin (2001)

38. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis
with lazy propagation. In: Cousot, R.,Martel,M. (eds.) StaticAnal-
ysis, pp. 320–339. Springer, Berlin (2010)

39. Kozen, D.: Results on the propositional μ-calculus. Theor. Com-
put. Sci. 27(3), 333–354 (1983). Special Issue Ninth International

Colloquium on Automata, Languages and Programming (ICALP)
Aarhus, Summer 1982

40. Křetínský, J.: 30 Years of Modal Transition Systems: Survey of
Extensions and Analysis, pp. 36–74. Springer, Cham (2017)

41. Larsen, K., Thomsen, B.: A modal process logic. In: [1988] Pro-
ceedings.ThirdAnnual SymposiumonLogic inComputer Science,
pp. 203–210 (1988)

42. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T.,
Jones, R.B. (eds.) Computer Aided Verification, pp. 123–136.
Springer, Berlin (2006)

43. Menghi, C., Rizzi, A.M., Bernasconi, A., Spoletini, P.: Torpedo:
witnessing model correctness with topological proofs. Form. Asp.
Comput. 33(6), 1039–1066 (2021)

44. Menghi, C., Spoletini, P., Ghezzi, C.: Dealing with incompleteness
in automata-based model checking. In: Fitzgerald, J., Heitmeyer,
C., Gnesi, S., Philippou, A. (eds.) FM 2016: Formal Methods, pp.
531–550. Springer, Cham (2016)

45. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown
systems and their application to interprocedural dataflow analysis.
Sci. Comput. Program. 58(1–2), 206–263 (2005)

46. Schmidt, D., Steffen, B.: Program analysis as model checking of
abstract interpretations. In: Levi, G. (ed.) Static Analysis, pp. 351–
380. Springer, Berlin (1998)

47. Schwoon, S.: Model checking pushdown systems. Ph.D. thesis,
Technical University Munich, Germany (2002)

48. Sharir, M., Pnueli, A.: Two Approaches to Interprocedural Data
Flow analysis, Chapter 7, pp. 189–234. Prentice-Hall, Englewood
Cliffs (1981)

49. Song, F., Touili, T.: PuMoC: a CTL model-checker for sequential
programs. In: Goedicke,M.,Menzies, T., Saeki,M. (eds.) Proceed-
ings of the ASE’12, pp. 346–349. ACM (2012)

50. Uchitel, S., Alrajeh, D., Ben-David, S., Braberman, V., Chechik,
M., De Caso, G., D’Ippolito, N., Fischbein, D., Garbervetsky, D.,
Kramer, J., Russo, A., Sibay, G.: Supporting incremental behaviour
model elaboration. Comput. Sci. Res. Dev. 28(4), 279–293 (2013)

51. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and sat-
based reachability in hardware model checking. In: 2012 Formal
Methods in Computer-Aided Design (FMCAD), pp. 173–181
(2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Clemens Dubslaff is an Assistant
Professor from the formal sys-
tem analysis cluster at Eindhoven
University of Technology,
The Netherlands. He holds an
M.Sc. degree in Computational
Logic from UN Lisbon, Portugal,
and a Ph.D. from Dresden Uni-
versity of Technology, Germany.
His research interests cover for-
mal methods and their explain-
ability using symbolic techniques
and causal reasoning.

123

Lazy model checking for recursive state machines

Patrick Wienhöft is a Research
Assistant at Dresden University of
Technology, Germany. He com-
pleted his M.Sc. in Computational
Logic with a specialization in tem-
poral logic and verification. Since
December 2020 he pursues a Ph.D.
at the cluster of excellence CeTI,
in which he is conducting research
on reinforcement learning and com-
putational models of human behav-
iors.

Ansgar Fehnker is an Associate
Professor (Teaching and Leader-
ship) in the School of Comput-
ing at Macquarie University. In
his career he held positions at
the University of Twente, Uni-
versity of the South Pacific, and
National ICT Australia in Syd-
ney. His research interest is the
use of automated system and soft-
ware verification tools, in partic-
ular model checking and static
analysis, and their application in
the design and development of
software systems.

123

	Lazy model checking for recursive state machines
	Abstract
	1 Introduction
	1.1 Contribution
	1.1.1 Disclaimer
	1.1.2 Outline

	2 Related work
	2.1 Recursive operational models
	2.1.1 Abstraction and refinement
	2.1.2 Lazy evaluation approaches

	3 Preliminaries
	3.1 Recursive state machines
	3.2 Computation tree logic

	4 Problem statement
	4.1 Contexts

	5 Ternary RSM model checking
	5.1 Motivation
	5.1.1 Consistency

	5.2 Ternary refinement
	5.2.1 Maximal consistency
	5.2.2 Computation

	5.3 Contextualization
	5.3.1 Initial context

	5.4 Eager RSM model checking
	5.4.1 Global dependency cycle resolution
	5.4.2 Eager RSM model checking

	6 Lazy RSM model checking
	6.1 Lazy contextualization
	6.1.1 Lazy formula evaluation
	6.1.2 Lazy expansion

	6.2 Lazy approach
	6.3 Incomplete expansion heuristics
	6.3.1 Top-down expansion heuristic
	6.3.2 Modified global dependency cycle resolution

	6.4 Problem instances
	6.4.1 Guaranteed exponential succinctness of the lazy approach
	6.4.2 Bounding exit and entry nodes
	6.4.3 Single-component and single-box RSMs
	6.4.4 Summary

	7 Implementation and evaluation
	7.1 Research questions
	7.1.1 Experimental setup

	7.2 Scalability experiment
	7.3 PuMoC benchmark set
	7.4 Interprocedural static analysis for Java programs
	7.4.1 Random expansion heuristic

	8 Conclusion and discussion
	8.1 Counterexamples and witnesses
	8.1.1 Heuristics for non-deterministic choices
	8.1.2 Further work

	Acknowledgements
	Appendix
	A Ternary RSM model checking
	A.1 Ternary refinement
	A.2 Contextualization
	A.3 Eager RSM model checking

	B Lazy RSM model checking
	References

